Search Results

Search found 38660 results on 1547 pages for 'sql index'.

Page 69/1547 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Cumulative Update #7 for SQL Server 2008 Service Pack 3 is available

    - by AaronBertrand
    Today Microsoft has released a new cumulative update for SQL Server 2008. Cumulative Update #7 for SQL Server 2008 Service Pack 3 Knowledge Base Article: KB #2738350 At the time of writing, there are 9 fixes listed The build number is 10.00.5794 Relevant for @@VERSION between 10.00.5500 and 10.00.5793 No word yet on an update for Service Pack 2. As usual, I'll post my standard disclaimer here: these updates are NOT for SQL Server 2008 R2 (where @@VERSION will report 10.50.xxxx)....(read more)

    Read the article

  • SQL Rank

    - by Derek Dieter
    The SQL Rank function was introduced in SQL Server 2005 and is part of a family of ranking functions. In order to explain the SQL Rank function, we need to look at it in context with the other rank functions.RANK DENSE_RANK ROW_NUMBER NTILEThis list may seem overwhelming, however most of the ranking functions are rather similar. First, the [...]

    Read the article

  • Execute a SSIS package in Sync or Async mode from SQL Server 2012

    - by Davide Mauri
    Today I had to schedule a package stored in the shiny new SSIS Catalog store that can be enabled with SQL Server 2012. (http://msdn.microsoft.com/en-us/library/hh479588(v=SQL.110).aspx) Once your packages are stored here, they will be executed using the new stored procedures created for this purpose. This is the script that will get executed if you try to execute your packages right from management studio or through a SQL Server Agent job, will be similar to the following: Declare @execution_id bigint EXEC [SSISDB].[catalog].[create_execution] @package_name='my_package.dtsx', @execution_id=@execution_id OUTPUT, @folder_name=N'BI', @project_name=N'DWH', @use32bitruntime=False, @reference_id=Null Select @execution_id DECLARE @var0 smallint = 1 EXEC [SSISDB].[catalog].[set_execution_parameter_value] @execution_id,  @object_type=50, @parameter_name=N'LOGGING_LEVEL', @parameter_value=@var0 DECLARE @var1 bit = 0 EXEC [SSISDB].[catalog].[set_execution_parameter_value] @execution_id,  @object_type=50, @parameter_name=N'DUMP_ON_ERROR', @parameter_value=@var1 EXEC [SSISDB].[catalog].[start_execution] @execution_id GO The problem here is that the procedure will simply start the execution of the package and will return as soon as the package as been started…thus giving you the opportunity to execute packages asynchrously from your T-SQL code. This is just *great*, but what happens if I what to execute a package and WAIT for it to finish (and thus having a synchronous execution of it)? You have to be sure that you add the “SYNCHRONIZED” parameter to the package execution. Before the start_execution procedure: exec [SSISDB].[catalog].[set_execution_parameter_value] @execution_id,  @object_type=50, @parameter_name=N'SYNCHRONIZED', @parameter_value=1 And that’s it . PS From the RC0, the SYNCHRONIZED parameter is automatically added each time you schedule a package execution through the SQL Server Agent. If you’re using an external scheduler, just keep this post in mind .

    Read the article

  • SQL Server 2008 R2 Express Edition - a treat for small scale businesses

    - by ssqa.net
    SQL Server Express edition is a light-weight software within SQL Server arena, it is classed as database platform that makes it easy to develop data-driven applications that are rich in capability, offer enhanced storage security, and are fast to deploy. Also the SQL Server 2008 Express with Advanced Services is an edition of same flock that includes a new graphical management tool, features for reporting, and advanced text-based search capabilities. You can add the GUI capabilities for management...(read more)

