Search Results

Search found 189 results on 8 pages for 'illustration'.

Page 7/8 | < Previous Page | 3 4 5 6 7 8  | Next Page >

  • Python: How to transfer varrying length arrays over a network connection

    - by Devin
    Hi, I need to transfer an array of varying length in which each element is a tuple of two integers. As an example: path = [(1,1),(1,2)] path = [(1,1),(1,2),(2,2)] I am trying to use pack and unpack, however, since the array is of varying length I don't know how to create a format such that both know the format. I was trying to turn it into a single string with delimiters, such as: msg = 1&1~1&2~ sendMsg = pack("s",msg) or sendMsg = pack("s",str(msg)) on the receiving side: path = unpack("s",msg) but that just prints 1 in this case. I was also trying to send 4 integers as well, which send and receive fine, so long as I don't include the extra string representing the path. sendMsg = pack("hhhh",p.direction[0],p.direction[1],p.id,p.health) on the receive side: x,y,id,health = unpack("hhhh",msg) The first was for illustration as I was trying to send the format "hhhhs", but either way the path doesn't come through properly. Thank-you for your help. I will also be looking at sending a 2D array of ints, but I can't seem to figure out how to send these more 'complex' structures across the network. Thank-you for your help.

    Read the article

  • How to conduct an interview for a development position remotely?

    - by sharptooth
    Usually we run interviews in office. We have a room with a table, the interviewee and one or two interviewers sit at the table, interviewers ask questions, often accompanied with code snippets on paper, the interviewee (hopefully) answers them, writes code snippets to illustrate his point. Usually it's something like an interviewer writes about five lines of C++ code and asks some specific question - quite a little code. Now we need to do the same remotely. We will be in our office and the interviewee will be far away - we are asked to help hire a person for another office located abroad. Of course we can use some technology for voice calls, but I'm afraid it's the most we can count on. I see a whole set of obstacles here: how to write illustration code snippets and exchange them efficiently? what to do to compensate for the fact that we're not native English speakers and the interviewees might or might be not native English speakers (I'm afraid this can make conversation significantly harder)? Are there any best practices for this situation? How could we address the obstacles listed? What other things should we consider to run the interview most efficiently?

    Read the article

  • How to create custom MouseEvent.CLICK event in AS3 (pass parameters to function)?

    - by fromvega
    Hello, This question doesn't relate only to MouseEvent.CLICK event type but to all event types that already exist in AS3. I read a lot about custom events but until now I couldn't figure it out how to do what I want to do. I'm going to try to explain, I hope you understand: Here is a illustration of my situation: for(var i:Number; i < 10; i++){ var someVar = i; myClips[i].addEventListener(MouseEvent.CLICK, doSomething); } function doSomething(e:MouseEvent){ /* */ } But I want to be able to pass someVar as a parameter to doSomething. So I tried this: for(var i:Number; i < 10; i++){ var someVar = i; myClips[i].addEventListener(MouseEvent.CLICK, function(){ doSomething(someVar); }); } function doSomething(index){ trace(index); } This kind of works but not as I expect. Due to the function closures, when the MouseEvent.CLICK events are actually fired the for loop is already over and someVar is holding the last value, the number 9 in the example. So every click in each movie clip will call doSomething passing 9 as the parameter. And it's not what I want. I thought that creating a custom event should work, but then I couldn't find a way to fire a custom event when the MouseEvent.CLICK event is fired and pass the parameter to it. Now I don't know if it is the right answer. What should I do and how?

    Read the article

  • Selecting records in SQL that have the minimum value for that record based on another field

    - by Ryan
    I have a set of data, and while the number of fields and tables it joins with is quite complex, I believe I can distill my problem down using the required fields/tables here for illustration regarding this particular problem. I have three tables: ClientData, Sources, Prices Here is what my current query looks like before selecting the minimum value: select c.RecordID, c.Description, s.Source, p.Price, p.Type, p.Weight from ClientData c inner join Sources s ON c.RecordID = s.RecordID inner join Prices p ON s.SourceID = p.SourceID This produces the following result: RecordID Description Source Price Type Weight ============================================================= 001002003 ABC Common Stock Vendor 1 104.5 Close 1 001002003 ABC Common Stock Vendor 1 103 Bid 2 001002003 ABC Common Stock Vendor 2 106 Close 1 001002003 ABC Common Stock Vendor 2 100 Unknwn 0 111222333 DEF Preferred Stk Vendor 3 80 Bid 2 111222333 DEF Preferred Stk Vendor 3 82 Mid 3 111222333 DEF Preferred Stk Vendor 2 81 Ask 4 What I am trying to do is display prices that belong to the same record which have the minimum non-zero weight for that record (so the weight must be greater than 0, but it has to be the minimum from amongst the remaining weights). So in the above example, for record 001002003 I would want to show the close prices from Vendor 1 and Vendor 2 because they both have a weight of 1 (the minimum weight for that record). But for 111222333 I would want to show just the bid price from Vendor 3 because its weight of 2 is the minimum, non-zero for that record. The result that I'm after would like like: RecordID Description Source Price Type Weight ============================================================= 001002003 ABC Common Stock Vendor 1 104.5 Close 1 001002003 ABC Common Stock Vendor 2 106 Close 1 111222333 DEF Preferred Stk Vendor 3 80 Bid 2 Any ideas on how to achieve this? EDIT: This is for SQL Compact Edition.

    Read the article

  • ODI and OBIEE 11g Integration

    - by David Allan
    Here we will see some of the connectivity options to OBIEE 11g using the JDBC driver. You’ll see based upon some connection properties how the physical or presentation layers can be utilized. In the integrators guide for OBIEE 11g you will find a brief statement indicating that there actually is a JDBC driver for OBIEE. In OBIEE 11g its now possible to connect directly to the physical layer, Venkat has an informative post here on this topic. In ODI 11g the Oracle BI technology is shipped with the product along with KMs for reverse engineering, and using OBIEE models for a data source. When you install OBIEE in 11g a light weight demonstration application is preinstalled in the server, when you open this in the BI Administration tool we see the regular 3 panel view within the administration tool. To interrogate this system via JDBC (just like ODI does using the KMs) need a couple of things; the JDBC driver from OBIEE 11g, a java client program and the credentials. In my java client program I want to connect to the OBIEE system, when I connect I can interrogate what the JDBC driver presents for the metadata. The metadata projected via the JDBC connection’s DatabaseMetadata changes depending on whether the property NQ_SESSION.SELECTPHYSICAL is set when the java client connects. Let’s use the sample app to illustrate. I have a java client program here that will print out the tables in the DatabaseMetadata, it will also output the catalog and schema. For example if I execute without any special JDBC properties as follows; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass Then I get the following returned representing the presentation layer, the sample I used is XML, and has no schema; Catalog Schema Table Sample Sales Lite null Base Facts Sample Sales Lite null Calculated Facts …     Sample Targets Lite null Base Facts …     Now if I execute with the only difference being the JDBC property NQ_SESSION.SELECTPHYSICAL with the value Yes, then I see a different set of values representing the physical layer in OBIEE; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass NQ_SESSION.SELECTPHYSICAL=Yes The following is returned; Catalog Schema Table Sample App Lite Data null D01 Time Day Grain Sample App Lite Data null F10 Revenue Facts (Order grain) …     System DB (Update me)     …     If this was a database system such as Oracle, the catalog value would be the OBIEE database name and the schema would be the Oracle database schema. Other systems which have real catalog structure such as SQLServer would use its catalog value. Its this ‘Catalog’ and ‘Schema’ value that is important when integration OBIEE with ODI. For the demonstration application in OBIEE 11g, the following illustration shows how the information from OBIEE is related via the JDBC driver through to ODI. In the XML example above, within ODI’s physical schema definition on the right, we leave the schema blank since the XML data source has no schema. When I did this at first, I left the default value that ODI places in the Schema field since which was ‘<Undefined>’ (like image below) but this string is actually used in the RKM so ended up not finding any tables in this schema! Entering an empty string resolved this. Below we see a regular Oracle database example that has the database, schema, physical table structure, and how this is defined in ODI.   Remember back to the physical versus presentation layer usage when we passed the special property, well to do this in ODI, the data server has a panel for properties where you can define key/value pairs. So if you want to select physical objects from the OBIEE server, then you must set this property. An additional changed in ODI 11g is the OBIEE connection pool support, this has been implemented via a ‘Connection Pool’ flex field for the Oracle BI data server. So here you set the connection pool name from the OBIEE system that you specifically want to use and this is used by the Oracle BI to Oracle (DBLINK) LKM, so if you are using this you must set this flex field. Hopefully a useful insight into some of the mechanics of how this hangs together.

