Search Results

Search found 17651 results on 707 pages for 'unix domain sockets'.

Page 680/707 | < Previous Page | 676 677 678 679 680 681 682 683 684 685 686 687  | Next Page >

  • What are the Open Source alternatives to WPF/XAML?

    - by Evan Plaice
    If we've learned anything from HTML/CSS it's that, declarative languages (like XML) work best to describe User Interfaces because: It's easy to build code preprocessors that can template the code effectively. The code is in a well defined well structured (ideally) format so it's easy to parse. The technology to effectively parse or crawl an XML based source file already exists. The UIs scripted code becomes much simpler and easier to understand. It simple enough that designers are able to design the interface themselves. Programmers suck at creating UIs so it should be made easy enough for designers. I recently took a look at the meat of a WPF application (ie. the XAML) and it looks surprisingly familiar to the declarative language style used in HTML. It's apparent to me that the current state of desktop UI development is largely fractionalized, otherwise there wouldn't be so much duplicated effort in the domain of graphical user interface design (IE. GTK, XUL, Qt, Winforms, WPF, etc). There are 45 GUI platforms for Python alone It's seems reasonable to me that there should be a general purpose, open source, standardized, platform independent, markup language for designing desktop GUIs. Much like what the W3C made HTML/CSS into. WPF, or more specifically XAML seems like a pretty likely step in the right direction. Now that the 'browser wars' are over should we look forward to a future of 'desktop gui wars?' Note: This topic is relatively subjective in the attempt to be 'future-thinking.' I think that desktop GUI development in its current state sucks ((really)hard) and, even though WPF is still in it's infancy, it presents a likely solution to the problem. Update: Thanks a lot for the info, keep it comin'. Here's are the options I've gathered from the comments and answers. GladeXML Editor: Glade Interface Designer OS Platforms: All GUI Platform: GTK+ Languages: C (libglade), C++, C# (Glade#), Python, Ada, Pike, Perl, PHP, Eiffel, Ruby XRC (XML Resource) Editors: wxGlade, XRCed, wxDesigner, DialogBlocks (non-free) OS Platforms: All GUI Platform: wxWidgets Languages: C++, Python (wxPython), Perl (wxPerl), .NET (wx.NET) XML based formats that are either not free, not cross-platform, or language specific XUL Editor: Any basic text editor OS Platforms: Any OS running a browser that supports XUL GUI Platform: Gecko Engine? Languages: C++, Python, Ruby as plugin languages not base languages Note: I'm not sure if XUL deserves mentioning in this list because it's less of a desktop GUI language and more of a make-webapps-run-on-the-desktop language. Plus, it requires a browser to run. IE, it's 'DHTML for the desktop.' CookSwing Editor: Eclipse via WindowBuilder, NetBeans 5.0 (non-free) via Swing GUI Builder aka Matisse OS Platforms: All GUI Platform: Java Languages: Java only XAML (Moonlight) Editor: MonoDevelop OS Platforms: Linux and other Unix/X11 based OSes only GUI Platforms: GTK+ Languages: .NET Note: XAML is not a pure Open Source format because Microsoft controls its terms of use including the right to change the terms at any time. Moonlight can not legally be made to run on Windows or Mac. In addition, the only platform that is exempt from legal action is Novell. See this for a full description of what I mean.

    Read the article

  • how to solve unhandled exception error when using visual C++ 2008?

    - by make
    Hi, Could someone please help me to solve unhandled exception error when using visual C++ 2008? the error is displayed as follow: Unhandled exception at 0x00411690 in time.exe: 0xC0000005: Access violation reading location 0x00000008 Actually when I used visual c++ 6 in the past, there weren't any error and the program was running fine. But now ehen I use visual 2008, I am getting this Unhandled exception error. Here is the program: #include <stdio.h> #include <stdlib.h> #include <time.h> #ifdef _WIN32 // #include <winsock.h> #include <windows.h> #include "stdint.h" // typedef __int64 int64_t // Define it from MSVC's internal type // typedef unsigned __int32 uint32_t #else #include <stdint.h> // Use the C99 official header #include <sys/time.h> #include <unistd.h> #endif #if defined(_MSC_VER) || defined(_MSC_EXTENSIONS) #define DELTA_EPOCH_IN_MICROSECS 11644473600000000Ui64 #else #define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL #endif struct timezone { int tz_minuteswest; /* minutes W of Greenwich */ int tz_dsttime; /* type of dst correction */ }; #define TEST #ifdef TEST uint32_t stampstart(); uint32_t stampstop(uint32_t start); int main() { uint32_t start, stop; start = stampstart(); /* Your code goes here */ stop = stampstop(start); return 0; } #endif int gettimeofday(struct timeval *tv, struct timezone *tz) { FILETIME ft; unsigned __int64 tmpres = 0; static int tzflag = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmpres |= ft.dwHighDateTime; tmpres <<= 32; tmpres |= ft.dwLowDateTime; tmpres /= 10; /*convert into microseconds*/ /*converting file time to unix epoch*/ tmpres -= DELTA_EPOCH_IN_MICROSECS; tv->tv_sec = (long)(tmpres / 1000000UL); tv->tv_usec = (long)(tmpres % 1000000UL); } if (NULL != tz) { if (!tzflag) { _tzset(); tzflag++; } tz->tz_minuteswest = _timezone / 60; tz->tz_dsttime = _daylight; } return 0; } uint32_t stampstart() { struct timeval tv; struct timezone tz; struct tm *tm; uint32_t start; gettimeofday(&tv, &tz); tm = localtime(&tv.tv_sec); printf("TIMESTAMP-START\t %d:%02d:%02d:%d (~%d ms)\n", tm->tm_hour, tm->tm_min, tm->tm_sec, tv.tv_usec, tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm->tm_sec * 1000 + tv.tv_usec / 1000); start = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm->tm_sec * 1000 + tv.tv_usec / 1000; return (start); } uint32_t stampstop(uint32_t start) { struct timeval tv; struct timezone tz; struct tm *tm; uint32_t stop; gettimeofday(&tv, &tz); tm = localtime(&tv.tv_sec); stop = tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm->tm_sec * 1000 + tv.tv_usec / 1000; printf("TIMESTAMP-END\t %d:%02d:%02d:%d (~%d ms) \n", tm->tm_hour, tm->tm_min, tm->tm_sec, tv.tv_usec, tm->tm_hour * 3600 * 1000 + tm->tm_min * 60 * 1000 + tm->tm_sec * 1000 + tv.tv_usec / 1000); printf("ELAPSED\t %d ms\n", stop - start); return (stop); } thanks for your replies:

    Read the article

  • File Fix-it codegolf (GCJ 2010 1B-A)

    - by KirarinSnow
    Last year (2009), the Google Code Jam featured an interesting problem as the first problem in Round 1B: Decision Tree As the problem seemed tailored for Lisp-like languages, we spontaneously had an exciting codegolf here on SO, in which a few languages managed to solve the problem in fewer characters than any Lisp variety, using quite a number of different techniques. This year's Round 1B Problem A (File Fix-it) also seems tailored for a particular family of languages, Unix shell scripts. So continuing the "1B-A tradition" would be appropriate. :p But which language will end up with the shortest code? Let us codegolf and see! Problem description (adapted from official page): You are given T test cases. Each test case contains N lines that list the full path of all directories currently existing on your computer. For example: /home/awesome /home/awesome/wheeeeeee /home/awesome/wheeeeeee/codegolfrocks /home/thecakeisalie Next, you are given M lines that list the full path of directories you would like to create. They are in the same format as the previous examples. You can create a directory using the mkdir command, but you can only do so if the parent directory already exists. For example, to create the directories /pyonpyon/fumufumu/yeahyeah and /pyonpyon/fumufumu/yeahyeahyeah, you would need to use mkdir four times: mkdir /pyonpyon mkdir /pyonpyon/fumufumu mkdir /pyonpyon/fumufumu/yeahyeah mkdir /pyonpyon/fumufumu/yeahyeahyeah For each test case, return the number of times you have to call mkdir to create all the directories you would like to create. Input Input consists of a text file whose first line contains the integer T, the number of test cases. The rest of the file contains the test cases. Each test case begins with a line containing the integers N and M, separated by a space. The next N lines contain the path of each directory currently existing on your computer (not including the root directory /). This is a concatenation of one or more non-empty lowercase alphanumeric strings, each preceded by a single /. The following M lines contain the path of each directory you would like to create. Output For each case, print one line containing Case #X: Y, where X is the case number and Y is the solution. Limits 1 = T = 100. 0 = N = 100. 1 = M = 100. Each path contains at most 100 characters. Every path appears only once in the list of directories already on your computer, or in the list of desired directories. However, a path may appear on both lists, as in example case #3 below. If a directory is in the list of directories already on your computer, its parent directory will also be listed, with the exception of the root directory /. The input file is at most 100,000 bytes long. Example Larger sample test cases may be downloaded here. Input: 3 0 2 /home/sparkle/pyon /home/sparkle/cakes 1 3 /z /z/y /z/x /y/y 2 1 /moo /moo/wheeeee /moo Output: Case #1: 4 Case #2: 4 Case #3: 0 Code Golf Please post your shortest code in any language that solves this problem. Input and output may be handled via stdin and stdout or by other files of your choice. Please include a disclaimer if your code has the potential to modify or delete existing files when executed. Winner will be the shortest solution (by byte count) in a language with an implementation existing prior to the start of Round 1B 2010.

    Read the article

  • Clear data at serial port in Linux in C?