    Read the article

  • Review the New Migration Guide to SQL Server 2012 Always On

    - by KKline
    I had the pleasure of meeting Mr. Cephas Lin, of Microsoft, last year at the SQL Saturday in Indianapolis and then later at the PASS Summit in the fall. Cephas has been writing content for SQL Server 2012 Always On. Cephas has recently published his first whitepaper, a migration guide to SQL Server AlwaysOn. Read it and then pass along any feedback: HERE Enjoy, -Kev - Follow me on Twitter !...(read more)

    Read the article

  • December 2012 Cumulative Updates are available for SQL Server 2008 R2

    - by AaronBertrand
    Microsoft released new cumulative updates for SQL Server. SQL Server 2008 R2 Service Pack 1 Cumulative Update # 10 KB Article: KB #2783135 16 fixes are listed at the time of publication Build number is 10.50.2868 Relevant for @@VERSION 10.50.2500 through 10.50.2867 SQL Server 2008 R2 Service Pack 2 Cumulative Update # 4 KB Article: KB #2777358 34 fixes are listed at time of publication Build number is 10.50.4270 Relevant for @@VERSION 10.50.4000 through 10.50.4269 My usual disclaimer: these updates...(read more)

    Read the article

  • Migrate Sql Server 2000. Which is better, 2005 vs 2008?

    - by Jhonny D. Cano -Leftware-
    My company has a Server with Windows Server 2003, and SQL Server 2000. We are planning to migrate just the database server, a provider said us the migration would be better to 2005 first, and then to 2008, because "the SQL Server 2008 is best suited for Windows Server 2008". Which are the pros and cons of each of these approaches? Migrate SQL 2000 to SQL 2005 and then to SQL 2008 Migrate SQL 2000 directly to SQL 2008 NOTE: Changing Operating System is not an option ($$$) right now for the company. Any article or experiences would be very much appreciated

    Read the article

  • Microsoft Delivers Full Suite of SQL Server Powershell Cmdlets

    - by merrillaldrich
    We’ve all been waiting several years for this, and finally it’s here! Coinciding (approximately) with the release of SQL Server 2012, a new Feature Pack has appeared on the Microsoft web site that adds a full suite of PowerShell cmdlets for DDL and other functions. This means that, at last, we can do things like fully-featured SQL deployment scripts without all the (severe) limitations of T-SQL, such as primitive use of variables, flow control, exception handling. Taking a cue, finally, from the...(read more)

    Read the article

  • Cumulative Update #5 is available for SQL Server 2012 RTM

    - by AaronBertrand
    Microsoft has released Cumulative Update #5 for SQL Server 2012 RTM. Note this is *not* a cumulative update for Service Pack 1. So if your build # is >= 11.0.3000, you should not be installing this update. KB Article: KB #2777772 Build # 11.0.2395 28 fixes at the time of writing Relevant for builds 11.0.2100 -> 11.0.3329. Do not attempt to install on SQL Server 2012 SP1 (any build >= 11.0.3000) or any previous version of SQL Server....(read more)

    Read the article

  • The most dangerous SQL Script in the world!

    - by DrJohn
    In my last blog entry, I outlined how to automate SQL Server database builds from concatenated SQL Scripts. However, I did not mention how I ensure the database is clean before I rebuild it. Clearly a simple DROP/CREATE DATABASE command would suffice; but you may not have permission to execute such commands, especially in a corporate environment controlled by a centralised DBA team. However, you should at least have database owner permissions on the development database so you can actually do your job! Then you can employ my universal "drop all" script which will clear down your database before you run your SQL Scripts to rebuild all the database objects. Why start with a clean database? During the development process, it is all too easy to leave old objects hanging around in the database which can have unforeseen consequences. For example, when you rename a table you may forget to delete the old table and change all the related views to use the new table. Clearly this will mean an end-user querying the views will get the wrong data and your reputation will take a nose dive as a result! Starting with a clean, empty database and then building all your database objects using SQL Scripts using the technique outlined in my previous blog means you know exactly what you have in your database. The database can then be repopulated using SSIS and bingo; you have a data mart "to go". My universal "drop all" SQL Script To ensure you start with a clean database run my universal "drop all" script which you can download from here: 100_drop_all.zip By using the database catalog views, the script finds and drops all of the following database objects: Foreign key relationships Stored procedures Triggers Database triggers Views Tables Functions Partition schemes Partition functions XML Schema Collections Schemas Types Service broker services Service broker queues Service broker contracts Service broker message types SQLCLR assemblies There are two optional sections to the script: drop users and drop roles. You may use these at your peril, particularly as you may well remove your own permissions! Note that the script has a verbose mode which displays the SQL commands it is executing. This can be switched on by setting @debug=1. Running this script against one of the system databases is certainly not recommended! So I advise you to keep a USE database statement at the top of the file. Good luck and be careful!!