    Read the article

  • Oracle Enterprise Data Quality: Ever Integration-ready

    - by Mala Narasimharajan
    It is closing in on a year now since Oracle’s acquisition of Datanomic, and the addition of Oracle Enterprise Data Quality (EDQ) to the Oracle software family. The big move has caused some big shifts in emphasis and some very encouraging excitement from the field.  To give an illustration, combined with a shameless promotion of how EDQ can help to give quick insights into your data, I did a quick Phrase Profile of the subject field of emails to the Global EDQ mailing list since it was set up last September. The results revealed a very clear theme:   Integration, Integration, Integration! As well as the important Siebel and Oracle Data Integrator (ODI) integrations, we have been asked about integration with a huge variety of Oracle applications, including EBS, Peoplesoft, CRM on Demand, Fusion, DRM, Endeca, RightNow, and more - and we have not stood still! While it would not have been possible to develop specific pre-integrations with all of the above within a year, we have developed a package of feature-rich out-of-the-box web services and batch processes that can be plugged into any application or middleware technology with ease. And with Siebel, they work out of the box. Oracle Enterprise Data Quality version 9.0.4 includes the Customer Data Services (CDS) pack – a ready set of standard processes with standard interfaces, to provide integrated: Address verification and cleansing  Individual matching Organization matching The services can are suitable for either Batch or Real-Time processing, and are enabled for international data, with simple configuration options driving the set of locale-specific dictionaries that are used. For example, large dictionaries are provided to support international name transcription and variant matching, including highly specialized handling for Arabic, Japanese, Chinese and Korean data. In total across all locales, CDS includes well over a million dictionary entries.   Excerpt from EDQ’s CDS Individual Name Standardization Dictionary CDS has been developed to replace the OEM of Informatica Identity Resolution (IIR) for attached Data Quality on the Oracle price list, but does this in a way that creates a ‘best of both worlds’ situation for customers, who can harness not only the out-of-the-box functionality of pre-packaged matching and standardization services, but also the flexibility of OEDQ if they want to customize the interfaces or the process logic, without having to learn more than one product. From a competitive point of view, we believe this stands us in good stead against our key competitors, including Informatica, who have separate ‘Identity Resolution’ and general DQ products, and IBM, who provide limited out-of-the-box capabilities (with a steep learning curve) in both their QualityStage data quality and Initiate matching products. Here is a brief guide to the main services provided in the pack: Address Verification and Standardization EDQ’s CDS Address Cleaning Process The Address Verification and Standardization service uses EDQ Address Verification (an OEM of Loqate software) to verify and clean addresses in either real-time or batch. The Address Verification processor is wrapped in an EDQ process – this adds significant capabilities over calling the underlying Address Verification API directly, specifically: Country-specific thresholds to determine when to accept the verification result (and therefore to change the input address) based on the confidence level of the API Optimization of address verification by pre-standardizing data where required Formatting of output addresses into the input address fields normally used by applications Adding descriptions of the address verification and geocoding return codes The process can then be used to provide real-time and batch address cleansing in any application; such as a simple web page calling address cleaning and geocoding as part of a check on individual data.     Duplicate Prevention Unlike Informatica Identity Resolution (IIR), EDQ uses stateless services for duplicate prevention to avoid issues caused by complex replication and synchronization of large volume customer data. When a record is added or updated in an application, the EDQ Cluster Key Generation service is called, and returns a number of key values. These are used to select other records (‘candidates’) that may match in the application data (which has been pre-seeded with keys using the same service). The ‘driving record’ (the new or updated record) is then presented along with all selected candidates to the EDQ Matching Service, which decides which of the candidates are a good match with the driving record, and scores them according to the strength of match. In this model, complex multi-locale EDQ techniques can be used to generate the keys and ensure that the right balance between performance and matching effectiveness is maintained, while ensuring that the application retains control of data integrity and transactional commits. The process is explained below: EDQ Duplicate Prevention Architecture Note that where the integration is with a hub, there may be an additional call to the Cluster Key Generation service if the master record has changed due to merges with other records (and therefore needs to have new key values generated before commit). Batch Matching In order to allow customers to use different match rules in batch to real-time, separate matching templates are provided for batch matching. For example, some customers want to minimize intervention in key user flows (such as adding new customers) in front end applications, but to conduct a more exhaustive match on a regular basis in the back office. The batch matching jobs are also used when migrating data between systems, and in this case normally a more precise (and automated) type of matching is required, in order to minimize the review work performed by Data Stewards.  In batch matching, data is captured into EDQ using its standard interfaces, and records are standardized, clustered and matched in an EDQ job before matches are written out. As with all EDQ jobs, batch matching may be called from Oracle Data Integrator (ODI) if required. When working with Siebel CRM (or master data in Siebel UCM), Siebel’s Data Quality Manager is used to instigate batch jobs, and a shared staging database is used to write records for matching and to consume match results. The CDS batch matching processes automatically adjust to Siebel’s ‘Full Match’ (match all records against each other) and ‘Incremental Match’ (match a subset of records against all of their selected candidates) modes. The Future The Customer Data Services Pack is an important part of the Oracle strategy for EDQ, offering a clear path to making Data Quality Assurance an integral part of enterprise applications, and providing a strong value proposition for adopting EDQ. We are planning various additions and improvements, including: An out-of-the-box Data Quality Dashboard Even more comprehensive international data handling Address search (suggesting multiple results) Integrated address matching The EDQ Customer Data Services Pack is part of the Enterprise Data Quality Media Pack, available for download at http://www.oracle.com/technetwork/middleware/oedq/downloads/index.html.

    Read the article

  • SQL SERVER – CXPACKET – Parallelism – Usual Solution – Wait Type – Day 6 of 28

    - by pinaldave
    CXPACKET has to be most popular one of all wait stats. I have commonly seen this wait stat as one of the top 5 wait stats in most of the systems with more than one CPU. Books On-Line: Occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if contention on this wait type becomes a problem. CXPACKET Explanation: When a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. There is an organizer/coordinator thread (thread 0), which takes waits for all the threads to complete and gathers result together to present on the client’s side. The organizer thread has to wait for the all the threads to finish before it can move ahead. The Wait by this organizer thread for slow threads to complete is called CXPACKET wait. Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query. Reducing CXPACKET wait: We cannot discuss about reducing the CXPACKET wait without talking about the server workload type. OLTP: On Pure OLTP system, where the transactions are smaller and queries are not long but very quick usually, set the “Maximum Degree of Parallelism” to 1 (one). This way it makes sure that the query never goes for parallelism and does not incur more engine overhead. EXEC sys.sp_configure N'cost threshold for parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Data-warehousing / Reporting server: As queries will be running for long time, it is advised to set the “Maximum Degree of Parallelism” to 0 (zero). This way most of the queries will utilize the parallel processor, and long running queries get a boost in their performance due to multiple processors. EXEC sys.sp_configure N'cost threshold for parallelism', N'0' GO RECONFIGURE WITH OVERRIDE GO Mixed System (OLTP & OLAP): Here is the challenge. The right balance has to be found. I have taken a very simple approach. I set the “Maximum Degree of Parallelism” to 2, which means the query still uses parallelism but only on 2 CPUs. However, I keep the “Cost Threshold for Parallelism” very high. This way, not all the queries will qualify for parallelism but only the query with higher cost will go for parallelism. I have found this to work best for a system that has OLTP queries and also where the reporting server is set up. Here, I am setting ‘Cost Threshold for Parallelism’ to 25 values (which is just for illustration); you can choose any value, and you can find it out by experimenting with the system only. In the following script, I am setting the ‘Max Degree of Parallelism’ to 2, which indicates that the query that will have a higher cost (here, more than 25) will qualify for parallel query to run on 2 CPUs. This implies that regardless of the number of CPUs, the query will select any two CPUs to execute itself. EXEC sys.sp_configure N'cost threshold for parallelism', N'25' GO EXEC sys.sp_configure N'max degree of parallelism', N'2' GO RECONFIGURE WITH OVERRIDE GO Read all the post in the Wait Types and Queue series. Additionally a must read comment of Jonathan Kehayias. Note: The information presented here is from my experience and I no way claim it to be accurate. I suggest you all to read the online book for further clarification. All the discussion of Wait Stats over here is generic and it varies from system to system. It is recommended that you test this on the development server before implementing on the production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • The Case of the Extra Page: Rendering Reporting Services as PDF