    - by ipkiss
    Hello guys, I am testing the sending and receiving programs with the code as The main() function is below: include include include include include include include "read_write.h" int fd; int initport(int fd) { struct termios options; // Get the current options for the port... tcgetattr(fd, &options); // Set the baud rates to 19200... cfsetispeed(&options, B9600); cfsetospeed(&options, B9600); // Enable the receiver and set local mode... options.c_cflag |= (CLOCAL | CREAD); options.c_cflag &= ~PARENB; options.c_cflag &= ~CSTOPB; options.c_cflag &= ~CSIZE; options.c_cflag |= CS8; // Set the new options for the port... tcsetattr(fd, TCSANOW, &options); return 1; } int main(int argc, char **argv) { fd = open("/dev/pts/2", O_RDWR | O_NOCTTY | O_NDELAY); if (fd == -1) { perror("open_port: Unable to open /dev/pts/1 - "); return 1; } else { fcntl(fd, F_SETFL, 0); } printf("baud=%d\n", getbaud(fd)); initport(fd); printf("baud=%d\n", getbaud(fd)); char sCmd[254]; sCmd[0] = 0x41; sCmd[1] = 0x42; sCmd[2] = 0x43; sCmd[3] = 0x00; if (!writeport(fd, sCmd)) { printf("write failed\n"); close(fd); return 1; } printf("written:%s\n", sCmd); usleep(500000); char sResult[254]; fcntl(fd, F_SETFL, FNDELAY); if (!readport(fd,sResult)) { printf("read failed\n"); close(fd); return 1; } printf("readport=%s\n", sResult); close(fd); return 0; } read_write.h: #include <stdio.h> /* Standard input/output definitions */ include /* String function definitions */ include /* UNIX standard function definitions */ include /* File control definitions */ include /* Error number definitions */ include /* POSIX terminal control definitions */ int writeport(int fd, char *chars) { int len = strlen(chars); chars[len] = 0x0d; // stick a after the command chars[len+1] = 0x00; // terminate the string properly int n = write(fd, chars, strlen(chars)); if (n < 0) { fputs("write failed!\n", stderr); return 0; } return 1; } int readport(int fd, char *result) { int iIn = read(fd, result, 254); result[iIn-1] = 0x00; if (iIn < 0) { if (errno == EAGAIN) { printf("SERIAL EAGAIN ERROR\n"); return 0; } else { printf("SERIAL read error %d %s\n", errno, strerror(errno)); return 0; } } return 1; } and got the issue: In order to test with serial port, I used the socat (https://help.ubuntu.com/community/VirtualSerialPort ) to create a pair serial ports on Linux and test my program with these port. The first time the program sends the data and the program receives data is ok. However, if I read again or even re-write the new data into the serial port, the return data is always null until I stop the virtual serial port and start it again, then the write and read data is ok, but still, only one time. (In the real case, the sending part will be done by another device, I am just taking care of the reading data from the serial port. I wrote both parts just to test my reading code.) Does anyone have any ideas? Thanks a lot.

    Read the article

  • WCF timedout waiting for System.Diagnostics.Process to finish

    - by Bartek
    Dear All, We have a WCF Service deployed on Windows Server 2003 that handles file transfers. When file is in Unix format, I am converting it to Dos format in the initialization stage using System.Diagnostics.Process (.WaitForExit()). Client calls the service: obj_DataSenderService = New DataSendClient() obj_DataSenderService.InnerChannel.OperationTimeout = New TimeSpan(0, System.Configuration.ConfigurationManager.AppSettings("DatasenderServiceOperationTimeout"), 0) str_DataSenderGUID = obj_DataSenderService.Initialize(xe_InitDetails.GetXMLNode) This works fine, however for large files the conversion takes more than 10 minutes and I am getting exception: A first chance exception of type 'System.ServiceModel.CommunicationException' occurred in mscorlib.dll Additional information: The socket connection was aborted. This could be caused by an error processing your message or a receive timeout being exceeded by the remote host, or an underlying network resource issue. Local socket timeout was '00:59:59.8749992'. I tried configuring both client: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" /> <message clientCredentialType="Windows" /> </security> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:4000/DataSenderEndPoint" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataSend" contract="IDataSend" name="NetTcpBinding_IDataSend"> <identity> <servicePrincipalName value="host/localhost" /> <!--<servicePrincipalName value="host/axopwrapp01.Corp.Acxiom.net" />--> </identity> </endpoint> </client> </system.serviceModel> And service: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> </binding> </netTcpBinding> </bindings> </system.serviceModel> but without luck. In the Service trace viewer I can see: Close process timed out waiting for service dispatch to complete. with stack trace: System.ServiceModel.ServiceChannelManager.CloseInput(TimeSpan timeout) System.ServiceModel.Dispatcher.InstanceContextManager.CloseInput(TimeSpan timeout) System.ServiceModel.ServiceHostBase.OnClose(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close() DataSenderService.DataSender.OnStop() System.ServiceProcess.ServiceBase.DeferredStop() System.Runtime.Remoting.Messaging.StackBuilderSink._PrivateProcessMessage(IntPtr md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.PrivateProcessMessage(RuntimeMethodHandle md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.AsyncProcessMessage(IMessage msg, IMessageSink replySink) System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.DoAsyncCall() System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.ThreadPoolCallBack(Object o) System.Threading._ThreadPoolWaitCallback.WaitCallback_Context(Object state) System.Threading.ExecutionContext.runTryCode(Object userData) System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading._ThreadPoolWaitCallback.PerformWaitCallbackInternal(_ThreadPoolWaitCallback tpWaitCallBack) System.Threading._ThreadPoolWaitCallback.PerformWaitCallback(Object state) Many thanks Bartek

    Read the article

  • How to implement an EventHandler to update controls

    - by Bill
    May I ask for help with the following? I am attempting to connect and control three pieces of household electronic equipment by computer through a GlobalCache GC-100 and iTach. As you will see in the following code, I created a class-instance of GlobalCacheAdapter that communicates with each piece of equipment. Although the code seems to work well in controlling the equipment, I am having trouble updating controls with the feedback from the equipment. The procedure "ReaderThreadProc" captures the feedback; however I don't know how to update the associated TextBox with the feedback. I believe that I need to create an EventHandler to notify the TextBox of the available update; however I am uncertain as to how an EventHandler like this would be implemented. Any help wold be greatly appreciated. using System; using System.IO; using System.Net; using System.Net.Sockets; using System.Threading; using System.Windows.Forms; namespace WindowsFormsApplication1 { public partial class Form1 : Form { // Create three new instances of GlobalCacheAdaptor and connect. // GC-100 (Elan) 192.168.1.70 4998 // GC-100 (TuneSuite) 192.168.1.70 5000 // GC iTach (Lighting) 192.168.1.71 4999 private GlobalCacheAdaptor elanGlobalCacheAdaptor; private GlobalCacheAdaptor tuneSuiteGlobalCacheAdaptor; private GlobalCacheAdaptor lutronGlobalCacheAdaptor; public Form1() { InitializeComponent(); elanGlobalCacheAdaptor = new GlobalCacheAdaptor(); elanGlobalCacheAdaptor.ConnectToDevice(IPAddress.Parse("192.168.1.70"), 4998); tuneSuiteGlobalCacheAdaptor = new GlobalCacheAdaptor(); tuneSuiteGlobalCacheAdaptor.ConnectToDevice(IPAddress.Parse("192.168.1.70"), 5000); lutronGlobalCacheAdaptor = new GlobalCacheAdaptor(); lutronGlobalCacheAdaptor.ConnectToDevice(IPAddress.Parse("192.168.1.71"), 4999); elanTextBox.Text = elanGlobalCacheAdaptor._line; tuneSuiteTextBox.Text = tuneSuiteGlobalCacheAdaptor._line; lutronTextBox.Text = lutronGlobalCacheAdaptor._line; } private void btnZoneOnOff_Click(object sender, EventArgs e) { elanGlobalCacheAdaptor.SendMessage("sendir,4:3,1,40000,4,1,21,181,21,181,21,181,21,181,21,181,21,181,21,181,21,181,21,181,21,181,21,181,21,800" + Environment.NewLine); } private void btnSourceInput1_Click(object sender, EventArgs e) { elanGlobalCacheAdaptor.SendMessage("sendir,4:3,1,40000,1,1,20,179,20,179,20,179,20,179,20,179,20,179,20,179,20,278,20,179,20,179,20,179,20,780" + Environment.NewLine); } private void btnSystemOff_Click(object sender, EventArgs e) { elanGlobalCacheAdaptor.SendMessage("sendir,4:3,1,40000,1,1,20,184,20,184,20,184,20,184,20,184,20,286,20,286,20,286,20,184,20,184,20,184,20,820" + Environment.NewLine); } private void btnLightOff_Click(object sender, EventArgs e) { lutronGlobalCacheAdaptor.SendMessage("sdl,14,0,0,S2\x0d"); } private void btnLightOn_Click(object sender, EventArgs e) { lutronGlobalCacheAdaptor.SendMessage("sdl,14,100,0,S2\x0d"); } private void btnChannel31_Click(object sender, EventArgs e) { tuneSuiteGlobalCacheAdaptor.SendMessage("\xB8\x4D\xB5\x33\x31\x00\x30\x21\xB8\x0D"); } private void btnChannel30_Click(object sender, EventArgs e) { tuneSuiteGlobalCacheAdaptor.SendMessage("\xB8\x4D\xB5\x33\x30\x00\x30\x21\xB8\x0D"); } } } public class GlobalCacheAdaptor { public Socket _multicastListener; public string _preferredDeviceID; public IPAddress _deviceAddress; public Socket _deviceSocket; public StreamWriter _deviceWriter; public bool _isConnected; public int _port; public IPAddress _address; public string _line; public GlobalCacheAdaptor() { } public static readonly GlobalCacheAdaptor Instance = new GlobalCacheAdaptor(); public bool IsListening { get { return _multicastListener != null; } } public GlobalCacheAdaptor ConnectToDevice(IPAddress address, int port) { if (_deviceSocket != null) _deviceSocket.Close(); try { _port = port; _address = address; _deviceSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); _deviceSocket.Connect(new IPEndPoint(address, port)); ; _deviceAddress = address; var stream = new NetworkStream(_deviceSocket); var reader = new StreamReader(stream); var writer = new StreamWriter(stream) { NewLine = "\r", AutoFlush = true }; _deviceWriter = writer; writer.WriteLine("getdevices"); var readerThread = new Thread(ReaderThreadProc) { IsBackground = true }; readerThread.Start(reader); _isConnected = true; return Instance; } catch { DisconnectFromDevice(); MessageBox.Show("ConnectToDevice Error."); throw; } } public void SendMessage(string message) { try { var stream = new NetworkStream(_deviceSocket); var reader = new StreamReader(stream); var writer = new StreamWriter(stream) { NewLine = "\r", AutoFlush = true }; _deviceWriter = writer; writer.WriteLine(message); var readerThread = new Thread(ReaderThreadProc) { IsBackground = true }; readerThread.Start(reader); } catch { MessageBox.Show("SendMessage() Error."); } } public void DisconnectFromDevice() { if (_deviceSocket != null) { try { _deviceSocket.Close(); _isConnected = false; } catch { MessageBox.Show("DisconnectFromDevice Error."); } _deviceSocket = null; } _deviceWriter = null; _deviceAddress = null; } private void ReaderThreadProc(object state) { var reader = (StreamReader)state; try { while (true) { var line = reader.ReadLine(); if (line == null) break; _line = _line + line + Environment.NewLine; } // Need to create EventHandler to notify the TextBoxes to update with _line } catch { MessageBox.Show("ReaderThreadProc Error."); } } }