    Read the article

  • T-SQL Tuesday #007 and T-SQL Tuesday Has a Logo

    - by Adam Machanic
    This month’s T-SQL Tuesday is hosted by Jorge Segarra, the “SQL Chicken.” The topic is rather open ended: What is your favorite new(ish) SQL Server feature? Love the DACPAC? Can’t wait for PDW? Post about it and tell us why! In other T-SQL Tuesday news, we now have a logo. Those of you who are participating in the event, take notice; the rules have changed. Now that we have a logo we’re simplifying the linkback and subject guidelines a bit. Henceforth you can title your post however you want. It...(read more)

    Read the article

  • 24 hours of PASS is back!

    - by Sergio Govoni
    The most important free on-line event on SQL Server and Business Intelligence is back! The 24 Hours of PASS is coming back with a great edition fully based on the new features of SQL Server 2014. What could you aspect from the next PASS Summit? Find it out on June 25, 2014 (12:00 GMT) on 24 Hours of PASS: SQL Server 2014! Register now at this link. No matter from what part of the world you will follow the event, the important thing is to know that it will be 24 hours of continuous training on SQL Server and Business Intelligence.

    Read the article

  • Last chance for a day of free SQL Server training at SQL in the City 2012

    SQL Server developers and database administrators have one last chance for a full day of free training and networking at SQL in the City 2012. NEW! Deployment Manager Early Access ReleaseDeploy SQL Server changes and .NET applications fast, frequently, and without fuss, using Deployment Manager, the new tool from Red Gate. Try the Early Access Release to get a 20% discount on Version 1. Download the Early Access Release.

    Read the article

  • Creating a SQL Azure Database Should be Easier

    - by Ken Cox [MVP]
    Every time I try to create a database + tables + data for Windows Azure SQL I get errors.  One of them is 'Filegroup reference and partitioning scheme' is not supported in this version of SQL Server.' It’s partly due to my poor memory (since I’ve succeeded before) and partly due to the failure of tools that should be helping me. For example, when I want to create a script from an existing database on my local workstation, I use SQL Server Management Studio (currently v 11.0.2100.60).  I go to Tasks > Generate Scripts which brings up the nice Generate and Publish Scripts wizard. When I go into the Advanced button, under Script for Server Version, why don’t I see SQL Azure as an option by now? The tool should be sorting this out for me, right? Maybe this is available in SQL Server Data Tools? I haven’t got into that yet. Just merge the functionality with SSMS, please. Anyway, I pick an older version of SQL for the target and still need to tweak it for Azure. For example, I take out all the “[dbo].” stuff. Why is it put there by the wizard? I also have to get rid of "ON [PRIMARY]"  to deal with the error I noted at the top. Yes, there’s information on what a table needs to look like in SQL Azure but the tools should know this so I don’t have to mess with it.

    Read the article

  • SQL Date Comparison

    - by Derek Dieter
    When comparing the datetime datatype in SQL Server, it is important to maintain consistency in order to gaurd against SQL interpreting a date differently than you intend. In at least one occasion I have seen someone specify a short format for a date, like (1/4/08) only to find that SQL interpreted the month as [...]