    - by smisner
    I had to troubleshoot a problem with a mysterious extra page appearing in a PDF this week. My first thought was that it was likely to caused by one of the most common problems that people encounter when developing reports that eventually get rendered as PDF is getting blank pages inserted into the PDF document. The cause of the blank pages is usually related to sizing. You can learn more at Understanding Pagination in Reporting Services in Books Online. When designing a report, you have to be really careful with the layout of items in the body. As you move items around, the body will expand to accommodate the space you're using and you might eventually tighten everything back up again, but the body doesn't automatically collapse. One of my favorite things to do in Reporting Services 2005 - which I dubbed the "vacu-pack" method - was to just erase the size property of the Body and let it auto-calculate the new size, squeezing out all the extra space. Alas, that method no longer works beginning with Reporting Services 2008. Even when you make sure the body size is as small as possible (with no unnecessary extra space along the top, bottom, left, or right side of the body), it's important to calculate the body size plus header plus footer plus the margins and ensure that the calculated height and width do not exceed the report's height and width (shown as the page in the illustration above). This won't matter if users always render reports online, but they'll get extra pages in a PDF document if the report's height and width are smaller than the calculate space. Beginning the Investigation In the situation that I was troubleshooting, I checked the properties: Item Property Value Body Height 6.25in   Width 10.5in Page Header Height 1in Page Footer Height 0.25in Report Left Margin 0.1in   Right Margin 0.1in   Top Margin 0.05in   Bottom Margin 0.05in   Page Size - Height 8.5in   Page Size - Width 11in So I calculated the total width using Body Width + Left Margin + Right Margin and came up with a value of 10.7 inches. And then I calculated the total height using Body Height + Page Header Height + Page Footer Height + Top Margin + Bottom Margin and got 7.6 inches. Well, page sizing couldn't be the reason for the extra page in my report because 10.7 inches is smaller than the report's width of 11 inches and 7.6 inches is smaller than the report's height of 8.5 inches. I had to look elsewhere to find the culprit. Conducting the Third Degree My next thought was to focus on the rendering size of the items in the report. I've adapted my problem to use the Adventure Works database. At the top of the report are two charts, and then below each chart is a rectangle that contains a table. In the real-life scenario, there were some graphics present as a background for the tables which fit within the rectangles that were about 3 inches high so the visual space of the rectangles matched the visual space of the charts - also about 3 inches high. But there was also a huge amount of white space at the bottom of the page, and as I mentioned at the beginning of this post, a second page which was blank except for the footer that appeared at the bottom. Placing a textbox beneath the rectangles to see if they would appear on the first page resulted the textbox's appearance on the second page. For some reason, the rectangles wanted a buffer zone beneath them. What's going on? Taking the Suspect into Custody My next step was to see what was really going on with the rectangle. The graphic appeared to be correctly sized, but the behavior in the report indicated the rectangle was growing. So I added a border to the rectangle to see what it was doing. When I added borders, I could see that the size of each rectangle was growing to accommodate the table it contains. The rectangle on the right is slightly larger than the one on the left because the table on the right contains an extra row. The rectangle is trying to preserve the whitespace that appears in the layout, as shown below. Closing the Case Now that I knew what the problem was, what could I do about it? Because of the graphic in the rectangle (not shown), I couldn't eliminate the use of the rectangles and just show the tables. But fortunately, there is a report property that comes to the rescue: ConsumeContainerWhitespace (accessible only in the Properties window). I set the value of this property to True. Problem solved. Now the rectangles remain fixed at the configured size and don't grow vertically to preserve the whitespace. Case closed.

    Read the article

  • C#/.NET Little Wonders &ndash; Cross Calling Constructors

    - by James Michael Hare
    Just a small post today, it’s the final iteration before our release and things are crazy here!  This is another little tidbit that I love using, and it should be fairly common knowledge, yet I’ve noticed many times that less experienced developers tend to have redundant constructor code when they overload their constructors. The Problem – repetitive code is less maintainable Let’s say you were designing a messaging system, and so you want to create a class to represent the properties for a Receiver, so perhaps you design a ReceiverProperties class to represent this collection of properties. Perhaps, you decide to make ReceiverProperties immutable, and so you have several constructors that you can use for alternative construction: 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: { 13: ReceiverType = receiverType; 14: Source = source; 15: IsDurable = isDurable; 16: IsBuffered = true; 17: } 18:  19: // Constructs a set of receiver properties with buffering on and durability off. 20: public ReceiverProperties(ReceiverType receiverType, string source) 21: { 22: ReceiverType = receiverType; 23: Source = source; 24: IsDurable = false; 25: IsBuffered = true; 26: } Note: keep in mind this is just a simple example for illustration, and in same cases default parameters can also help clean this up, but they have issues of their own. While strictly speaking, there is nothing wrong with this code, logically, it suffers from maintainability flaws.  Consider what happens if you add a new property to the class?  You have to remember to guarantee that it is set appropriately in every constructor call. This can cause subtle bugs and becomes even uglier when the constructors do more complex logic, error handling, or there are numerous potential overloads (especially if you can’t easily see them all on one screen’s height). The Solution – cross-calling constructors I’d wager nearly everyone knows how to call your base class’s constructor, but you can also cross-call to one of the constructors in the same class by using the this keyword in the same way you use base to call a base constructor. 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: : this(receiverType, source, isDurable, true) 13: { 14: } 15:  16: // Constructs a set of receiver properties with buffering on and durability off. 17: public ReceiverProperties(ReceiverType receiverType, string source) 18: : this(receiverType, source, false, true) 19: { 20: } Notice, there is much less code.  In addition, the code you have has no repetitive logic.  You can define the main constructor that takes all arguments, and the remaining constructors with defaults simply cross-call the main constructor, passing in the defaults. Yes, in some cases default parameters can ease some of this for you, but default parameters only work for compile-time constants (null, string and number literals).  For example, if you were creating a TradingDataAdapter that relied on an implementation of ITradingDao which is the data access object to retreive records from the database, you might want two constructors: one that takes an ITradingDao reference, and a default constructor which constructs a specific ITradingDao for ease of use: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: { 10: _tradingDao = new SqlTradingDao(); 11:  12: // same constructor logic as above 13: }   As you can see, this isn’t something we can solve with a default parameter, but we could with cross-calling constructors: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: : this(new SqlTradingDao()) 10: { 11: }   So in cases like this where you have constructors with non compiler-time constant defaults, default parameters can’t help you and cross-calling constructors is one of your best options. Summary When you have just one constructor doing the job of initializing the class, you can consolidate all your logic and error-handling in one place, thus ensuring that your behavior will be consistent across the constructor calls. This makes the code more maintainable and even easier to read.  There will be some cases where cross-calling constructors may be sub-optimal or not possible (if, for example, the overloaded constructors take completely different types and are not just “defaulting” behaviors). You can also use default parameters, of course, but default parameter behavior in a class hierarchy can be problematic (default values are not inherited and in fact can differ) so sometimes multiple constructors are actually preferable. Regardless of why you may need to have multiple constructors, consider cross-calling where you can to reduce redundant logic and clean up the code.   Technorati Tags: C#,.NET,Little Wonders

    Read the article

  • To Bit or Not To Bit

    - by Johnm
    'Twas a long day of troubleshooting and firefighting and now, with most of the office vacant, you face a blank scripting window to create a new table in his database. Many questions circle your mind like dirty water gurgling down the bathtub drain: "How normalized should this table be?", "Should I use an identity column?", "NVarchar or Varchar?", "Should this column be NULLABLE?", "I wonder what apple blue cheese bacon cheesecake tastes like?" Well, there are times when the mind goes it's own direction. A Bit About Bit At some point during your table creation efforts you will encounter the decision of whether to use the bit data type for a column. The bit data type is an integer data type that recognizes only the values of 1, 0 and NULL as valid. This data type is often utilized to store yes/no or true/false values. An example of its use would be a column called [IsGasoline] which would be intended to contain the value of 1 if the row's subject (a car) had a gasoline engine and a 0 if the subject did not have a gasoline engine. The bit data type can even be found in some of the system tables of SQL Server. For example, the sysssispackages table in the msdb database which contains SQL Server Integration Services Package information for the packages stored in SQL Server. This table contains a column called [IsEncrypted]. A value of 1 indicates that the package has been encrypted while the value of 0 indicates that it is not. I have learned that the most effective way to disperse the crowd that surrounds the office coffee machine is to engage into SQL Server debates. The bit data type has been one of the most reoccurring, as well as the most enjoyable, of these topics. It contains a practical side and a philosophical side. Practical Consideration This data type certainly has its place and is a valuable option for database design; but it is often used in situations where the answer is really not a pure true/false response. In addition, true/false values are not very informative or scalable. Let's use the previously noted [IsGasoline] column for illustration. While on the surface it appears to be a rather simple question when evaluating a car: "Does the car have a gasoline engine?" If the person entering data is entering a row for a Jeep Liberty, the response would be a 1 since it has a gasoline engine. If the person is entering data is entering a row for a Chevrolet Volt, the response would be a 0 since it is an electric engine. What happens when a person is entering a row for the gasoline/electric hybrid Toyota Prius? Would one person's conclusion be consistent with another person's conclusion? The argument could be made that the current intent for the database is to be used only for pure gasoline and pure electric engines; but this is where the scalability issue comes into play. With the use of a bit data type a database modification and data conversion would be required if the business decided to take on hybrid engines. Whereas, alternatively, if the int data type were used as a foreign key to a reference table containing the engine type options, the change to include the hybrid option would only require an entry into the reference table. Philosophical Consideration Since the bit data type is often used for true/false or yes/no data (also called Boolean) it presents a philosophical conundrum of what to do about the allowance of the NULL value. The inclusion of NULL in a true/false or yes/no response simply violates the logical principle of bivalence which states that "every proposition is either true or false". If NULL is not true, then it must be false. The mathematical laws of Boolean logic support this concept by stating that the only valid values of this scenario are 1 and 0. There is another way to look at this conundrum: NULL is also considered to be the absence of a response. In other words, it is the equivalent to "undecided". Anyone who watches the news can tell you that polls always include an "undecided" option. This could be considered a valid option in the world of yes/no/dunno. Through out all of these considerations I have discovered one absolute certainty: When you have found a person, or group of persons, who are willing to entertain a philosophical debate of the bit data type, you have found some true friends.

    Read the article

  • Understanding the 'High Performance' meaning in Extreme Transaction Processing

    - by kyap
    Despite my previous blogs entries on SOA/BPM and Identity Management, the domain where I'm the most passionated is definitely the Extreme Transaction Processing, commonly called XTP.I came across XTP back to 2007 while I was still FMW Product Manager in EMEA. At that time Oracle acquired a company called Tangosol, which owned an unique product called Coherence that we renamed to Oracle Coherence. Beside this innovative renaming of the product, to be honest, I didn't know much about it, except being a "distributed in-memory cache for Extreme Transaction Processing"... not very helpful still.In general when people doesn't fully understand a technology or a concept, they tend to find some shortcuts, either correct or not, to justify their lack-of understanding... and of course I was part of this category of individuals. And the shortcut was "Oracle Coherence Cache helps to improve Performance". Excellent marketing slogan... but not very meaningful still. By chance I was able to get away quickly from that group in July 2007* at Thames Valley Park (UK), after I attended one of the most interesting workshops, in my 10 years career in Oracle, delivered by Brian Oliver. The biggest mistake I made was to assume that performance improvement with Coherence was related to the response time. Which can be considered as legitimus at that time, because after-all caches help to reduce latency on cached data access, hence reduce the response-time. But like all caches, you need to define caching and expiration policies, thinking about the cache-missed strategy, and most of the time you have to re-write partially your application in order to work with the cache. At a result, the expected benefit vanishes... so, not very useful then?The key mistake I made was my perception or obsession on how performance improvement should be driven, but I strongly believe this is still a common problem to most of the developers. In fact we all know the that the performance of a system is generally presented by the Capacity (or Throughput), with the 2 important dimensions Speed (response-time) and Volume (load) :Capacity (TPS) = Volume (T) / Speed (S)To increase the Capacity, we can either reduce the Speed(in terms of response-time), or to increase the Volume. However we tend to only focus on reducing the Speed dimension, perhaps it is more concrete and tangible to measure, and nicer to present to our management because there's a direct impact onto the end-users experience. On the other hand, we assume the Volume can be addressed by the underlying hardware or software stack, so if we need more capacity (scale out), we just add more hardware or software. Unfortunately, the reality proves that IT is never as ideal as we assume...The challenge with Speed improvement approach is that it is generally difficult and costly to make things already fast... faster. And by adding Coherence will not necessarily help either. Even though we manage to do so, the Capacity can not increase forever because... the Speed can be influenced by the Volume. For all system, we always have a performance illustration as follow: In all traditional system, the increase of Volume (Transaction) will also increase the Speed (Response-Time) as some point. The reason is simple: most of the time the Application logics were not designed to scale. As an example, if you have a while-loop in your application, it is natural to conceive that parsing 200 entries will require double execution-time compared to 100 entries. If you need to "Speed-up" the execution, you can only upgrade your hardware (scale-up) with faster CPU and/or network to reduce network latency. It is technically limited and economically inefficient. And this is exactly where XTP and Coherence kick in. The primary objective of XTP is about designing applications which can scale-out for increasing the Volume, by applying coding techniques to keep the execution-time as constant as possible, independently of the number of runtime data being manipulated. It is actually not just about having an application running as fast as possible, but about having a much more predictable system, with constant response-time and linearly scale, so we can easily increase throughput by adding more hardwares in parallel. It is in general combined with the Low Latency Programming model, where we tried to optimize the network usage as much as possible, either from the programmatic angle (less network-hoops to complete a task), and/or from a hardware angle (faster network equipments). In this picture, Oracle Coherence can be considered as software-level XTP enabler, via the Distributed-Cache because it can guarantee: - Constant Data Objects access time, independently from the number of Objects and the Coherence Cluster size - Data Objects Distribution by Affinity for in-memory data grouping - In-place Data Processing for parallel executionTo summarize, Oracle Coherence is indeed useful to improve your application performance, just not in the way we commonly think. It's not about the Speed itself, but about the overall Capacity with Extreme Load while keeping consistant Speed. In the future I will keep adding new blog entries around this topic, with some sample codes experiences sharing that I capture in the last few years. In the meanwhile if you want to know more how Oracle Coherence, I strongly suggest you to start with checking how our worldwide customers are using Oracle Coherence first, then you can start playing with the product through our tutorial.Have Fun !

    Read the article

  • How can I reliably check client identity whilst making DCOM calls to a C# .Net 3.5 Server?

    - by pionium
    Hi, I have an old Win32 C++ DCOM Server that I am rewriting to use C# .Net 3.5. The client applications sit on remote XP machines and are also written in C++. These clients must remain unchanged, hence I must implement the interfaces on new .Net objects. This has been done, and is working successfully regarding the implementation of the interfaces, and all of the calls are correctly being made from the old clients to the new .Net objects. However, I'm having problems obtaining the identity of the calling user from the DCOM Client. In order to try to identify the user who instigated the DCOM call, I have the following code on the server... [DllImport("ole32.dll")] static extern int CoImpersonateClient(); [DllImport("ole32.dll")] static extern int CoRevertToSelf(); private string CallingUser { get { string sCallingUser = null; if (CoImpersonateClient() == 0) { WindowsPrincipal wp = System.Threading.Thread.CurrentPrincipal as WindowsPrincipal; if (wp != null) { WindowsIdentity wi = wp.Identity as WindowsIdentity; if (wi != null && !string.IsNullOrEmpty(wi.Name)) sCallingUser = wi.Name; } if (CoRevertToSelf() != 0) ReportWin32Error("CoRevertToSelf"); } else ReportWin32Error("CoImpersonateClient"); return sCallingUser; } } private static void ReportWin32Error(string sFailingCall) { Win32Exception ex = new Win32Exception(); Logger.Write("Call to " + sFailingCall + " FAILED: " + ex.Message); } When I get the CallingUser property, the value returned the first few times is correct and the correct user name is identified, however, after 3 or 4 different users have successfully made calls (and it varies, so I can't be more specific), further users seem to be identified as users who had made earlier calls. What I have noticed is that the first few users have their DCOM calls handled on their own thread (ie all calls from a particular client are handled by a single unique thread), and then subsequent users are being handled by the same threads as the earlier users, and after the call to CoImpersonateClient(), the CurrentPrincipal matches that of the initial user of that thread. To Illustrate: User Tom makes DCOM calls which are handled by thread 1 (CurrentPrincipal correctly identifies Tom) User Dick makes DCOM calls which are handled by thread 2 (CurrentPrincipal correctly identifies Dick) User Harry makes DCOM calls which are handled by thread 3 (CurrentPrincipal correctly identifies Harry) User Bob makes DCOM calls which are handled by thread 3 (CurrentPrincipal incorrectly identifies him as Harry) As you can see in this illustration, calls from clients Harry and Bob are being handled on thread 3, and the server is identifying the calling client as Harry. Is there something that I am doing wrong? Are there any caveats or restrictions on using Impersonations in this way? Is there a better or different way that I can RELIABLY achieve what I am trying to do? All help would be greatly appreciated. Regards Andrew

    Read the article

  • Objective-c - How to serialize audio file into small packets that can be played?

    - by vfn
    Hi there, So, I would like to get a sound file and convert it in packets, and send it to another computer. I would like that the other computer be able to play the packets as they arrive. I am using AVAudioPlayer to try to play this packets, but I couldn't find a proper way to serialize the data on the peer1 that the peer2 can play. The scenario is, peer1 has a audio file, split the audio file in many small packets, put them on a NSData and send them to peer2. Peer 2 receive the packets and play one by one, as they arrive. Does anyone have know how to do this? or even if it is possible? EDIT: Here it is some piece of code to illustrate what I would like to achieve. // This code is part of the peer1, the one who sends the data - (void)sendData { int packetId = 0; NSString *soundFilePath = [[NSBundle mainBundle] pathForResource:@"myAudioFile" ofType:@"wav"]; NSData *soundData = [[NSData alloc] initWithContentsOfFile:soundFilePath]; NSMutableArray *arraySoundData = [[NSMutableArray alloc] init]; // Spliting the audio in 2 pieces // This is only an illustration // The idea is to split the data into multiple pieces // dependin on the size of the file to be sent NSRange soundRange; soundRange.length = [soundData length]/2; soundRange.location = 0; [arraySoundData addObject:[soundData subdataWithRange:soundRange]]; soundRange.length = [soundData length]/2; soundRange.location = [soundData length]/2; [arraySoundData addObject:[soundData subdataWithRange:soundRange]]; for (int i=0; i // This is the code on peer2 that would receive an play the piece of audio on each packet - (void) receiveData:(NSData *)data { NSKeyedUnarchiver* unarchiver = [[NSKeyedUnarchiver alloc] initForReadingWithData:data]; if ([unarchiver containsValueForKey:PACKET_ID]) NSLog(@"DECODED PACKET_ID: %i", [unarchiver decodeIntForKey:PACKET_ID]); if ([unarchiver containsValueForKey:PACKET_SOUND_DATA]) { NSLog(@"DECODED sound"); NSData *sound = (NSData *)[unarchiver decodeObjectForKey:PACKET_SOUND_DATA]; if (sound == nil) { NSLog(@"sound is nil!"); } else { NSLog(@"sound is not nil!"); AVAudioPlayer *audioPlayer = [AVAudioPlayer alloc]; if ([audioPlayer initWithData:sound error:nil]) { [audioPlayer prepareToPlay]; [audioPlayer play]; } else { [audioPlayer release]; NSLog(@"Player couldn't load data"); } } } [unarchiver release]; } So, here is what I am trying to achieve...so, what I really need to know is how to create the packets, so peer2 can play the audio. It would be a kind of streaming. Yes, for now I am not worried about the order that the packet are received or played...I only need to get the sound sliced and them be able to play each piece, each slice, without need to wait for the whole file be received by peer2. Thanks!

    Read the article

  • Calculating multiple column average in SQLite3

    - by Benjamin Oakes
    I need to average some values in a row-wise fashion, rather than a column-wise fashion. (If I were doing a column-wise average, I could just use avg()). My specific application of this requires me ignore NULLs in averaging. It's pretty straightforward logic, but seems awfully difficult to do in SQL. Is there an elegant way of doing my calculation? I'm using SQLite3, for what it's worth. Details If you need more details, here's an illustration: I have a a table with a survey: | q1 | q2 | q3 | ... | q144 | |----|-------|-------|-----|------| | 1 | 3 | 7 | ... | 2 | | 4 | 2 | NULL | ... | 1 | | 5 | NULL | 2 | ... | 3 | (Those are just some example values and simple column names. The valid values are 1 through 7 and NULL.) I need to calculate some averages like so: q7 + q33 + q38 + q40 + ... + q119 / 11 as domain_score_1 q10 + q11 + q34 + q35 + ... + q140 / 13 as domain_score_2 ... q2 + q5 + q13 + q25 + ... + q122 / 12 as domain_score_14 ...but i need to pull out the nulls and average based on the non-nulls. So, for domain_score_1 (which has 11 items), I would need to do: Input: 3, 5, NULL, 7, 2, NULL, 3, 1, 5, NULL, 1 (3 + 5 + 7 + 2 + 3 + 1 + 5 + 1) / (11 - 3) 27 / 8 3.375 A simple algorithm I'm considering is: Input: 3, 5, NULL, 7, 2, NULL, 3, 1, 5, NULL, 1 Coalesce each value to 0 if NULL: 3, 5, 0, 7, 2, 0, 3, 1, 5, 0, 1 Sum: 27 Get the number of non-zeros by converting values 0 to 1 and sum: 3, 5, 0, 7, 2, 0, 3, 1, 5, 0, 1 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1 8 Divide those two numbers 27 / 8 3.375 But that seems like a lot more programming than this should take. Is there an elegant way of doing this that I'm not aware of? Update: Unless I'm misunderstanding something, avg() won't work for this. Example of what I would want to do: select avg(q7, q33, q38, ..., q119) from survey; Output: SQL error near line 3: wrong number of arguments to function avg()

    Read the article

  • NSTimer as a self-targeting ivar.

    - by Matt Wilding
    I have come across an awkward situation where I would like to have a class with an NSTimer instance variable that repeatedly calls a method of the class as long as the class is alive. For illustration purposes, it might look like this: // .h @interface MyClock : NSObject { NSTimer* _myTimer; } - (void)timerTick; @end - // .m @implementation MyClock - (id)init { self = [super init]; if (self) { _myTimer = [[NSTimer scheduledTimerWithTimeInterval:1.0f target:self selector:@selector(timerTick) userInfo:nil repeats:NO] retain]; } return self; } - (void)dealloc { [_myTimer invalidate]; [_myTImer release]; [super dealloc]; } - (void)timerTick { // Do something fantastic. } @end That's what I want. I don't want to to have to expose an interface on my class to start and stop the internal timer, I just want it to run while the class exists. Seems simple enough. But the problem is that NSTimer retains its target. That means that as long as that timer is active, it is keeping the class from being dealloc'd by normal memory management methods because the timer has retained it. Manually adjusting the retain count is out of the question. This behavior of NSTimer seems like it would make it difficult to ever have a repeating timer as an ivar, because I can't think of a time when an ivar should retain its owning class. This leaves me with the unpleasant duty of coming up with some method of providing an interface on MyClock that allows users of the class to control when the timer is started and stopped. Besides adding unneeded complexity, this is annoying because having one owner of an instance of the class invalidate the timer could step on the toes of another owner who is counting on it to keep running. I could implement my own pseudo-retain-count-system for keeping the timer running but, ...seriously? This is way to much work for such a simple concept. Any solution I can think of feels hacky. I ended up writing a wrapper for NSTimer that behaves exactly like a normal NSTimer, but doesn't retain its target. I don't like it, and I would appreciate any insight.

    Read the article

  • Is there anything wrong with having a few private methods exposing IQueryable<T> and all public meth

    - by Nate Bross
    I'm wondering if there is a better way to approach this problem. The objective is to reuse code. Let’s say that I have a Linq-To-SQL datacontext and I've written a "repository style" class that wraps up a lot of the methods I need and exposes IQueryables. (so far, no problem). Now, I'm building a service layer to sit on top of this repository, many of the service methods will be 1<-1 with repository methods, but some will not. I think a code sample will illustrate this better than words. public class ServiceLayer { MyClassDataContext context; IMyRepository rpo; public ServiceLayer(MyClassDataContext ctx) { context = ctx; rpo = new MyRepository(context); } private IQueryable<MyClass> ReadAllMyClass() { // pretend there is some complex business logic here // and maybe some filtering of the current users access to "all" // that I don't want to repeat in all of the public methods that access // MyClass objects. return rpo.ReadAllMyClass(); } public IEnumerable<MyClass> GetAllMyClass() { // call private IQueryable so we can do attional "in-database" processing return this.ReadAllMyClass(); } public IEnumerable<MyClass> GetActiveMyClass() { // call private IQueryable so we can do attional "in-database" processing // in this case a .Where() clause return this.ReadAllMyClass().Where(mc => mc.IsActive.Equals(true)); } #region "Something my class MAY need to do in the future" private IQueryable<MyOtherTable> ReadAllMyOtherTable() { // there could be additional constrains which define // "all" for the current user return context.MyOtherTable; } public IEnumerable<MyOtherTable> GetAllMyOtherTable() { return this.ReadAllMyOtherTable(); } public IEnumerable<MyOtherTable> GetInactiveOtherTable() { return this.ReadAllMyOtherTable.Where(ot => ot.IsActive.Equals(false)); } #endregion } This particular case is not the best illustration, since I could just call the repository directly in the GetActiveMyClass method, but let’s presume that my private IQueryable does some extra processing and business logic that I don't want to replicate in both of my public methods. Is that a bad way to attack an issue like this? I don't see it being so complex that it really warrants building a third class to sit between the repository and the service class, but I'd like to get your thoughts. For the sake of argument, lets presume two additional things. This service is going to be exposed through WCF and that each of these public IEnumerable methods will be calling a .Select(m => m.ToViewModel()) on each returned collection which will convert it to a POCO for serialization. The service will eventually need to expose some context.SomeOtherTable which wont be wrapped into the repository.

    Read the article

  • Single entity with single view or two views in mvc3 vs2010?

    - by user2905798
    I have the following entity model public class Employee { public int Employee ID{get;set;} public string employeename{get;set;} public datetime employeeDOb{get;set;} public datetime? employeeDateOfJoin{get;set;} public string empFamilyname{get;set;} public datetime empFamilyDob{get;set;} } here I have to design a view for collecting employee information and employee family information. Since I am working on already available data, where in empFamilyDob was not mandatory. But now it is being made mandatory, the previous data doesn't contain EmpFamilyDob. So naturally I have added this new property EmpFamilyDob to the Model and made it required through DataAnnotations. Now there are two set of views to be developed. 1. A view which simply allows to collect the employee information without employee family information. i.e, empFamilyName and EmpFamilyDob.--This view is used by the Hr section to insert empplyee details Since the empFamilyname and EmpFamilyDob being now made mandatory, some other section will edit the data and update the EmpFamilyName and EmpFamilyDob as and when the information about employee family details are received. I have action controller for CreateNew and Edit Which is being generated by using the default model. There are two user actions being performed. 1.When the user clicks the Create new -- he will be able to update only the Employee information 2.As and when the other section receives the employee family details they update the familyname and family date of birth. i.e, EmployeeFamilyname and EmployeFamilyDob. While creating new record the uses should be able to update employee information only and while editing the information he should be able to update the employeefamily information. Since I have a single view with most of these fields as required and not allowing null , How can I achieve this in a sincle view? I have recorrected the model like this public class Employee { public int Employee ID{get;set;} public string employeename{get;set;} public datetime employeeDOb{get;set;} public datetime? employeeDateOfJoin{get;set;} public string empFamilyname{get;set;} public datetime? empFamilyDob{get;set;} } Now by default I hope the createnew action would insert null value for empFamilyname(string datatype) and empFamilyDob . In the Edit action the user should be made to enter empFamilyname and empFamilyDob(mandatory). As there is every chance that the user might edit other information about the employee(like employeeDob) I don't want to go for partial views. Can you help me out with some illustration. Thanks in advance

    Read the article

  • Enabling Kerberos Authentication for Reporting Services

    - by robcarrol
    Recently, I’ve helped several customers with Kerberos authentication problems with Reporting Services and Analysis Services, so I’ve decided to write this blog post and pull together some useful resources in one place (there are 2 whitepapers in particular that I found invaluable configuring Kerberos authentication, and these can be found in the references section at the bottom of this post). In most of these cases, the problem has manifested itself with the Login failed for User ‘NT Authority\Anonymous’ (“double-hop”) error. By default, Reporting Services uses Windows Integrated Authentication, which includes the Kerberos and NTLM protocols for network authentication. Additionally, Windows Integrated Authentication includes the negotiate security header, which prompts the client to select Kerberos or NTLM for authentication. The client can access reports which have the appropriate permissions by using Kerberos for authentication. Servers that use Kerberos authentication can impersonate those clients and use their security context to access network resources. You can configure Reporting Services to use both Kerberos and NTLM authentication; however this may lead to a failure to authenticate. With negotiate, if Kerberos cannot be used, the authentication method will default to NTLM. When negotiate is enabled, the Kerberos protocol is always used except when: Clients/servers that are involved in the authentication process cannot use Kerberos. The client does not provide the information necessary to use Kerberos. An in-depth discussion of Kerberos authentication is beyond the scope of this post, however when users execute reports that are configured to use Windows Integrated Authentication, their logon credentials are passed from the report server to the server hosting the data source. Delegation needs to be set on the report server and Service Principle Names (SPNs) set for the relevant services. When a user processes a report, the request must go through a Web server on its way to a database server for processing. Kerberos authentication enables the Web server to request a service ticket from the domain controller; impersonate the client when passing the request to the database server; and then restrict the request based on the user’s permissions. Each time a server is required to pass the request to another server, the same process must be used. Kerberos authentication is supported in both native and SharePoint integrated mode, but I’ll focus on native mode for the purpose of this post (I’ll explain configuring SharePoint integrated mode and Kerberos authentication in a future post). Configuring Kerberos avoids the authentication failures due to double-hop issues. These double-hop errors occur when a users windows domain credentials can’t be passed to another server to complete the user’s request. In the case of my customers, users were executing Reporting Services reports that were configured to query Analysis Services cubes on a separate machine using Windows Integrated security. The double-hop issue occurs as NTLM credentials are valid for only one network hop, subsequent hops result in anonymous authentication. The client attempts to connect to the report server by making a request from a browser (or some other application), and the connection process begins with authentication. With NTLM authentication, client credentials are presented to Computer 2. However Computer 2 can’t use the same credentials to access Computer 3 (so we get the Anonymous login error). To access Computer 3 it is necessary to configure the connection string with stored credentials, which is what a number of customers I have worked with have done to workaround the double-hop authentication error. However, to get the benefits of Windows Integrated security, a better solution is to enable Kerberos authentication. Again, the connection process begins with authentication. With Kerberos authentication, the client and the server must demonstrate to one another that they are genuine, at which point authentication is successful and a secure client/server session is established. In the illustration above, the tiers represent the following: Client tier (computer 1): The client computer from which an application makes a request. Middle tier (computer 2): The Web server or farm where the client’s request is directed. Both the SharePoint and Reporting Services server(s) comprise the middle tier (but we’re only concentrating on native deployments just now). Back end tier (computer 3): The Database/Analysis Services server/Cluster where the requested data is stored. In order to enable Kerberos authentication for Reporting Services it’s necessary to configure the relevant SPNs, configure trust for delegation for server accounts, configure Kerberos with full delegation and configure the authentication types for Reporting Services. Service Principle Names (SPNs) are unique identifiers for services and identify the account’s type of service. If an SPN is not configured for a service, a client account will be unable to authenticate to the servers using Kerberos. You need to be a domain administrator to add an SPN, which can be added using the SetSPN utility. For Reporting Services in native mode, the following SPNs need to be registered --SQL Server Service SETSPN -S mssqlsvc/servername:1433 Domain\SQL For named instances, or if the default instance is running under a different port, then the specific port number should be used. --Reporting Services Service SETSPN -S http/servername Domain\SSRS SETSPN -S http/servername.domain.com Domain\SSRS The SPN should be set for the NETBIOS name of the server and the FQDN. If you access the reports using a host header or DNS alias, then that should also be registered SETSPN -S http/www.reports.com Domain\SSRS --Analysis Services Service SETSPN -S msolapsvc.3/servername Domain\SSAS Next, you need to configure trust for delegation, which refers to enabling a computer to impersonate an authenticated user to services on another computer: Location Description Client 1. The requesting application must support the Kerberos authentication protocol. 2. The user account making the request must be configured on the domain controller. Confirm that the following option is not selected: Account is sensitive and cannot be delegated. Servers 1. The service accounts must be trusted for delegation on the domain controller. 2. The service accounts must have SPNs registered on the domain controller. If the service account is a domain user account, the domain administrator must register the SPNs. In Active Directory Users and Computers, verify that the domain user accounts used to access reports have been configured for delegation (the ‘Account is sensitive and cannot be delegated’ option should not be selected): We then need to configure the Reporting Services service account and computer to use Kerberos with full delegation:   We also need to do the same for the SQL Server or Analysis Services service accounts and computers (depending on what type of data source you are connecting to in your reports). Finally, and this is the part that sometimes gets over-looked, we need to configure the authentication type correctly for reporting services to use Kerberos authentication. This is configured in the Authentication section of the RSReportServer.config file on the report server. <Authentication> <AuthenticationTypes>           <RSWindowsNegotiate/> </AuthenticationTypes> <EnableAuthPersistence>true</EnableAuthPersistence> </Authentication> This will enable Kerberos authentication for Internet Explorer. For other browsers, see the link below. The report server instance must be restarted for these changes to take effect. Once these changes have been made, all that’s left to do is test to make sure Kerberos authentication is working properly by running a report from report manager that is configured to use Windows Integrated authentication (either connecting to Analysis Services or SQL Server back-end). Resources: Manage Kerberos Authentication Issues in a Reporting Services Environment http://download.microsoft.com/download/B/E/1/BE1AABB3-6ED8-4C3C-AF91-448AB733B1AF/SSRSKerberos.docx Configuring Kerberos Authentication for Microsoft SharePoint 2010 Products http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23176 How to: Configure Windows Authentication in Reporting Services http://msdn.microsoft.com/en-us/library/cc281253.aspx RSReportServer Configuration File http://msdn.microsoft.com/en-us/library/ms157273.aspx#Authentication Planning for Browser Support http://msdn.microsoft.com/en-us/library/ms156511.aspx

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Complex type support in process flow &ndash; XMLTYPE

    - by shawn
        Before OWB 11.2 release, there are only 5 simple data types supported in process flow: DATE, BOOLEAN, INTEGER, FLOAT and STRING. A new complex data type – XMLTYPE is added in 11.2, in order to support complex data being passed between the process flow activities. In this article we will give a simple example to illustrate the usage of the new type and some related editors.     Suppose there is a bookstore that uses XML format orders as shown below (we use the simplest form for the illustration purpose), then we can create a process flow to handle the order, take the order as the input, then extract necessary information, and generate a confirmation email to the customer automatically. <order id=’0001’>     <customer>         <name>Tom</name>         <email>[email protected]</email>     </customer>     <book id=’Java_001’>         <quantity>3</quantity>     </book> </order>     Considering a simple user case here: we use an input parameter/variable with XMLTYPE to hold the XML content of the order; then we can use an Assign activity to retrieve the email info from the order; after that, we can create an email activity to send the email (Other activities might be added in practical case, but will not be described here). 1) Set XML content value     For testing purpose, we will create a variable to hold the sample order, and then this will be used among the process flow activities. When the variable is of XMLTYPE and the “Literal” value is set the true, the advance editor will be enabled.     Click the “Advance Editor” shown as above, a simple xml editor will popup. The editor has basic features like syntax highlight and check as shown below:     We can also do the basic validation or validation against schema with the editor by selecting the normalized schema. With this, it will be easier to provide the value for XMLTYPE variables. 2) Extract information from XML content     After setting the value, we need to extract the email information with the Assign activity. In process flow, an enhanced expression builder is used to help users construct the XPath for extracting values from XML content. When the variable’s literal value is set the false, the advance editor is enabled.     Click the button, the advance editor will popup, as shown below:     The editor is based on the expression builder (which is often used in mapping etc), an XPath lib panel is appended which provides some help information on how to write the XPath. The expression used here is: “XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/email/text()').getStringVal()”, which uses ‘/order/customer/email/text()’ as the XPath to extract the email info from the XML document.     A variable called “EMAIL_ADDR” is created with String data type to hold the value extracted.     Then we bind the “VARIABLE” parameter of Assign activity to “EMAIL_ADDR” variable, which means the value of the “EMAIL_ADDR” activity will be set to the result of the “VALUE” parameter of Assign activity. 3) Use the extracted information in Email activity     We bind the “TO_ADDRESS” parameter of the email activity to the “EMAIL_ADDR” variable created in above step.     We can also extract other information from the xml order directly through the expression, for example, we can set the “MESSAGE_BODY” with value “'Dear '||XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/name/text()').getStringVal()||chr(13)||chr(10)||'   You have ordered '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/quantity/text()').getStringVal()||' '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/@id').getStringVal()”. This expression will extract the customer name, the quantity and the book id from the order to compose the message body.     To make the email activity work, we need provide some other necessary information, Such as “SMTP_SERVER” (which is the SMTP server used to send the emails, like “mail.bookstore.com”. The default PORT number is set to 25. You need to change the value accordingly), “FROM_ADDRESS” and “SUBJECT”. Then the process flow is ready to go.     After deploying the process flow package, we can simply run the process flow to check if the result is as expected (An email will be sent to the specified email address with proper subject and message body).     Note: In oracle 11g, there is an enhanced security feature - ACL (Access Control List), which restrict the network access within db, so we need to edit the list to allow UTL_SMTP work if you are using oracle 11g. Refer to chapter “Access Control Lists for UTL_TCP/HTTP/SMTP” and “Managing Fine-Grained Access to External Network Services” for more details.       In previous releases, XMLTYPE already exists in other OWB objects, like mapping/transformation etc. When the mapping/transformation is dragged into a process flow, the parameters with XMLTYPE are mapped to STRING. Now with the XMLTYPE support in process flow, the XMLTYPE will map to XMLTYPE in a more natural way, and we can leverage the new data type for the design.

    Read the article

  • Finding the normal of OBB face with an OBB penetrating

    - by Milo
    Below is an illustration: I have an OBB in an OBB (see below for OBB2D code if needed). What I need to determine is, what face it is in, and what direction do I point the normal? The goal is to get the OBB out of the OBB so the normal needs to face outward of the OBB. How could I go about: Finding what face the line is penetrating given the 4 corners of the OBB and the class below: if we define dx=x2-x1 and dy=y2-y1, then the normals are (-dy, dx) and (dy, -dx). Which normal points outward of the OBB? Thanks public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • 14+ WordPress Portfolio Themes

    - by Edward
    There are various portfolio themes for WordPress out there, with this collection we are trying to help you choose the best one. These themes can be used to create any type of personal, photography, art or corporate portfolio. Display 3 in 1 Display 3 in 1 – Business & Portfolio WordPress Theme. Features a fantastic 3D Image slideshow that can be controlled from your backend with a custom tool. The Theme has a huge wordpress custom backend (8 additional Admin Pages) that make customization of the Theme easy for those who dont know much about coding or wordpress. Price: $40 View Demo Download DeepFocus Tempting features such as automatic separation of blog and portfolio content by template, publishing of most important information on homepage, styles to choose from and many more such features. It also provides for page templates for blog, portfolio, blog archive, tags etc. It has the best feature that helps you to manage everything from one place. Price: $39 (Package includes more than 55 themes) View Demo Download SimplePress Simple, yet awesome. One of the best portfolio theme. Price: $39 (Package includes more than 55 themes) View Demo Download Graphix Graphix is one of best word press portfolio themes. It is most suited to aspiring designers, developers, artists and photographers who’d like a framework theme, which has a great-looking portfolio with a feature-rich blog. It has theme option page, 5-color style, SEO option, featured content blocks, drop down multi-level menu, social profile link custom widgets, custom post, custom page template etc. Price: $69 Single & $149 Developer Package View Demo Download Bizznizz It boasts of many features such as custom homepage, custom post types, custom widgets, portfolio templates, alternative styles and many more. View Demo Download Showtime Ultimate WordPress Theme for you to create your web portfolio, It has 3 different styles for you to choose from. Price: $40 View Demo Download Montana WP Horizontal Portfolio Theme Montana Theme – WP Horizontal Portfolio Theme, best suited for creative studios to showcase design, photography, illustration, paintings and art. Price: $30 View Demo Download OverALL OverALL Premium WordPress Blog & Portfolio Theme, is low priced & has amazing tons of features. Price: $17 View Demo Download Habitat Habitat – Blog and Portfolio Theme. Unique Portfolio Sorting/Filtering with a custom jQuery script (each entry supports multiple images or a video) Multiple Featured Images for each post to generate individual Slideshows per Post, or the option to directly embed video content from youtube, vimeo, hulu etc. Price: $35 View Demo Download Fresh Folio Fresh Folio from WooThemes, can be used as both portfolio and a premium WordPress theme. The theme is a remix of the Fresh News Theme and Proud Folio Theme which combines all the best elements of the respective blog and portfolio style themes. View Demo Download Fresh Folio Features: Can be used to create an impressive portfolio. 7 diverse theme styles to choose from (default, blue, red, grunge light, grunge floral, antique, blue creamer, nightlife) The template will automatically (visually) separate your blog & portfolio content, making this an amazing theme for aspiring designers, developers, artists, photographers etc. Unique page templates types for the portfolio, blog, blog archives, tags & search results. Integrated Theme Options (for WordPress) to tweak the layout, colour scheme etc. for the theme Optional Automatic Image Resize, which is used to dynamically create the thumbnails and featured images Includes Widget enabled Sidebars. eGallery eGallery is a theme made to transform your wordpress blog into a fully functional online portfolio. Theme is perfectly designed to emphasize the artwork you choose to showcase. The design has been greatly enhanced using javascript, and is easy to implement. Price: $39 (Package includes more than 55 themes) View Demo Download ProudFolio ProudFolio is a portfolio premium WordPress theme from Woo Themes. The theme is for designers, developers, artists and photographers who would like a showcase theme which would depict as a portfolio and also serves a purpose of blog. ProudFolio puts a strong emphasis on the portfolio pieces, allowing for decent-sized thumbnails, huge fullscreen views via Lightbox, and full details on the single page. The theme file also contains a choice of three different background images and color schemes. Price: $70 Single $150 Developer License View Demo Download Features: The template will automatically (visually) separate your blog & portfolio content. An unique homepage layout, which publishes only the most important information; Unique page templates for the portfolio, blog, blog archives, tags & search results. Integrated Theme Options (for WordPress) to tweak the layout, colour scheme etc. for the theme; Built-in video panel, which you can use to publish any web-based Flash videos; Automatic Image Resize, which is used to dynamically create the thumbnails and featured images; Custom Page Templates for Archives, Sitemap & Image Gallery; Built-in Gravatar Support for Authors & Comments; Integrated Banner Management script to display randomized banner ads of your choice site-wide; Pretty drop down navigation everywhere; and Widget Enabled Sidebars. Porftolio WordPress Theme A FREE wordpress theme designed for web portfolios and (for now) just for web portfolios. It is coming with an Administrative Panel from where you can edit the head quote text, you can edit all theme colors, font families, font sizes and you can fill a curriculum vitae and display it into a special page. Theme demo and download can be found here Viz | Biz Viz | Biz is a premium WordPress photo gallery and portfolio theme designed specifically for photographers, graphic designers and web designers who want to display their creative work online, market their services, as well as have a typical text blog, using the power and flexibility of WordPress. It is priced for $79.95. Theme Features: Premium quality portfolio template Custom logo uploader to replace the standard graphic with your own unique look from the WP Dashboard Integrated blog component (front images are custom fields and thumbnails, but you can also have a typical blog) Four tabbed feature areas (About Me, Services, Recent Posts, and Tags) Two home page feature photos (You choose which photos to feature using a WP category) Manage your online portfolio through the WordPress CMS Crop two sizes of your work: One for the front page thumbnails and another full size version and upload to WP Search engine optimized. Related posts:14 WordPress Photo Blog & Portfolio Themes 6 PhotoBlog Portfolio WordPress Themes Professional WordPress Business Themes

    Read the article

  • Partner Blog Series: PwC Perspectives - "Is It Time for an Upgrade?"