    Read the article

  • Hardware/Software inventory open source projects

    - by Dick dastardly
    Dear Stackoverflowers I would like to develop a Network Inventory application that works on any operating system. Reports on every possible resource attacehd to a network. Reports all pertinent details of hardware and software. Thats (and i hate to use the phrase) my "End Game". However I am running before i can crawl here. I have no experience of this type of development, e.g. discovering a computers hardware and software settings. I've spent almost two weeks googling and come up short! :-(. So I am turning to you to ask these questions:- My first step is to find an existing open source project i can incorporate into my own code that extracts the fine grained details i am after, e.g. EVERYTHING there is to know about the hardaware and software on a single machine. Does this project exist? or do i have to develop that first? Have i got to write all this in C? I am guessing getting this information about a computer is going to be easier than for printers, scanners, routers etc... e.g. everything else you would find attached to a network. Once i have access to a single computers details i then need to investigate how i can traverse an entire newtork of printers, scanners, routers, load balancers, switches, firewalls, workstations, servers, storeage devices, laptops, monitors, the list goes on and on One problem i have is i dont have a 1000 machine newtork to play on! Is there any such resource available on theinternet? (is that a silly question?) Anywho, if you dont ask you wont find out! One aspect iam really looking forward to finding out how to travers the entire network, should i be using TCP/IP for this? Whats a good site, blog, usergorup, book for TCP/IP development? How do i go about getting through firewalls? How many questions can i ask in one go? :-) My previous question on this topic ended up with PYTHON being championed as the language/script to go with to develop this application in. Having looked at a few PYTHON examples they all seemed to be related to WINDOWS networks and interrogating Windows Management Instrumentation (WMI). I had the feeling you cant rely on whats in WMI, and even if you can that s no good for UNIX netwrks. Surely there exist common code for extracting hardware and software details from a computer? Why cant i find it on the internet? Pease help? Theres no prizes though :-( Thanks in advance I would like to appologise if i have broken forum rules or not tried hard enough on my own before asking for assistance. I just would like to start moving forward with this as its one of the best projects i have been involved with. I am inspired by the many differnt number of challenges involved and that if i manage to produce a useful application at the end of it it would hopefully be extremely helpful to many people. That sit Thanks in advance DD

    Read the article

  • Maven not setting classpath for dependencies properly

    - by Matthew
    OS name: "linux" version: "2.6.32-27-generic" arch: "i386" Family: "unix" Apache Maven 2.2.1 (r801777; 2009-08-06 12:16:01-0700) Java version: 1.6.0_20 I am trying to use the mysql dependency in with maven in ubuntu. If I move the "mysql-connector-java-5.1.14.jar" file that maven downloaded into my $JAVA_HOME/jre/lib/ext/ folder, everything is fine when I run the jar. I think I should be able to just specify the dependency in the pom.xml file and maven should take care of setting the classpath for the dependency jars automatically. Is this incorrect? My pom.xml file looks like this: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.ion.common</groupId> <artifactId>TestPreparation</artifactId> <version>1.0-SNAPSHOT</version> <packaging>jar</packaging> <name>TestPrep</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <configuration> <archive> <manifest> <addClasspath>true</addClasspath> <mainClass>com.ion.common.App</mainClass> </manifest> </archive> </configuration> </plugin> </plugins> </build> <dependencies> <!-- JUnit testing dependency --> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <!-- MySQL database driver --> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.14</version> <scope>compile</scope> </dependency> </dependencies> </project> The command "mvn package" builds it without any problems, and I can run it, but when the application attempts to access the database, this error is presented: java.lang.ClassNotFoundException: com.mysql.jdbc.Driver at java.net.URLClassLoader$1.run(URLClassLoader.java:217) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:205) at java.lang.ClassLoader.loadClass(ClassLoader.java:321) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:294) at java.lang.ClassLoader.loadClass(ClassLoader.java:266) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:186) at com.ion.common.Functions.databases(Functions.java:107) at com.ion.common.App.main(App.java:31) The line it is failing on is: Class.forName("com.mysql.jdbc.Driver"); Can anyone tell me what I'm doing wrong or how to fix it?

    Read the article

  • Modern alternatives to Java

    - by Ralph
    I have been a Java developer for 14 years and have written an enterprise-level (~500 kloc) Swing application that uses most of the standard library APIs. Recently, I have become disappointed with the progress that the language has made to "modernize" itself, and am looking for an alternative for ongoing development. I have considered moving to the .NET platform, but I have issues with using something the only runs well in Windows (I know about Mono, but that is still far behind Microsoft). I also plan on buying a new Macbook Pro as soon as Apple releases their new rumored Arrandale-based machines and want to develop in an environment that will feel "at home" in Unix/Linux. I have considered using Python or Ruby, but the standard Java library is arguably the largest of any modern language. In JVM-based languages, I looked at Groovy, but am disappointed with its performance. Rumor has it that with the soon-to-be released JDK7, with its InvokeDynamic instruction, this will improve, but I don't know how much. Groovy is also not truly a functional language, although it provides closures and some of the "functional" features on collections. It does not embrace immutability. I have narrowed my search down to two JVM-based alternatives: Scala and Clojure. Each has its strengths and weaknesses. I am looking for opinions. I am not an expert at either of these languages; I have read 2 1/2 books on Scala and am currently reading Stu Halloway's book on Clojure. Scala is strongly statically typed. I know the dynamic language folks claim that static typing is a crutch for not doing unit testing, but it does provide a mechanism for compile-time location of a whole class of errors. Scala is more concise than Java, but not as much as Clojure. Scala's inter-operation with Java seems to be better than Clojure's, in that most Java operations are easier to do in Scala than in Clojure. For example, I can find no way in Clojure to create a non-static initialization block in a class derived from a Java superclass. For example, I like the Apache commons CLI library for command line argument parsing. In Java and Scala, I can create a new Options object and add Option items to it in an initialization block as follows (Java code): final Options options = new Options() { { addOption(new Option("?", "help", false, "Show this usage information"); // other options } }; I can't figure out how to the same thing in Clojure (except by using (doit...)), although that may reflect my lack of knowledge of the language. Clojure's collections are optimized for immutability. They rarely require copy-on-write semantics. I don't know if Scala's immutable collections are implemented using similar algorithms, but Rich Hickey (Clojure's inventor) goes out of his way to explain how that language's data structures are efficient. Clojure was designed from the beginning for concurrency (as was Scala) and with modern multi-core processors, concurrency takes on more importance, but I occasionally need to write simple non-concurrent utilities, and Scala code probably runs a little faster for these applications since it discourages, but does not prohibit, "simple" mutability. One could argue that one-off utilities do not have to be super-fast, but sometimes they do tasks that take hours or days to complete. I know that there is no right answer to this "question", but I thought I would open it up for discussion. Are there other JVM-based languages that can be used for enterprise level development?

    Read the article

  • Internet Explorer Automation: how to suppress Open/Save dialog?

    - by Vladimir Dyuzhev
    When controlling IE instance via MSHTML, how to suppress Open/Save dialogs for non-HTML content? I need to get data from another system and import it into our one. Due to budget constraints no development (e.g. WS) can be done on the other side for some time, so my only option for now is to do web scrapping. The remote site is ASP.NET-based, so simple HTML requests won't work -- too much JS. I wrote a simple C# application that uses MSHTML and SHDocView to control an IE instance. So far so good: I can perform login, navigate to desired page, populate required fields and do submit. Then I face a couple of problems: First is that report is opening in another window. I suspect I can attach to that window too by enumerating IE windows in the system. Second, more troublesome, is that report itself is CSV file, and triggers Open/Save dialog. I'd like to avoid it and make IE save the file into given location OR I'm fine with programmatically clicking dialog buttons too (how?) I'm actually totally non-Windows guy (unix/J2EE), and hope someone with better knowledge would give me a hint how to do those tasks. Thanks! UPDATE I've found a promising document on MSDN: http://msdn.microsoft.com/en-ca/library/aa770041.aspx Control the kinds of content that are downloaded and what the WebBrowser Control does with them once they are downloaded. For example, you can prevent videos from playing, script from running, or new windows from opening when users click on links, or prevent Microsoft ActiveX controls from downloading or executing. Slowly reading through... UPDATE 2: MADE IT WORK, SORT OF... Finally I made it work, but in an ugly way. Essentially, I register a handler "before navigate", then, in the handler, if the URL is matching my target file, I cancel the navigation, but remember the URL, and use WebClient class to access and download that temporal URL directly. I cannot copy the whole code here, it contains a lot of garbage, but here are the essential parts: Installing handler: _IE2.FileDownload += new DWebBrowserEvents2_FileDownloadEventHandler(IE2_FileDownload); _IE.BeforeNavigate2 += new DWebBrowserEvents2_BeforeNavigate2EventHandler(IE_OnBeforeNavigate2); Recording URL and then cancelling download (thus preventing Save dialog to appear): public string downloadUrl; void IE_OnBeforeNavigate2(Object ob1, ref Object URL, ref Object Flags, ref Object Name, ref Object da, ref Object Head, ref bool Cancel) { Console.WriteLine("Before Navigate2 "+URL); if (URL.ToString().EndsWith(".csv")) { Console.WriteLine("CSV file"); downloadUrl = URL.ToString(); } Cancel = false; } void IE2_FileDownload(bool activeDocument, ref bool cancel) { Console.WriteLine("FileDownload, downloading "+downloadUrl+" instead"); cancel = true; } void IE_OnNewWindow2(ref Object o, ref bool cancel) { Console.WriteLine("OnNewWindow2"); _IE2 = new SHDocVw.InternetExplorer(); _IE2.BeforeNavigate2 += new DWebBrowserEvents2_BeforeNavigate2EventHandler(IE_OnBeforeNavigate2); _IE2.Visible = true; o = _IE2; _IE2.FileDownload += new DWebBrowserEvents2_FileDownloadEventHandler(IE2_FileDownload); _IE2.Silent = true; cancel = false; return; } And in the calling code using the found URL for direct download: ... driver.ClickButton(".*_btnRunReport"); driver.WaitForComplete(); Thread.Sleep(10000); WebClient Client = new WebClient(); Client.DownloadFile(driver.downloadUrl, "C:\\affinity.dump"); (driver is a simple wrapper over IE instance = _IE) Hope that helps someone.