    Read the article

  • Simple way to create a SQL Server Job Using T-SQL

    Sometimes we have a T-SQL process that we need to run that takes some time to run or we want to run it during idle time on the server. We could create a SQL Agent job manually, but is there any simple way to create a scheduled job? The seven tools in the SQL DBA Bundle support your core SQL Server database administration tasks.Make backups a breeze! Enjoy trouble-free troubleshooting! Make the most of monitoring! Download a free trial now.

    Read the article

  • Stairway to SQL PowerShell Level 4: Objects in SQL PowerShell

    This far, we have learned about installation and setup of the PowerShell environment. You should now have a foundation of SQL Server PowerShell. We now are ready to learn about Objects in SQL PowerShell. Schedule Azure backupsRed Gate’s Cloud Services makes it simple to create and schedule backups of your SQL Azure databases to Azure blob storage or Amazon S3. Try it for free today.

    Read the article

  • T-SQL Tuesday #34: HELP!

    - by merrillaldrich
    I owe my career to the SQL Server community, specifically the Internet SQL Server community, so this month’s T-SQL Tuesday is especially poignant. I changed careers “cold” about eight years ago, and, while I had some educational background in computer science, I had relatively little real-world DBA experience. Someone gave me a shot in the form of an entry level job, for which I am grateful, but I also had to make the argument to him that I would figure out whatever I needed to do to be successful...(read more)

    Read the article

  • How to script indexes, keys, foreign keys in SQL Server

    - by dontomaso
    Hi, I would like to get the details of all indexes, keys, and foreign keys from a database in SQL Server (2008). How do I do this? I plan to use this to synchronize those properties across a couple of somewhat similar databases. I can use SQL Server Management Studio, but I cannot do a full backup of a database because of restrictions set by the web hoster. -- Secondary question that you do not need to answer: Why can't there be something similar to the database schema in Mysql that simply lists all of the database structure in text SQL script format? Thanks,

    Read the article

  • I'm looking for a reliable way to verify T-SQL stored procedures. Anybody got one?

    - by Cory Larson
    Hi all-- We're upgrading from SQL Server 2005 to 2008. Almost every database in the 2005 instance is set to 2000 compatibility mode, but we're jumping to 2008. Our testing is complete, but what we've learned is that we need to get faster at it. I've discovered some stored procedures that either SELECT data from missing tables or try to ORDER BY columns that don't exist. Wrapping the SQL to create the procedures in SET PARSEONLY ON and trapping errors in a try/catch only catches the invalid columns in the ORDER BYs. It does not find the error with the procedure selecting data from the missing table. SSMS 2008's intellisense, however, DOES find the issue, but I can still go ahead and successfully run the ALTER script for the procedure without it complaining. So, why can I even get away with creating a procedure that fails when it runs? Are there any tools out there that can do better than what I've tried? The first tool I found wasn't very useful: DbValidator from CodeProject, but it finds fewer problems than this script I found on SqlServerCentral, which found the invalid column references. ------------------------------------------------------------------------- -- Check Syntax of Database Objects -- Copyrighted work. Free to use as a tool to check your own code or in -- any software not sold. All other uses require written permission. ------------------------------------------------------------------------- -- Turn on ParseOnly so that we don't actually execute anything. SET PARSEONLY ON GO -- Create a table to iterate through declare @ObjectList table (ID_NUM int NOT NULL IDENTITY (1, 1), OBJ_NAME varchar(255), OBJ_TYPE char(2)) -- Get a list of most of the scriptable objects in the DB. insert into @ObjectList (OBJ_NAME, OBJ_TYPE) SELECT name, type FROM sysobjects WHERE type in ('P', 'FN', 'IF', 'TF', 'TR', 'V') order by type, name -- Var to hold the SQL that we will be syntax checking declare @SQLToCheckSyntaxFor varchar(max) -- Var to hold the name of the object we are currently checking declare @ObjectName varchar(255) -- Var to hold the type of the object we are currently checking declare @ObjectType char(2) -- Var to indicate our current location in iterating through the list of objects declare @IDNum int -- Var to indicate the max number of objects we need to iterate through declare @MaxIDNum int -- Set the inital value and max value select @IDNum = Min(ID_NUM), @MaxIDNum = Max(ID_NUM) from @ObjectList -- Begin iteration while @IDNum <= @MaxIDNum begin -- Load per iteration values here select @ObjectName = OBJ_NAME, @ObjectType = OBJ_TYPE from @ObjectList where ID_NUM = @IDNum -- Get the text of the db Object (ie create script for the sproc) SELECT @SQLToCheckSyntaxFor = OBJECT_DEFINITION(OBJECT_ID(@ObjectName, @ObjectType)) begin try -- Run the create script (remember that PARSEONLY has been turned on) EXECUTE(@SQLToCheckSyntaxFor) end try begin catch -- See if the object name is the same in the script and the catalog (kind of a special error) if (ERROR_PROCEDURE() <> @ObjectName) begin print 'Error in ' + @ObjectName print ' The Name in the script is ' + ERROR_PROCEDURE()+ '. (They don''t match)' end -- If the error is just that this already exists then we don't want to report that. else if (ERROR_MESSAGE() <> 'There is already an object named ''' + ERROR_PROCEDURE() + ''' in the database.') begin -- Report the error that we got. print 'Error in ' + ERROR_PROCEDURE() print ' ERROR TEXT: ' + ERROR_MESSAGE() end end catch -- Setup to iterate to the next item in the table select @IDNum = case when Min(ID_NUM) is NULL then @IDNum + 1 else Min(ID_NUM) end from @ObjectList where ID_NUM > @IDNum end -- Turn the ParseOnly back off. SET PARSEONLY OFF GO Any suggestions?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Replication with SQL Server 2005 Express Edition and SQL Compact Edition 3.5