    - by Tanu Sood
    Is your organization debating their next step with regard to Identity Management? While all the stakeholders are well aware that the one-size-fits-all doesn’t apply to identity management, just as true is the fact that no two identity management implementations are alike. Oracle’s recent release of Identity Governance Suite 11g Release 2 has innovative features such as a customizable user interface, shopping cart style request catalog and more. However, only a close look at the use cases can help you determine if and when an upgrade to the latest R2 release makes sense for your organization. This post will describe a few of the situations that PwC has helped our clients work through. “Should I be considering an upgrade?” If your organization has an existing identity management implementation, the questions below are a good start to assessing your current solution to see if you need to begin planning for an upgrade: Does the current solution scale and meet your projected identity management needs? Does the current solution have a customer-friendly user interface? Are you completely meeting your compliance objectives? Are you still using spreadsheets? Does the current solution have the features you need? Is your total cost of ownership in line with well-performing similar sized companies in your industry? Can your organization support your existing Identity solution? Is your current product based solution well positioned to support your organization's tactical and strategic direction? Existing Oracle IDM Customers: Several existing Oracle clients are looking to move to R2 in 2013. If your organization is on Sun Identity Manager (SIM) or Oracle Identity Manager (OIM) and if your current assessment suggests that you need to upgrade, you should strongly consider OIM 11gR2. Oracle provides upgrade paths to Oracle Identity Manager 11gR2 from SIM 7.x / 8.x as well as Oracle Identity Manager 10g / 11gR1. The following are some of the considerations for migration: Check the end of product support (for Sun or legacy OIM) schedule There are several new features available in R2 (including common Helpdesk scenarios, profiling of disconnected applications, increased scalability, custom connectors, browser-based UI configurations, portability of configurations during future upgrades, etc) Cost of ownership (for SIM customers)\ Customizations that need to be maintained during the upgrade Time/Cost to migrate now vs. waiting for next version If you are already on an older version of Oracle Identity Manager and actively maintaining your support contract with Oracle, you might be eligible for a free upgrade to OIM 11gR2. Check with your Oracle sales rep for more details. Existing IDM infrastructure in place: In the past year and half, we have seen a surge in IDM upgrades from non-Oracle infrastructure to Oracle. If your organization is looking to improve the end-user experience related to identity management functions, the shopping cart style access request model and browser based personalization features may come in handy. Additionally, organizations that have a large number of applications that include ecommerce, LDAP stores, databases, UNIX systems, mainframes as well as a high frequency of user identity changes and access requests will value the high scalability of the OIM reconciliation and provisioning engine. Furthermore, we have seen our clients like OIM's out of the box (OOB) support for multiple authoritative sources. For organizations looking to integrate applications that do not have an exposed API, the Generic Technology Connector framework supported by OIM will be helpful in quickly generating custom connector using OOB wizard. Similarly, organizations in need of not only flexible on-boarding of disconnected applications but also strict access management to these applications using approval flows will find the flexible disconnected application profiling feature an extremely useful tool that provides a high degree of time savings. Organizations looking to develop custom connectors for home grown or industry specific applications will likewise find that the Identity Connector Framework support in OIM allows them to build and test a custom connector independently before integrating it with OIM. Lastly, most of our clients considering an upgrade to OIM 11gR2 have also expressed interest in the browser based configuration feature that allows an administrator to quickly customize the user interface without adding any custom code. Better yet, code customizations, if any, made to the product are portable across the future upgrades which, is viewed as a big time and money saver by most of our clients. Below are some upgrade methodologies we adopt based on client priorities and the scale of implementation. For illustration purposes, we have assumed that the client is currently on Oracle Waveset (formerly Sun Identity Manager).   Integrated Deployment: The integrated deployment is typically where a client wants to split the implementation to where their current IDM is continuing to handle the front end workflows and OIM takes over the back office operations incrementally. Once all the back office operations are moved completely to OIM, the front end workflows are migrated to OIM. Parallel Deployment: This deployment is typically done where there can be a distinct line drawn between which functionality the platforms are supporting. For example the current IDM implementation is handling the password reset functionality while OIM takes over the access provisioning and RBAC functions. Cutover Deployment: A cutover deployment is typically recommended where a client has smaller less complex implementations and it makes sense to leverage the migration tools to move them over immediately. What does this mean for YOU? There are many variables to consider when making upgrade decisions. For most customers, there is no ‘easy’ button. Organizations looking to upgrade or considering a new vendor should start by doing a mapping of their requirements with product features. The recommended approach is to take stock of both the short term and long term objectives, understand product features, future roadmap, maturity and level of commitment from the R&D and build the implementation plan accordingly. As we said, in the beginning, there is no one-size-fits-all with Identity Management. So, arm yourself with the knowledge, engage in industry discussions, bring in business stakeholders and start building your implementation roadmap. In the next post we will discuss the best practices on R2 implementations. We will be covering the Do's and Don't's and share our thoughts on making implementations successful. Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL). Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Jenny (Xiao) Zhang is a member of the Advisory Security practice within PwC.  She has consulted across multiple industries including financial services, entertainment and retail. Jenny has three years of experience in delivering IT solutions out of which she has been implementing Identity Management solutions for the past one and a half years.

    Read the article

  • Translating Your Customizations

    - by Richard Bingham
    This blog post explains the basics of translating the customizations you can make to Fusion Applications products, with the inclusion of information for both composer-based customizations and the generic design-time customizations done via JDeveloper. Introduction Like most Oracle Applications, Fusion Applications installs on-premise with a US-English base language that is, in Release 7, supported by the option to add up to a total of 22 additional language packs (In Oracle Cloud production environments languages are pre-installed already). As such many organizations offer their users the option of working with their local language, and logically that should also apply for any customizations as well. Composer-based UI Customizations Customizations made in Page Composer take into consideration the session LOCALE, as set in the user preferences screen, during all customization work, and stores the customization in the MDS repository accordingly. As such the actual new or changed values used will only apply for the same language under which the customization was made, and text for any other languages requires a separate upload. See the Resource Bundles section below, which incidentally also applies to custom UI changes done in JDeveloper. You may have noticed this when you select the “Select Text Resource” menu option when editing the text on a page. Using this ensures that the resource bundles are used, whereas if you define a static value in Expression Builder it will never be available for translation. Notice in the screenshot below the “What’s New” custom value I have already defined using the ‘Select Text Resource’ feature is internally using the adfBundle groovy function to pull the custom value for my key (RT_S_1) from the ComposerOverrideBundle. Figure 1 – Page Composer showing the override bundle being used. Business Objects Customizing the Business Objects available in the Applications Composer tool for the CRM products, such as adding additional fields, also operates using the session language. Translating these additional values for these fields into other installed languages requires loading additional resource bundles, again as described below. Reports and Analytics Most customizations to Reports and BI Analytics are just essentially reorganizations and visualizations of existing number and text data from the system, and as such will use the appropriate values based on the users session language. Where a translated value or string exists for that session language, it will be used without the need for additional work. Extending through the addition of brand new reports and analytics requires another method of loading the translated strings, as part of what is known as ‘Localizing’ the BI Catalog and Metadata. This time it is via an export/import of XML data through the BI Administrators console, and is described in the OBIEE Admin Guide. Fusion Applications reports based on BI Publisher are already defined in template-per-locale, and in addition provide an extra process for getting the data for translation and reloading. This again uses the standard resource bundle format. Loading a custom report is illustrated in this video from our YouTube channel which shows the screen for both setting the template local and running an export for translation. Fusion Applications Menus Whilst the seeded Navigator and Global Menu values are fully translated when the additional language is installed, if they are customized then the change or new menu item will apply universally, not currently per language. This is set to change in a future release with the new UI Text Editor feature described below. More on Resource Bundles As mentioned above, to provide translations for most of your customizations you need to add values to a resource bundle. This is an industry open standard (OASIS) format XML file with the extension .xliff, and store translated values for the strings used by ADF at run-time. The general process is that these values are exported from the MDS repository, manually edited, and then imported back in again.This needs to be done by an administrator, via either WLST commands or through Enterprise Manager as per the screenshot below. This is detailed out in the Fusion Applications Extensibility Guide. For SaaS environments the Cloud Operations team can assist. Figure 2 – Enterprise Manager’s MDS export used getting resource bundles for manual translation and re-imported on the same screen. All customized strings are stored in an override bundle (xliff file) for each locale, suffixed with the language initials, with English ones being saved to the default. As such each language bundle can be easily identified and updated. Similarly if you used JDeveloper to create your own applications as extensions to Fusion Applications you would use the native support for resource bundles, and add them into the faces-config.xml file for inclusion in your application. An example is this ADF customization video from our YouTube channel. JDeveloper also supports automatic synchronization between your underlying resource bundles and any translatable strings you add – very handy. For more information see chapters on “Using Automatic Resource Bundle Integration in JDeveloper” and “Manually Defining Resource Bundles and Locales” in the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application Development Framework. FND Messages and Look-ups FND Messages, as defined here, are not used for UI labels (they are known as ‘strings’), but are the responses back to users as a result of an action, such as from a page submit. Each ‘message’ is defined and stored in the related database table (FND_MESSAGES_B), with another (FND_MESSAGES_TL) holding any language-specific values. These come seeded with the additional language installs, however if you customize the messages via the “Manage Messages” task in Functional Setup Manager, or add new ones, then currently (in Release 7) you’ll need to repeat it for each language. Figure 3 – An FND Message defined in an English user session. Similarly Look-ups are stored in a translation table (FND_LOOKUP_VALUES_TL) where appropriate, and can be customized by setting the users session language and making the change  in the Setup and Maintenance task entitled “Manage [Standard|Common] Look-ups”. Online Help Yes, in fact all the seeded help is applied as part of each language pack install as part of the post-install provisioning process. If you are editing or adding custom online help then the Create Help screen provides a drop-down of which language your help customization will apply to. This is shown in the video below from our YouTube channel, and obviously you’ll need to it for each language in use. What is Coming for Translations? Currently planned for Release 8 is something called the User Interface (UI) Text Editor. This tool will allow the editing of all the text shown on the pages and forms of Fusion Application. This will provide a search based on a particular term or word, say “Worker”, and will allow it to be adjusted, say to “Employee”, which then updates all the Resource Bundles that contain it. In the case of multi-language environments, it will use the users session language (locale) to know which Resource Bundles to apply the change to. This capability will also support customization sandboxes, to help ensure changes can be tested and approved.  It is also interesting to note that the design currently allows any page-specific customizations done using Page Composer or Application Composer to over-write the global changes done via the UI Text Editor, allowing for special context-sensitive values to still be used. Further Reading and Resources The following short list provides the mains resources for digging into more detail on translation support for both Composer and JDeveloper customization projects. There is a dedicated chapter entitled “Translating Custom Text” in the Fusion Applications Extensibility Guide. This has good examples and steps for many tasks, especially administering resource bundles. Using localization formatting (numbers, dates etc) for design-time changes is well documented in the Fusion Applications Developer Guide. For more guidelines on general design-time globalization, see either the ‘Internationalizing and Localizing Pages’ chapter in the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition) or the general Oracle Database Globalization Support Guide. The Oracle Architecture ‘A-Team’ provided a recent post on customizing the user session timeout popup, using design-time changes to resource bundles. It has detailed step-by-step examples which can be a useful illustration.

    Read the article

< Previous Page | 3 4 5 6 7 8  | Next Page >