    Read the article

  • How to extract comment out of header file using python, perl, or sed?

    - by WilliamKF
    I have a header file like this: /* * APP 180-2 ALG-254/258/772 implementation * Last update: 03/01/2006 * Issue date: 08/22/2004 * * Copyright (C) 2006 Somebody's Name here * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef HEADER_H #define HEADER_H /* More comments and C++ code here. */ #endif /* End of file. */ And I wish to extract out the contents of the first C style comment only and drop the " *" at the start of each line to get a file with the following contents: APP 180-2 ALG-254/258/772 implementation Last update: 03/01/2006 Issue date: 08/22/2004 Copyright (C) 2006 Somebody's Name here All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Please suggest an easy way to do this with Python, Perl, sed, or some other way on Unix. Preferably as a one-liner.

    Read the article

  • Bash Shell Scripting Errors: ./myDemo: 56: Syntax error: Unterminated quoted string [EDITED]

    - by ???
    Could someone take a look at this code and find out what's wrong with it? #!/bin/sh while : do echo " Select one of the following options:" echo " d or D) Display today's date and time" echo " l or L) List the contents of the present working directory" echo " w or W) See who is logged in" echo " p or P) Print the present working directory" echo " a or A) List the contents of a specified directory" echo " b or B) Create a backup copy of an ordinary file" echo " q or Q) Quit this program" echo " Enter your option and hit <Enter>: \c" read option case "$option" in d|D) date ;; l|L) ls $PWD ;; w|w) who ;; p|P) pwd ;; a|A) echo "Please specify the directory and hit <Enter>: \c" read directory if [ "$directory = "q" -o "Q" ] then exit 0 fi while [ ! -d "$directory" ] do echo "Usage: "$directory" must be a directory." echo "Re-enter the directory and hit <Enter>: \c" read directory if [ "$directory" = "q" -o "Q" ] then exit 0 fi done printf ls "$directory" ;; b|B) echo "Please specify the ordinary file for backup and hit <Enter>: \c" read file if [ "$file" = "q" -o "Q" ] then exit 0 fi while [ ! -f "$file" ] do echo "Usage: \"$file\" must be an ordinary file." echo "Re-enter the ordinary file for backup and hit <Enter>: \c" read file if [ "$file" = "q" -o "Q" ] then exit 0 fi done cp "$file" "$file.bkup" ;; q|Q) exit 0 ;; esac echo done exit 0 There are some syntax errors that I can't figure out. However I should note that on this unix system echo -e doesn't work (don't ask me why I don't know and I don't have any sort of permissions to change it and even if I wouldn't be allowed to) Bash Shell Scripting Error: "./myDemo ./myDemo: line 62: syntax error near unexpected token done' ./myDemo: line 62: " [Edited] EDIT: I fixed the while statement error, however now when I run the script some things still aren't working correctly. It seems that in the b|B) switch statement cp $file $file.bkup doesn't actually copy the file to file.bkup ? In the a|A) switch statement ls "$directory" doesn't print the directory listing for the user to see ? #!/bin/bash while $TRUE do echo " Select one of the following options:" echo " d or D) Display today's date and time" echo " l or L) List the contents of the present working directory" echo " w or W) See who is logged in" echo " p or P) Print the present working directory" echo " a or A) List the contents of a specified directory" echo " b or B) Create a backup copy of an ordinary file" echo " q or Q) Quit this program" echo " Enter your option and hit <Enter>: \c" read option case "$option" in d|D) date ;; l|L) ls pwd ;; w|w) who ;; p|P) pwd ;; a|A) echo "Please specify the directory and hit <Enter>: \c" read directory if [ ! -d "$directory" ] then while [ ! -d "$directory" ] do echo "Usage: "$directory" must be a directory." echo "Specify the directory and hit <Enter>: \c" read directory if [ "$directory" = "q" -o "Q" ] then exit 0 elif [ -d "$directory" ] then ls "$directory" else continue fi done fi ;; b|B) echo "Specify the ordinary file for backup and hit <Enter>: \c" read file if [ ! -f "$file" ] then while [ ! -f "$file" ] do echo "Usage: "$file" must be an ordinary file." echo "Specify the ordinary file for backup and hit <Enter>: \c" read file if [ "$file" = "q" -o "Q" ] then exit 0 elif [ -f "$file" ] then cp $file $file.bkup fi done fi ;; q|Q) exit 0 ;; esac echo done exit 0 Another thing... is there an editor that I can use to auto-parse code? I.e something similar to NetBeans?

    Read the article

  • Is multithreading the right way to go for my case?

    - by Julien Lebosquain
    Hello, I'm currently designing a multi-client / server application. I'm using plain good old sockets because WCF or similar technology is not what I need. Let me explain: it isn't the classical case of a client simply calling a service; all clients can 'interact' with each other by sending a packet to the server, which will then do some action, and possible re-dispatch an answer message to one or more clients. Although doable with WCF, the application will get pretty complex with hundreds of different messages. For each connected client, I'm of course using asynchronous methods to send and receive bytes. I've got the messages fully working, everything's fine. Except that for each line of code I'm writing, my head just burns because of multithreading issues. Since there could be around 200 clients connected at the same time, I chose to go the fully multithreaded way: each received message on a socket is immediately processed on the thread pool thread it was received, not on a single consumer thread. Since each client can interact with other clients, and indirectly with shared objects on the server, I must protect almost every object that is mutable. I first went with a ReaderWriterLockSlim for each resource that must be protected, but quickly noticed that there are more writes overall than reads in the server application, and switched to the well-known Monitor to simplify the code. So far, so good. Each resource is protected, I have helper classes that I must use to get a lock and its protected resource, so I can't use an object without getting a lock. Moreover, each client has its own lock that is entered as soon as a packet is received from its socket. It's done to prevent other clients from making changes to the state of this client while it has some messages being processed, which is something that will happen frequently. Now, I don't just need to protect resources from concurrent accesses. I must keep every client in sync with the server for some collections I have. One tricky part that I'm currently struggling with is the following: I have a collection of clients. Each client has its own unique ID. When a client connects, it must receive the IDs of every connected client, and each one of them must be notified of the newcomer's ID. When a client disconnects, every other client must know it so that its ID is no longer valid for them. Every client must always have, at a given time, the same clients collection as the server so that I can assume that everybody knows everybody. This way if I'm sending a message to client #1 telling "Client #2 has done something", I know that it will always be correctly interpreted: Client 1 will never wonder "but who is Client 2 anyway?". My first attempt for handling the connection of a new client (let's call it X) was this pseudo-code (remember that newClient is already locked here): lock (clients) { foreach (var client in clients) { lock (client) { client.Send("newClient with id X has connected"); } } clients.Add(newClient); newClient.Send("the list of other clients"); } Now imagine that in the same time, another client has sent a packet that translates into a message that must be broadcasted to every connected client, the pseudo-code will be something like this (remember that the current client - let's call it Y - is already locked here): lock (clients) { foreach (var client in clients) { lock (client) { client.Send("something"); } } } An obvious deadlock occurs here: on one thread X is locked, the clients lock has been entered, started looping through the clients, and at one moment must get Y's lock... which is already acquired on the second thread, itself waiting for the clients collection lock to be released! This is not the only case like this in the server application. There are other collections which must be kept in sync with the clients, some properties on a client can be changed by another one, etc. I tried other types of locks, lock-free mechanisms and a bunch of other things. Either there were obvious deadlocks when I'm using too much locks for safety, or obvious race conditions otherwise. When I finally find a good middle point between the two, it usually comes with very subtle race conditions / dead locks and other multi-threading issues... my head hurts very quickly since for any single line of code I'm writing I have to review almost the whole application to ensure everything will behave correctly with any number of threads. So here's my final question: how would you resolve this specific case, the general case, and more importantly: aren't I going the wrong way here? I have little problems with the .NET framework, C#, simple concurrency or algorithms in general. Still, I'm lost here. I know I could use only one thread processing the incoming requests and everything will be fine. However, that won't scale well at all with more clients... But I'm thinking more and more to go this simple way. What do you think? Thanks in advance to you, StackOverflow people which have taken the time to read this huge question. I really had to explain the whole context if I want to get some help.

    Read the article

  • about getadrrinfo() C++?

    - by Isavel
    I'm reading this book called beej's guide to network programming and there's a part in the book were it provide a sample code which illustrate the use of getaddrinfo(); the book state that the code below "will print the IP addresses for whatever host you specify on the command line" - beej's guide to network programming. now I'm curious and want to try it out and run the code, but I guess the code was develop in UNIX environment and I'm using visual studio 2012 windows 7 OS, and most of the headers was not supported so I did a bit of research and find out that I need to include the winsock.h and ws2_32.lib for windows, for it to get working, fortunately everything compiled no errors, but when I run it using the debugger and put in 'www.google.com' as command argument I was disappointed that it did not print any ipaddress, the output that I got from the console is "getaddrinfo: E" what does the letter E mean? Do I need to configure something out of the debugger? Interestingly I left the command argument blank and the output changed to "usage: showip hostname" Any help would be appreciated. #ifdef _WIN32 #endif #include <sys/types.h> #include <winsock2.h> #include <ws2tcpip.h> #include <iostream> using namespace std; #include <stdio.h> #include <string.h> #include <sys/types.h> #include <winsock.h> #pragma comment(lib, "ws2_32.lib") int main(int argc, char *argv[]) { struct addrinfo hints, *res, *p; int status; char ipstr[INET6_ADDRSTRLEN]; if (argc != 2) { fprintf(stderr,"usage: showip hostname\n"); system("PAUSE"); return 1; } memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; // AF_INET or AF_INET6 to force version hints.ai_socktype = SOCK_STREAM; if ((status = getaddrinfo(argv[1], NULL, &hints, &res)) != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(status)); system("PAUSE"); return 2; } printf("IP addresses for %s:\n\n", argv[1]); for(p = res;p != NULL; p = p->ai_next) { void *addr; char *ipver; // get the pointer to the address itself, // different fields in IPv4 and IPv6: if (p->ai_family == AF_INET) { // IPv4 struct sockaddr_in *ipv4 = (struct sockaddr_in *)p->ai_addr; addr = &(ipv4->sin_addr); ipver = "IPv4"; } else { // IPv6 struct sockaddr_in6 *ipv6 = (struct sockaddr_in6 *)p->ai_addr; addr = &(ipv6->sin6_addr); ipver = "IPv6"; } // convert the IP to a string and print it: inet_ntop(p->ai_family, addr, ipstr, sizeof ipstr); printf(" %s: %s\n", ipver, ipstr); } freeaddrinfo(res); // free the linked list system("PAUSE"); return 0; }

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • How To Configure Remote Desktop To Hyper-V Guest Virtual Machines

    - by Brian Jackett
    Configuring Remote Desktop (RDP) from a host Hyper-V machine to a guest virtual machine can be tricky, so this post is dedicated to the issues and resolution steps I went through to allow RDP.  Cutting to the point, below are the things to look for followed by some explanation about my scenario if you care to read.  This is not an exhaustive list of what is required, just the items that were causing problems for my particular scenario. Requirements Allow Remote Desktop Connections in guest OS. The network adapter type must allow communication with host machine (e.g. use an “Internal” virtual adapter.) If running Server 2008 R2 on guest, network discovery mode must be turned on. If running Server 2008 R2 on guest, the services supporting network discovery mode must be running: - DNS Client - Function Discovery Resource Publication - SSDP Discovery - UPnP Device Host My Environment     A quick word about my environment.  I am running Windows Server 2008 R2 with Hyper V on my laptop and numerous guest VMs running Windows Server 2003 R2 or Windows Server 2008 R2.  I run a domain controller VM and then 1 or 2 SharePoint servers depending on my work needs.  I’ve found this setup to work well except when it comes to the display window for my VMs. The Issue     Ever since I began running Hyper-V I haven’t been able to RDP to my guest VMs which means the resolution for my connection windows ha been limited to what the native Hyper-V connections allow.  During personal use I can put the resolution up to 1152 x 864, but during presentations I am usually limited to a measly 800 x 600.  That is until today when I decided to fully investigate why I couldn’t connect via RDP.     First a thank you to John Ross (@johnrossjr), Christina Wheeler (@cwheeler76) and Clayton Cobb (@warrtalon) for various suggestions while I was researching tonight.  As it turns out I had not 1, not 2, but 3 items preventing me from using RDP.  Let’s dig into the requirements above. Allow RDP Connection     This item I had previously taken care of, but it bears repeating because by default Windows Server 2008 R2 does not allow RDP connections.  Change the setting from “Don’t allow…” to whichever “Allow connections…” setting suits your needs.  I chose the less secure option as this is just my dev laptop. Network Adapter Type     When I originally configured my VMs I configured each to use 2 network adapters: one using the physical ethernet adapter for internet use and a virtual private adapter for communication between the VMs.  The connection for the ethernet adapter is an "”External” adapter and thus doesn’t connect between the host and guest.  The virtual private adapter allowed communication ONLY between the VMs and not to my host.  There is a third option “Internal” which allows communication between VMs as well as to the host.  After finding out this distinction I promptly created an Internal network adapter and assigned that to my VMs. Turn On Network Discovery     Seems like a pretty common sense thing, but in order to allow remote desktop connections the target computer must able to be found by the source computer (explained here.)  One of the settings that controls if a computer can be found on the network is aptly named Network Discovery.  By default Windows Server 2008 R2 turns Network Discovery off for security purposes.  To enable it open up the Network and Sharing Center.  Click “Change Advanced Sharing Settings” on the left.  On the following screen select “Turn on network discovery” for the currently used profile and click Save Settings.  You may notice though that your selection to turn on network discovery doesn’t save.  If this is the case then you most likely don’t have the supporting services running (as was my case.) Network Discovery Supporting Services     There are a total of 4 services (listed again below) that need to be running before you can turn on network discovery (explained here.)  The below images highlight these services.  In my guest VM I found that I had DNS Client already running while the other 3 were disabled.  I set them all to enabled and started the ones that were stopped.  After this change I returned to the Sharing settings screen and found that Network Discovery was turned on.  I’m not sure whether this was picking up my attempt to turn it on previously or if starting those services turned it on.  Either way the end result was a success. - DNS Client - Function Discovery Resource Publication - SSDP Discovery - UPnP Device Host Before and After Results     The first image is the smaller square shaped viewing window used by the Hyper-V native connection.  The second is the full-screen RDP connection in all its widescreen glory. Conclusion     Over the past few months I’ve found Hyper-V to be very useful for virtualizing my development environments, but I’ve also had a steep learning curve to get various items configured just right.  Allowing RDP connections to guest VMs was one area that I hadn’t been able to get right for the longest time.  Now that I resolved these issues I hope that others can avoid the pitfalls that I ran into.  If you know of any other items I left off feel free to let me know.        -Frog Out   Links Turning on Network Discovery http://sqlblog.com/blogs/john_paul_cook/archive/2009/08/15/remote-desktop-connection-on-windows-server-2008-r2.aspx Services required for Network Discovery http://social.technet.microsoft.com/Forums/en-US/winservergen/thread/2e1fea01-3f2b-4c46-a631-a8db34ed4f84

    Read the article

  • JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g

    - by John-Brown.Evans
    JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g ol{margin:0;padding:0} .c5{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 2pt 0pt 2pt} .c7{list-style-type:disc;margin:0;padding:0} .c4{background-color:#ffffff} .c14{color:#1155cc;text-decoration:underline} .c6{height:11pt;text-align:center} .c13{color:inherit;text-decoration:inherit} .c3{padding-left:0pt;margin-left:36pt} .c0{border-collapse:collapse} .c12{text-align:center} .c1{direction:ltr} .c8{background-color:#f3f3f3} .c2{line-height:1.0} .c11{font-style:italic} .c10{height:11pt} .c9{font-weight:bold} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-size:12pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#666;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This example shows the steps to create a simple JMS queue in WebLogic Server 11g for testing purposes. For example, to use with the two sample programs QueueSend.java and QueueReceive.java which will be shown in later examples. Additional, detailed information on JMS can be found in the following Oracle documentation: Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server 11g Release 1 (10.3.6) Part Number E13738-06 http://docs.oracle.com/cd/E23943_01/web.1111/e13738/toc.htm 1. Introduction and Definitions A JMS queue in Weblogic Server is associated with a number of additional resources: JMS Server A JMS server acts as a management container for resources within JMS modules. Some of its responsibilities include the maintenance of persistence and state of messages and subscribers. A JMS server is required in order to create a JMS module. JMS Module A JMS module is a definition which contains JMS resources such as queues and topics. A JMS module is required in order to create a JMS queue. Subdeployment JMS modules are targeted to one or more WLS instances or a cluster. Resources within a JMS module, such as queues and topics are also targeted to a JMS server or WLS server instances. A subdeployment is a grouping of targets. It is also known as advanced targeting. Connection Factory A connection factory is a resource that enables JMS clients to create connections to JMS destinations. JMS Queue A JMS queue (as opposed to a JMS topic) is a point-to-point destination type. A message is written to a specific queue or received from a specific queue. The objects used in this example are: Object Name Type JNDI Name TestJMSServer JMS Server TestJMSModule JMS Module TestSubDeployment Subdeployment TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue 2. Configuration Steps The following steps are done in the WebLogic Server Console, beginning with the left-hand navigation menu. 2.1 Create a JMS Server Services > Messaging > JMS Servers Select New Name: TestJMSServer Persistent Store: (none) Target: soa_server1  (or choose an available server) Finish The JMS server should now be visible in the list with Health OK. 2.2 Create a JMS Module Services > Messaging > JMS Modules Select New Name: TestJMSModule Leave the other options empty Targets: soa_server1  (or choose the same one as the JMS server)Press Next Leave “Would you like to add resources to this JMS system module” unchecked and  press Finish . 2.3 Create a SubDeployment A subdeployment is not necessary for the JMS queue to work, but it allows you to easily target subcomponents of the JMS module to a single target or group of targets. We will use the subdeployment in this example to target the following connection factory and JMS queue to the JMS server we created earlier. Services > Messaging > JMS Modules Select TestJMSModule Select the Subdeployments  tab and New Subdeployment Name: TestSubdeployment Press Next Here you can select the target(s) for the subdeployment. You can choose either Servers (i.e. WebLogic managed servers, such as the soa_server1) or JMS Servers such as the JMS Server created earlier. As the purpose of our subdeployment in this example is to target a specific JMS server, we will choose the JMS Server option. Select the TestJMSServer created earlier Press Finish 2.4  Create a Connection Factory Services > Messaging > JMS Modules Select TestJMSModule  and press New Select Connection Factory  and Next Name: TestConnectionFactory JNDI Name: jms/TestConnectionFactory Leave the other values at default On the Targets page, select the Advanced Targeting  button and select TestSubdeployment Press Finish The connection factory should be listed on the following page with TestSubdeployment and TestJMSServer as the target. 2.5 Create a JMS Queue Services > Messaging > JMS Modules Select TestJMSModule  and press New Select Queue and Next Name: TestJMSQueueJNDI Name: jms/TestJMSQueueTemplate: NonePress Next Subdeployments: TestSubdeployment Finish The TestJMSQueue should be listed on the following page with TestSubdeployment and TestJMSServer. Confirm the resources for the TestJMSModule. Using the Domain Structure tree, navigate to soa_domain > Services > Messaging > JMS Modules then select TestJMSModule You should see the following resources The JMS queue is now complete and can be accessed using the JNDI names jms/TestConnectionFactory andjms/TestJMSQueue. In the following blog post in this series, I will show you how to write a message to this queue, using the WebLogic sample Java program QueueSend.java.

    Read the article

  • Complete Guide to Symbolic Links (symlinks) on Windows or Linux

    - by Matthew Guay
    Want to easily access folders and files from different folders without maintaining duplicate copies?  Here’s how you can use Symbolic Links to link anything in Windows 7, Vista, XP, and Ubuntu. So What Are Symbolic Links Anyway? Symbolic links, otherwise known as symlinks, are basically advanced shortcuts. You can create symbolic links to individual files or folders, and then these will appear like they are stored in the folder with the symbolic link even though the symbolic link only points to their real location. There are two types of symbolic links: hard and soft. Soft symbolic links work essentially the same as a standard shortcut.  When you open a soft link, you will be redirected to the folder where the files are stored.  However, a hard link makes it appear as though the file or folder actually exists at the location of the symbolic link, and your applications won’t know any different. Thus, hard links are of the most interest in this article. Why should I use Symbolic Links? There are many things we use symbolic links for, so here’s some of the top uses we can think of: Sync any folder with Dropbox – say, sync your Pidgin Profile Across Computers Move the settings folder for any program from its original location Store your Music/Pictures/Videos on a second hard drive, but make them show up in your standard Music/Pictures/Videos folders so they’ll be detected my your media programs (Windows 7 Libraries can also be good for this) Keep important files accessible from multiple locations And more! If you want to move files to a different drive or folder and then symbolically link them, follow these steps: Close any programs that may be accessing that file or folder Move the file or folder to the new desired location Follow the correct instructions below for your operating system to create the symbolic link. Caution: Make sure to never create a symbolic link inside of a symbolic link. For instance, don’t create a symbolic link to a file that’s contained in a symbolic linked folder. This can create a loop, which can cause millions of problems you don’t want to deal with. Seriously. Create Symlinks in Any Edition of Windows in Explorer Creating symlinks is usually difficult, but thanks to the free Link Shell Extension, you can create symbolic links in all modern version of Windows pain-free.  You need to download both Visual Studio 2005 redistributable, which contains the necessary prerequisites, and Link Shell Extension itself (links below).  Download the correct version (32 bit or 64 bit) for your computer. Run and install the Visual Studio 2005 Redistributable installer first. Then install the Link Shell Extension on your computer. Your taskbar will temporally disappear during the install, but will quickly come back. Now you’re ready to start creating symbolic links.  Browse to the folder or file you want to create a symbolic link from.  Right-click the folder or file and select Pick Link Source. To create your symlink, right-click in the folder you wish to save the symbolic link, select “Drop as…”, and then choose the type of link you want.  You can choose from several different options here; we chose the Hardlink Clone.  This will create a hard link to the file or folder we selected.  The Symbolic link option creates a soft link, while the smart copy will fully copy a folder containing symbolic links without breaking them.  These options can be useful as well.   Here’s our hard-linked folder on our desktop.  Notice that the folder looks like its contents are stored in Desktop\Downloads, when they are actually stored in C:\Users\Matthew\Desktop\Downloads.  Also, when links are created with the Link Shell Extension, they have a red arrow on them so you can still differentiate them. And, this works the same way in XP as well. Symlinks via Command Prompt Or, for geeks who prefer working via command line, here’s how you can create symlinks in Command Prompt in Windows 7/Vista and XP. In Windows 7/Vista In Windows Vista and 7, we’ll use the mklink command to create symbolic links.  To use it, we have to open an administrator Command Prompt.  Enter “command” in your start menu search, right-click on Command Prompt, and select “Run as administrator”. To create a symbolic link, we need to enter the following in command prompt: mklink /prefix link_path file/folder_path First, choose the correct prefix.  Mklink can create several types of links, including the following: /D – creates a soft symbolic link, which is similar to a standard folder or file shortcut in Windows.  This is the default option, and mklink will use it if you do not enter a prefix. /H – creates a hard link to a file /J – creates a hard link to a directory or folder So, once you’ve chosen the correct prefix, you need to enter the path you want for the symbolic link, and the path to the original file or folder.  For example, if I wanted a folder in my Dropbox folder to appear like it was also stored in my desktop, I would enter the following: mklink /J C:\Users\Matthew\Desktop\Dropbox C:\Users\Matthew\Documents\Dropbox Note that the first path was to the symbolic folder I wanted to create, while the second path was to the real folder. Here, in this command prompt screenshot, you can see that I created a symbolic link of my Music folder to my desktop.   And here’s how it looks in Explorer.  Note that all of my music is “really” stored in C:\Users\Matthew\Music, but here it looks like it is stored in C:\Users\Matthew\Desktop\Music. If your path has any spaces in it, you need to place quotes around it.  Note also that the link can have a different name than the file it links to.  For example, here I’m going to create a symbolic link to a document on my desktop: mklink /H “C:\Users\Matthew\Desktop\ebook.pdf”  “C:\Users\Matthew\Downloads\Before You Call Tech Support.pdf” Don’t forget the syntax: mklink /prefix link_path Target_file/folder_path In Windows XP Windows XP doesn’t include built-in command prompt support for symbolic links, but we can use the free Junction tool instead.  Download Junction (link below), and unzip the folder.  Now open Command Prompt (click Start, select All Programs, then Accessories, and select Command Prompt), and enter cd followed by the path of the folder where you saved Junction. Junction only creates hard symbolic links, since you can use shortcuts for soft ones.  To create a hard symlink, we need to enter the following in command prompt: junction –s link_path file/folder_path As with mklink in Windows 7 or Vista, if your file/folder path has spaces in it make sure to put quotes around your paths.  Also, as usual, your symlink can have a different name that the file/folder it points to. Here, we’re going to create a symbolic link to our My Music folder on the desktop.  We entered: junction -s “C:\Documents and Settings\Administrator\Desktop\Music” “C:\Documents and Settings\Administrator\My Documents\My Music” And here’s the contents of our symlink.  Note that the path looks like these files are stored in a Music folder directly on the Desktop, when they are actually stored in My Documents\My Music.  Once again, this works with both folders and individual files. Please Note: Junction would work the same in Windows 7 or Vista, but since they include a built-in symbolic link tool we found it better to use it on those versions of Windows. Symlinks in Ubuntu Unix-based operating systems have supported symbolic links since their inception, so it is straightforward to create symbolic links in Linux distros such as Ubuntu.  There’s no graphical way to create them like the Link Shell Extension for Windows, so we’ll just do it in Terminal. Open terminal (open the Applications menu, select Accessories, and then click Terminal), and enter the following: ln –s file/folder_path link_path Note that this is opposite of the Windows commands; you put the source for the link first, and then the path second. For example, let’s create a symbolic link of our Pictures folder in our Desktop.  To do this, we entered: ln -s /home/maguay/Pictures /home/maguay/Desktop   Once again, here is the contents of our symlink folder.  The pictures look as if they’re stored directly in a Pictures folder on the Desktop, but they are actually stored in maguay\Pictures. Delete Symlinks Removing symbolic links is very simple – just delete the link!  Most of the command line utilities offer a way to delete a symbolic link via command prompt, but you don’t need to go to the trouble.   Conclusion Symbolic links can be very handy, and we use them constantly to help us stay organized and keep our hard drives from overflowing.  Let us know how you use symbolic links on your computers! Download Link Shell Extension for Windows 7, Vista, and XP Download Junction for XP Similar Articles Productive Geek Tips Using Symlinks in Windows VistaHow To Figure Out Your PC’s Host Name From the Command PromptInstall IceWM on Ubuntu LinuxAdd Color Coding to Windows 7 Media Center Program GuideSync Your Pidgin Profile Across Multiple PCs with Dropbox TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos Home Networks – How do they look like & the problems they cause Check Your IMAP Mail Offline In Thunderbird Follow Finder Finds You Twitter Users To Follow

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Authorize.Net, Silent Posts, and URL Rewriting Don't Mix

    The too long, didn't read synopsis: If you use Authorize.Net and its silent post feature and it stops working, make sure that if your website uses URL rewriting to strip or add a www to the domain name that the URL you specify for the silent post matches the URL rewriting rule because Authorize.Net's silent post feature won't resubmit the post request to URL specified via the redirect response. I have a client that uses Authorize.Net to manage and bill customers. Like many payment gateways, Authorize.Net supports recurring payments. For example, a website may charge members a monthly fee to access their services. With Authorize.Net you can provide the billing amount and schedule and at each interval Authorize.Net will automatically charge the customer's credit card and deposit the funds to your account. You may want to do something whenever Authorize.Net performs a recurring payment. For instance, if the recurring payment charge was a success you would extend the customer's service; if the transaction was denied then you would cancel their service (or whatever). To accomodate this, Authorize.Net offers a silent post feature. Properly configured, Authorize.Net will send an HTTP request that contains details of the recurring payment transaction to a URL that you specify. This URL could be an ASP.NET page on your server that then parses the data from Authorize.Net and updates the specified customer's account accordingly. (Of course, you can always view the history of recurring payments through the reporting interface on Authorize.Net's website; the silent post feature gives you a way to programmatically respond to a recurring payment.) Recently, this client of mine that uses Authorize.Net informed me that several paying customers were telling him that their access to the site had been cut off even though their credit cards had been recently billed. Looking through our logs, I noticed that we had not shown any recurring payment log activity for over a month. I figured one of two things must be going on: either Authorize.Net wasn't sending us the silent post requests anymore or the page that was processing them wasn't doing so correctly. I started by verifying that our Authorize.Net account was properly setup to use the silent post feature and that it was pointing to the correct URL. Authorize.Net's site indicated the silent post was configured and that recurring payment transaction details were being sent to http://example.com/AuthorizeNetProcessingPage.aspx. Next, I wanted to determine what information was getting sent to that URL.The application was setup tolog the parsed results of the Authorize.Net request, such as what customer the recurring payment applied to; however,we were not logging the actual HTTP request coming from Authorize.Net. I contacted Authorize.Net's support to inquire if they logged the HTTP request send via the silent post feature and was told that they did not. I decided to add a bit of code to log the incoming HTTP request, which you can do by using the Request object's SaveAs method. This allowed me to saveevery incoming HTTP request to the silent post page to a text file on the server. Upon the next recurring payment, I was able to see the HTTP request being received by the page: GET /AuthorizeNetProcessingPage.aspx HTTP/1.1Connection: CloseAccept: */*Host: www.example.com That was it. Two things alarmed me: first, the request was obviously a GET and not a POST; second, there was no POST body (obviously), which is where Authorize.Net passes along thedetails of the recurring payment transaction.What stuck out was the Host header, which differed slightly from the silent post URL configured in Authorize.Net. Specifically, the Host header in the above logged request pointed to www.example.com, whereas the Authorize.Net configuration used example.com (no www). About a month ago - the same time these recurring payment transaction detailswere no longer being processed by our ASP.NET page - we had implemented IIS 7's URL rewriting feature to permanently redirect all traffic to example.com to www.example.com. Could that be the problem? I contacted Authorize.Net's support again and asked them if their silent post algorithmwould follow the301HTTP response and repost the recurring payment transaction details. They said, Yes, the silent post would follow redirects. Their reports didn't jive with my observations, so I went ahead and updated our Authorize.Net configuration to point to http://www.example.com/AuthorizeNetProcessingPage.aspx instead of http://example.com/AuthorizeNetProcessingPage.aspx. And, I'm happy to report, recurring payments and correctly being processed again! If you use Authorize.Net and the silent post feature, and you notice that your processing page is not longer working, make sure you are not using any URL rewriting rules that may conflict with the silent post URL configuration. Hope this saves someone the time it took me to get to the bottom of this. Happy Programming!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • CodePlex Daily Summary for Wednesday, April 14, 2010

    CodePlex Daily Summary for Wednesday, April 14, 2010New Projectsbitly.net: A bitly (useing Version 3 of their API's) client for .NET (Version 3.5)Chord Sheet Editor Add-In for Word: Transpose music chord sheets (guitar chord sheets, etc.) in Microsoft Word using this VSTO Add-In.CloudSponge.Net: Simple .Net wrapper for www.cloudsponge.com's REST API.Database Searcher: This is a small tool for searching a typed value inside all type matching columns and rows of a database. For connecting the database a .NET data p...Edu Math: PL: Program Edu Math, ma na celu ułatwienie wykonywania skomplikowanych obliczeń oraz analiz matematycznych. EN: Program Edu Math, aims to facilita...fluent AOP: This project is not yet publishedFNA Fractal Numerical Algorithm for a new encryption technology: FNA Fractal Numerical Algorithm for a new encryption technology is a symmetrical encryption method based on two algorithms that I developed for: 1....Image viewer cum editor: This is a project on image viewing and editing. The project have following features VIEWER: Album Password security for albums Inbuilt Browser...JEngine - Tile Map Editor v1: JEngine - Tile Map Editor v1Jeremy Knight: Code samples, snippets, etc from my personal blog.lcskey: lcs test codemoldme: testesds ssdfsdfsNanoPrompt: NanoPrompt makes it more pleasant to work on a command-line. Features: - syntax-highlighting - graphical output possible - up to 12 "displays" (cha...nirvana: for testOffInvoice Add-in for MS Office 2010: Project Description: The project it's based in the ability to extend funtionality in the Microsoft Office 2010 suite.PowerSlim - Acceptance Testing for Enterprise Applications: PowerSlim makes it possible to use PowerShell in the acceptance testing. It is a small but powerful plugin for the Fitnesse acceptance testing fram...Proxi [Proxy Interface]: Proxi is a light-weight library that allows to generate dynamic proxies using different providers. By utilizing Proxi frameworks and libraries can ...Reality show about ASP.NET development: This application is created with using ASP.NET and Microsoft SQL Server for the demo purposes with the following target goals: example of usage fo...RecordLogon.vbs login script: RecordLogon.vbs is a script applied at logon via Group or Local policy. It records specific user and computer information and writes the data to a ...SpaceGameApplet: A java game ;)SpaceShipsGame: A game with space ships ";..;"SysHard: Info for Linux system.System Etheral™ - Developer: SE Dev (System Etheral™ - Developer) is an OS (Operating System) that is a bit like UNIX but it is for you to edit! We have not gave you much but w...TimeSheet Reporting Silverlight: TimeSheet Reporting application in Silver light. Contains a data grid containing combo boxes bound to different data sources like Members and Proje...TrayBird: A minimalistic twitter client for windows.Twitter4You: This appliction for windows is a communication for twitter!WCF RIA Services (+ PRISM + MVVM) LoB Application: WCF RIA Services sample LoB application (case study) built on PRISM with Entity Framework Model. It's a simple application for a fictive company Te...New ReleasesBluetooth Radar: Version 1.9: Change Search and Close Icons Add Device Detail ViewCloudSponge.Net: Alpha: Initial alpha release very limited tested includes *CloudSponge.dll *Sponge.exe (simple cmd line utility to import contacts, and test API)Global Assembly Cache comparison tool: GAC Compare version 3.1: Version 3.1Added export assemblies to directory functionalityHTML Ruby: 6.21.2: Some style adjustments Ruby text spacing is spaced out to keep Firefox responsive Status bar is backJEngine - Tile Map Editor v1: JEngine - Tile Map Editor V1: JEngine - Tile Map Editor V1 Discription SoonJeremy Knight: SQL Padding Functions v1.0: The entire scripts, including if exists logic, for SQL Padding Functions are included in this download.jqGrid ASP.Net MVC Control: Version 1.1.0.0: UPDATE 14-04 Fixed a small problem with the custom column renderers controller, And added a new example for a cascading-dropdownlist grid column A...JulMar MVVM Helpers + Behaviors: Version 1.06: This version is an update to MVVM Helpers that is built on Visual Studio 2010 RTM. It includes some minor updates to classes and a few new convert...lcskey: v 1.0: v1.0 基本能跑,未详细测试LINQ To Blippr: LINQ to Blippr: Download to test out and play around LINQ to Blippr based from blog posts: http://consultingblogs.emc.com/jonsharrattLINQ to XSD: 1.1.0: The LINQ to XSD technology provides .NET developers with support for typed XML programming. LINQ to XSD contributes to the LINQ project (.NET Langu...LINQ to XSD: 2.0.0: It is the same code as version 1.1 but compiled for .NET framework 4.0. Requirements: .NET Framework 4.0.LocoSync: LocoSync v0.1r2010.04.12: Second Alpha version of LocoSync. Download unzip and run setup. It will download the .NET framework if needed. It will create an icon in the start ...mojoPortal: 2.3.4.2: see release note on mojoportal.com http://www.mojoportal.com/mojoportal-2342-released.aspxNanoPrompt: Setup (.NET 4.0) - 20100414-A Nightly: The setup for NanoPrompt 0.Xa for Intel-80386- (32 or 64 bits) or Intel-Itanium-compatible targets with installed .NET-Framework 4.0 Client Profile...Neural Cryptography in F#: Neural Cryptography 0.0.5: This release provides the basic functionality that this project was supposed to have from the very beginning: it can hash strings using neural netw...NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Class Libraries, version 1.0.1.121: The NodeXL class libraries can be used to display network graphs in .NET applications. To include a NodeXL network graph in a WPF desktop or Windo...nRoute Framework: nRoute.Toolkit Release Version 0.4: Note, both "nRoute.Framework (x3)" and "nRoute.Toolkit (x3)" zip files contains binaries for Web, Desktop and Mobile targets. Also this release wa...Numina Application/Security Framework: Numina.Framework Core 50381: Rebuilt using .NET 4 RTM One minor change made to the web.config file - added System.Data.Linq to the assemblies list.PokeIn Comet Ajax Library: PokeIn Lib and Sample: Great sample with usefull comet ajax library! .Net 2.0 Note : It was very easy to build this project with Visual Studio 10 ;)Powershell Zip File Export/Import Cmdlet Module: PowershellZip 0.1.0.3: Powershell-Zip 0.1.0.3 contains the cmdlets Export-Zip and Import-ZipPowerSlim - Acceptance Testing for Enterprise Applications: PowerSlim 0.1: Just PowerSlim. http://vlasenko.org/2010/04/09/howto-setup-powerslim-step-by-step/RDA Collaboration Team Projects: SharePoint BPOS Logging Framework: RDA's SharePoint BPOS logging framework is a very lightweight WSP Builder project that provides the following items: A Site feature that creates a...RecordLogon.vbs login script: LogonSearchGadget: This is the Windows Gadget companion for RecordLogon.RecordLogon.vbs login script: LogonSearchTool.hta: This is the HTA standalone script that runs inside of an IE window. The HTA is what presents the data the recordlogon.vbs creates. Please remember...RecordLogon.vbs login script: recordlogon.vbs: This is the main script that grabs the logon and computer information and dumps the info as text files to a defined folder share. Make sure to chec...Rensea Image Viewer: RIV 0.4.3: New Release of RIV. Added many many features! You would love it. You would need .NET Framework 4.0 to make it run With separated RIV up-loader, to...SharePoint Site Configurator Feature: SharePoint Site Configurator V2.0: Updated for SharePoint 2010 and added quite a lot of new functions. Compatible with SP2010, MOSS and WSS 3.0Sharp Tests Ex: Sharp Tests Ex 1.0.0RC2: Project Description #TestsEx (Sharp Tests Extensions) is a set of extensible extensions. The main target is write short assertions where the Visual...SQL Server Extended Properties Quick Editor: Release 1.6.2: Whats new in 1.6.2: Fixed several errors in LinqToSQL generated classes, solved generation EntitySet members. Its highly recomended to download and...SSRS SDK for PHP: SugarCRM Sample for SSRSReport: The zip file contains a sample SugarCRM module that shows how the SSRS SDK for PHP can be used to add simple reporting capabilities to the SugarCRM...System Etheral™ - Developer: System Etheral Dev v1.00: Comes with a VERY basic text editor and the ability to shutdown. Hopefully we will have a lot more stuff in version 1.01! But this is fine for now....Text to HTML: 0.4.2.0: ¡Gracias a Martin Lemburg por avisar de los errores y por sus sugerencias! Cambios de la versiónSustitución de los caracteres especiales alemanes:...TimeSheet Reporting Silverlight: v1.0 Source Code: Source CodeTwitter4You: Twitter 4 You - Version 1.0 (TESTER): Serialcode: http://joeynl.blogspot.com/2010/04/test-version-of-t4yv1.html Thanks JoeyNLVCC: Latest build, v2.1.30413.0: Automatic drop of latest buildVisioAutomation: VisioAutomation 2.5.1: VisioAutomation 2.5.1- Moved to Visual Studio 2010 (Still using .NET Framework 3.5) Changes Since 2.5.0- Solution and Projects are all based on Vi...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesPHPExcelFacebook Developer ToolkitMost Active ProjectsRawrAutoPocopatterns & practices – Enterprise LibraryGMap.NET - Great Maps for Windows Forms & PresentationFarseer Physics EngineNB_Store - Free DotNetNuke Ecommerce Catalog ModuleBeanProxyjQuery Library for SharePoint Web ServicesBlogEngine.NETFacebook Developer Toolkit

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • Look Inside WebLogic Server Embedded LDAP with an LDAP Explorer

    - by james.bayer
    Today a question came up on our internal WebLogic Server mailing lists about an issue deleting a Group from WebLogic Server.  The group had a special character in the name. The WLS console refused to delete the group with the message a java.net.MalformedURLException and another message saying “Errors must be corrected before proceeding.” as shown below. The group aa:bb is the one with the issue.  Click to enlarge. WebLogic Server includes an embedded LDAP server that can be used for managing users and groups for “reasonably small environments (10,000 or fewer users)”.  For organizations scaling larger or using more high-end features, I recommend looking at one of Oracle’s very popular enterprise directory services products like Oracle Internet Directory or Oracle Directory Server Enterprise Edition.  You can configure multiple authenicators in WebLogic Server so that you can use multiple directories at the same time. I am not sure WebLogic Server supports special characters in group names for the Embedded LDAP server, but in this case both the console and WLST reported the same issue deleting the group with the special character in the name.  Here’s the WLST output: wls:/hotspot_domain/serverConfig/SecurityConfiguration/hotspot_domain/Realms/myrealm/AuthenticationProviders/DefaultAuthenticator> cmo.removeGroup('aa:bb') Traceback (innermost last): File "<console>", line 1, in ? weblogic.security.providers.authentication.LDAPAtnDelegateException: [Security:090296]invalid URL ldap:///ou=people,ou=myrealm,dc=hotspot_domain??sub?(&(objectclass=person)(wlsMemberOf=cn=aa:bb,ou=groups,ou=myrealm,dc=hotspot_domain)) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:254) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.<init>(LDAPAtnGroupMembersNameList.java:119) at weblogic.security.providers.authentication.LDAPAtnDelegate.listGroupMembers(LDAPAtnDelegate.java:1392) at weblogic.security.providers.authentication.LDAPAtnDelegate.removeGroup(LDAPAtnDelegate.java:1989) at weblogic.security.providers.authentication.DefaultAuthenticatorImpl.removeGroup(DefaultAuthenticatorImpl.java:242) at weblogic.security.providers.authentication.DefaultAuthenticatorMBeanImpl.removeGroup(DefaultAuthenticatorMBeanImpl.java:407) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at weblogic.management.jmx.modelmbean.WLSModelMBean.invoke(WLSModelMBean.java:437) at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultMBeanServerInterceptor.java:836) at com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:761) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.JMXContextInterceptor.invoke(JMXContextInterceptor.java:263) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.SecurityInterceptor.invoke(SecurityInterceptor.java:444) at weblogic.management.jmx.mbeanserver.WLSMBeanServer.invoke(WLSMBeanServer.java:323) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11$1.run(JMXConnectorSubjectForwarder.java:663) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11.run(JMXConnectorSubjectForwarder.java:661) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder.invoke(JMXConnectorSubjectForwarder.java:654) at javax.management.remote.rmi.RMIConnectionImpl.doOperation(RMIConnectionImpl.java:1427) at javax.management.remote.rmi.RMIConnectionImpl.access$200(RMIConnectionImpl.java:72) at javax.management.remote.rmi.RMIConnectionImpl$PrivilegedOperation.run(RMIConnectionImpl.java:1265) at java.security.AccessController.doPrivileged(Native Method) at javax.management.remote.rmi.RMIConnectionImpl.doPrivilegedOperation(RMIConnectionImpl.java:1367) at javax.management.remote.rmi.RMIConnectionImpl.invoke(RMIConnectionImpl.java:788) at javax.management.remote.rmi.RMIConnectionImpl_WLSkel.invoke(Unknown Source) at weblogic.rmi.internal.BasicServerRef.invoke(BasicServerRef.java:667) at weblogic.rmi.internal.BasicServerRef$1.run(BasicServerRef.java:522) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:146) at weblogic.rmi.internal.BasicServerRef.handleRequest(BasicServerRef.java:518) at weblogic.rmi.internal.wls.WLSExecuteRequest.run(WLSExecuteRequest.java:118) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:207) at weblogic.work.ExecuteThread.run(ExecuteThread.java:176) Caused by: java.net.MalformedURLException at netscape.ldap.LDAPUrl.readNextConstruct(LDAPUrl.java:651) at netscape.ldap.LDAPUrl.parseUrl(LDAPUrl.java:277) at netscape.ldap.LDAPUrl.<init>(LDAPUrl.java:114) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:224) ... 41 more It’s fairly clear that in order to work that the : character needs to be URL encoded to %3A or similar.  But all is not lost, there is another way.  You can configure an LDAP Explorer like JXplorer to WebLogic Server Embedded LDAP and browse/edit the entries. Follow the instructions here, being sure to change the authentication credentials to the Embedded LDAP server to some value you know, as by default they are some unknown value.  You’ll need to reboot the WebLogic Server Admin Server after making this change. Now configure JXplorer to connect as described in the documentation.  I’ve circled the important inputs.  In this example, my domain name is “hotspot_domain” which listens on the localhost listen address and port 7001.  The cn=Admin user name is a constant identifier for the Administrator of the embedded LDAP and that does not change, but you need to know what it is so you can enter it into the tool you use. Once you connect successfully, you can explore the entries and in this case delete the group that is no longer desired.

    Read the article

  • To ORM or Not to ORM. That is the question&hellip;

    - by Patrick Liekhus
    UPDATE:  Thanks for the feedback and comments.  I have adjusted my table below with your recommendations.  I had missed a point or two. I wanted to do a series on creating an entire project using the EDMX XAF code generation and the SpecFlow BDD Easy Test tools discussed in my earlier posts, but I thought it would be appropriate to start with a simple comparison and reasoning on why I choose to use these tools. Let’s start by defining the term ORM, or Object-Relational Mapping.  According to Wikipedia it is defined as the following: Object-relational mapping (ORM, O/RM, and O/R mapping) in computer software is a programming technique for converting data between incompatible type systems in object-oriented programming languages. This creates, in effect, a "virtual object database" that can be used from within the programming language. Why should you care?  Basically it allows you to map your business objects in code to their persistence layer behind them. And better yet, why would you want to do this?  Let me outline it in the following points: Development speed.  No more need to map repetitive tasks query results to object members.  Once the map is created the code is rendered for you. Persistence portability.  The ORM knows how to map SQL specific syntax for the persistence engine you choose.  It does not matter if it is SQL Server, Oracle and another database of your choosing. Standard/Boilerplate code is simplified.  The basic CRUD operations are consistent and case use database metadata for basic operations. So how does this help?  Well, let’s compare some of the ORM tools that I have used and/or researched.  I have been interested in ORM for some time now.  My ORM of choice for a long time was NHibernate and I still believe it has a strong case in some business situations.  However, you have to take business considerations into account and the law of diminishing returns.  Because of these two factors, my recent activity and experience has been around DevExpress eXpress Persistence Objects (XPO).  The primary reason for this is because they have the DevExpress eXpress Application Framework (XAF) that sits on top of XPO.  With this added value, the data model can be created (either database first of code first) and the Web and Windows client can be created from these maps.  While out of the box they provide some simple list and detail screens, you can verify easily extend and modify these to your liking.  DevExpress has done a tremendous job of providing enough framework while also staying out of the way when you need to extend it.  This sounds worse than it really is.  What I mean by this is that if you choose to follow DevExpress coding style and recommendations, the hooks and extension points provided allow you to do some pretty heavy lifting while also not worrying about the basics. I have put together a list of the top features that I have used to compare the limited list of ORM’s that I have exposure with.  Again, the biggest selling point in my opinion is that XPO is just a solid as any of the other ORM’s but with the added layer of XAF they become unstoppable.  And then couple that with the EDMX modeling tools and code generation, it becomes a no brainer. Designer Features Entity Framework NHibernate Fluent w/ Nhibernate Telerik OpenAccess DevExpress XPO DevExpress XPO/XAF plus Liekhus Tools Uses XML to map relationships - Yes - - -   Visual class designer interface Yes - - - - Yes Management integrated w/ Visual Studio Yes - - Yes - Yes Supports schema first approach Yes - - Yes - Yes Supports model first approach Yes - - Yes Yes Yes Supports code first approach Yes Yes Yes Yes Yes Yes Attribute driven coding style Yes - Yes - Yes Yes                 I have a very small team and limited resources with a lot of responsibilities.  In order to keep up with our customers, we must rely on tools like these.  We use the EDMX tool so that we can create a visual representation of the applications with our customers.  Second, we rely on the code generation so that we can focus on the business problems at hand and not whether a field is mapped correctly.  This keeps us from requiring as many junior level developers on our team.  I have also worked on multiple teams where they believed in writing their own “framework”.  In my experiences and opinion this is not the route to take unless you have a team dedicated to supporting just the framework.  Each time that I have worked on custom frameworks, the framework eventually becomes old, out dated and full of “performance” enhancements specific to one or two requirements.  With an ORM, there are a lot smarter people than me working on the bigger issue of persistence and performance.  Again, my recommendation would be to use an available framework and get to working on your business domain problems.  If your coding is not making money for you, why are you working on it?  Do you really need to be writing query to object member code again and again? Thanks

    Read the article

< Previous Page | 676 677 678 679 680 681 682 683 684 685 686 687  | Next Page >