    - by Andy Gable
    hi all, I need some information on SQL Server 2005 Express edition. What I want to do is have my central database servin local machine databases IE back office Cental database |------------------- Shop floor Terminal 1 |------------------- Shop Floor Terminal 2 |------------------- Shop Floor Terminal 3 |------------------- Shop Floor Terminal 4 |------------------- Shop Floor Terminal 5 |------------------- Shop Floor Terminal 6 I want is so that Shop floor terminals would PULL down ANY changes to the database as and when they happen (selected changes are needed change would be Add new item / Edit Item info that is used by Shop floor terminal (ie price, description, sale group) Is this possible with SQL 2005? I have the ability to make my own Sync Applciation but I would need to know what to look for in the database that trigers a update Many thanks for any advice you can give Andy

    Read the article

  • SQL Server 2005 jobs running twice in a row - using LiteSpeed

    - by Malnizzle
    Howdy! I have a SQL server (2005) backing up to a network share, who has a group of maintenance plans setup through LiteSpeed to backup different DBs. They were just set up to run two sub plans on different schedules for full/diff backups and did that just fine for a couple of months. Then I added "Clean Up" task to the subplans. Ever since that point, the backup creates another bak right after the first bak job is completed. I removed the clean up item from the subplan, and it still creates two baks when ran. Both the SQL Activity Monitor and the machine's windows application log show just one job being executed. I did this same thing to a couple of other servers backing up to the same location, and they are behaving correctly. Thoughts?

    Read the article

  • SQL Server 2008 Express - "Best" backup solution?

    - by Alexander Nyquist
    Hi! What backup solutions would you recommend when using SQL Server 2008 express? I'm pretty new to SQL Server, but as I'm coming from an MySql background i thought of setting up replication on another computer and just take x-copy backups of that server. But unfortanetly replication is not available in the express edition. The site is heavily accessed, so there has to be no delays och downtime. I'm also thinking of doing a backup twice a day or something. What would you recommend? I have multiple computers I can use, but don't know if that helps me since i'm using the express version. Thanks

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >