Search Results

Search found 16132 results on 646 pages for 'john mark high'.

Page 76/646 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • How to convert a DataTable to a string in C#?

    - by Mark Allison
    Hi there, I'm using Visual Studio 2005 and have a DataTable with two columns and some rows that I want to output to the console. I hoped there would be something like: DataTable results = MyMethod.GetResults(); Console.WriteLine (results.ToString()); What's the best way (i.e. least amount of coding from me) to convert a simple DataTable to a string? Thanks, Mark.

    Read the article

  • Downloading a web page and all of its resource files in Python

    - by Mark
    I want to be able to download a page and all of its associated resources (images, style sheets, script files, etc) using Python. I am (somewhat) familiar with urllib2 and know how to download individual urls, but before I go and start hacking at BeautifulSoup + urllib2 I wanted to be sure that there wasn't already a Python equivalent to "wget --page-requisites http://www.google.com". Specifically I am interested in gathering statistical information about how long it takes to download an entire web page, including all resources. Thanks Mark

    Read the article

  • JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue

    - by John-Brown.Evans
    JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue ol{margin:0;padding:0} .c11_4{vertical-align:top;width:129.8pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c9_4{vertical-align:top;width:207pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt}.c14{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c17_4{vertical-align:top;width:129.8pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c7_4{vertical-align:top;width:130pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c19_4{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c22_4{background-color:#ffffff} .c20_4{list-style-type:disc;margin:0;padding:0} .c6_4{font-size:8pt;font-family:"Courier New"} .c24_4{color:inherit;text-decoration:inherit} .c23_4{color:#1155cc;text-decoration:underline} .c0_4{height:11pt;direction:ltr} .c10_4{font-size:10pt;font-family:"Courier New"} .c3_4{padding-left:0pt;margin-left:36pt} .c18_4{font-size:8pt} .c8_4{text-align:center} .c12_4{background-color:#ffff00} .c2_4{font-weight:bold} .c21_4{background-color:#00ff00} .c4_4{line-height:1.0} .c1_4{direction:ltr} .c15_4{background-color:#f3f3f3} .c13_4{font-family:"Courier New"} .c5_4{font-style:italic} .c16_4{border-collapse:collapse} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue In this example we will create a BPEL process which will write (enqueue) a message to a JMS queue using a JMS adapter. The JMS adapter will enqueue the full XML payload to the queue. This sample will use the following WebLogic Server objects. The first two, the Connection Factory and JMS Queue, were created as part of the first blog post in this series, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g. If you haven't created those objects yet, please see that post for details on how to do so. The Connection Pool will be created as part of this example. Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue 1. Verify Connection Factory and JMS Queue As mentioned above, this example uses a WLS Connection Factory called TestConnectionFactory and a JMS queue TestJMSQueue. As these are prerequisites for this example, let us verify they exist. Log in to the WebLogic Server Administration Console. Select Services > JMS Modules > TestJMSModule You should see the following objects: If not, or if the TestJMSModule is missing, please see the abovementioned article and create these objects before continuing. 2. Create a JMS Adapter Connection Pool in WebLogic Server The BPEL process we are about to create uses a JMS adapter to write to the JMS queue. The JMS adapter is deployed to the WebLogic server and needs to be configured to include a connection pool which references the connection factory associated with the JMS queue. In the WebLogic Server Console Go to Deployments > Next and select (click on) the JmsAdapter Select Configuration > Outbound Connection Pools and expand oracle.tip.adapter.jms.IJmsConnectionFactory. This will display the list of connections configured for this adapter. For example, eis/aqjms/Queue, eis/aqjms/Topic etc. These JNDI names are actually quite confusing. We are expecting to configure a connection pool here, but the names refer to queues and topics. One would expect these to be called *ConnectionPool or *_CF or similar, but to conform to this nomenclature, we will call our entry eis/wls/TestQueue . This JNDI name is also the name we will use later, when creating a BPEL process to access this JMS queue! Select New, check the oracle.tip.adapter.jms.IJmsConnectionFactory check box and Next. Enter JNDI Name: eis/wls/TestQueue for the connection instance, then press Finish. Expand oracle.tip.adapter.jms.IJmsConnectionFactory again and select (click on) eis/wls/TestQueue The ConnectionFactoryLocation must point to the JNDI name of the connection factory associated with the JMS queue you will be writing to. In our example, this is the connection factory called TestConnectionFactory, with the JNDI name jms/TestConnectionFactory.( As a reminder, this connection factory is contained in the JMS Module called TestJMSModule, under Services > Messaging > JMS Modules > TestJMSModule which we verified at the beginning of this document. )Enter jms/TestConnectionFactory  into the Property Value field for Connection Factory Location. After entering it, you must press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console. Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes as can be seen in the following screen shot: The next step is to redeploy the JmsAdapter.Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the JMS queue. To summarize: we have created a JMS adapter connection pool connector with the JNDI name jms/TestConnectionFactory. This is the JNDI name to be accessed by a process such as a BPEL process, when using the JMS adapter to access the previously created JMS queue with the JNDI name jms/TestJMSQueue. In the following step, we will set up a BPEL process to use this JMS adapter to write to the JMS queue. 3. Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will use the connection name jbevans-lx-PS5, as that is the name of the connection pointing to my SOA PS5 installation. When using a JMS adapter from within a BPEL process, there are various configuration options, such as the operation type (consume message, produce message etc.), delivery mode and message type. One of these options is the choice of the format of the JMS message payload. This can be structured around an existing XSD, in which case the full XML element and tags are passed, or it can be opaque, meaning that the payload is sent as-is to the JMS adapter. In the case of an XSD-based message, the payload can simply be copied to the input variable of the JMS adapter. In the case of an opaque message, the JMS adapter’s input variable is of type base64binary. So the payload needs to be converted to base64 binary first. I will go into this in more detail in a later blog entry. This sample will pass a simple message to the adapter, based on the following simple XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org" targetNamespace="http://www.example.org" elementFormDefault="qualified" <xsd:element name="exampleElement" type="xsd:string"> </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project JmsAdapterWriteWithXsd and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterWriteSchema. When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteSchema too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the xsd item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Weblogic JMS AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the above JMS queue and connection factory were created. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. This example uses a connection called jbevans-lx-PS5. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created earlier. JNDI Name: The JNDI name to use for the JMS connection. This is probably the most important step in this exercise and the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) MessagesURL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string. Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow. This completes the steps at the composite level. 4. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterWriteSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. ( For some reason, while I was testing this, the JMS Adapter moved back to the left-hand swim lane again after this step. There is no harm in leaving it there, but I find it easier to follow if it is in the right-hand lane, because I kind-of think of the message coming in on the left and being routed through the right. But you can follow your personal preference here.) Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 5. Compile and Deploy the Composite We won’t go into too much detail on how to compile and deploy. In JDeveloper, compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ---- Deployment finished. ---- in the Deployment frame, if the deployment was successful. 6. Test the Composite This is the exciting part. Open two tabs in your browser and log in to the WebLogic Administration Console in one tab and the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation in the other. We will use the Console to monitor the messages being written to the queue and the EM to execute the composite. In the Console, go to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. Note the number of messages under Messages Current. In the EM, go to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterWriteSchema [1.0], then press the Test button. Under Input Arguments, enter any string into the text input field for the payload, for example Test Message then press Test Web Service. If the instance is successful you should see the same text in the Response message, “Test Message”. In the Console, refresh the Monitoring screen to confirm a new message has been written to the queue. Check the checkbox and press Show Messages. Click on the newest message and view its contents. They should include the full XML of the entered payload. 7. Troubleshooting If you get an exception similar to the following at runtime ... BINDING.JCA-12510 JCA Resource Adapter location error. Unable to locate the JCA Resource Adapter via .jca binding file element The JCA Binding Component is unable to startup the Resource Adapter specified in the element: location='eis/wls/QueueTest'. The reason for this is most likely that either 1) the Resource Adapters RAR file has not been deployed successfully to the WebLogic Application server or 2) the '' element in weblogic-ra.xml has not been set to eis/wls/QueueTest. In the last case you will have to add a new WebLogic JCA connection factory (deploy a RAR). Please correct this and then restart the Application Server at oracle.integration.platform.blocks.adapter.fw.AdapterBindingException. createJndiLookupException(AdapterBindingException.java:130) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.createJCAConnectionFactory (JCAConnectionManager.java:1387) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.newPoolObject (JCAConnectionManager.java:1285) ... then this is very likely due to an incorrect JNDI name entered for the JMS Connection in the JMS Adapter Wizard. Recheck those steps. The error message prints the name of the JNDI name used. In this example, it was incorrectly entered as eis/wls/QueueTest instead of eis/wls/TestQueue. This concludes this example. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • You are probably NOT a SharePoint Development Expert if&hellip;

    - by Mark Rackley
    So, all you aspiring SharePoint experts out there (especially those of you who put “expert” in your resumes).  It’s time for a cold cool splash of reality. More than likely you are NOT an expert (I know I’m not). Yes, you may have some expertise in certain aspects in SharePoint (it’s questionable if I have THAT some days), but make sure you’ve got the basics down before you start throwing that word “expert” around. I know that it becomes frustrating to those looking to hire SharePoint people and having to sift through all the resumes of those who think very highly of themselves and their skills only to find those gaping holes in common best practices. I’m much more willing to hire a decent dev who KNOWS they are not an expert than to hire a decent+ dev who THINKS they are an expert.  So… I’ve compiled a small reality check for you SharePoint Devs. and a “red flag” check for those of you wishing to hire a SharePoint developer. If any of these apply to you, you are probably not a SharePoint Development Expert. You are not a SharePoint Development Expert if you manually copy your DLLs Seriously, I don’t care if you write the best code in the world. If you are manually copying files to each web front end you are NOT a SharePoint Development expert. Yes, I realize the admins are generally the ones who do the actual deployments, but if you don’t know how to create solution packages for your admins, you are going to end up doing more damage than good some day. There are TONS of tools out there to help generate deployable solutions for you. You have ZERO excuse. You are not a SharePoint Development expert if you can’t tell me the main artifacts of a solution package Directly related to the first one. If you don’t know what the Manifest, DDF, WSP, and Feature files are and how they are used in a solution package, you are NOT a SharePoint development expert. I’m not asking you to be able to write them all from scratch (heck, I can’t even do that), but you MUST know what they are and how to tweak them if necessary. You are not a SharePoint Development expert if you don’t know what a Content Type or a Site Column is You would be absolutely amazed at how many “Expert” SharePoint Developers have NEVER EVER created a Content Type or Site Column or even know what they are. I mean, why would you ever want to create those when you can just do everything as a custom list or custom field? right???? (that’s sarcasm). You also need to know how to package a Content Type and a Site Column into a deployable package by the way. You are not a SharePoint Development expert if you have not created at least one Web Part, Workflow, Timer Job, and Event Handler. If you haven’t written at least one of each, you don’t fully understand what they do or their limitations. Again, I expect NO ONE to be able to write these things blind. I think the last time I wrote an application from scratch without copying and pasting from another project I had done before was back in 1994? Seriously, coding is like a Sour Dough starter, you get it from someone else and keep adding to it. You are not a SharePoint Development expert if you don’t know how to properly dispose of objects Another biggie with zero excuse for getting it wrong. It is so well known that you must dispose of your SPWeb and SPSite objects that if you aren’t doing it then you are not an expert. Heck, if you utilize “using” when handling SPWeb and SPSite objects and don’t realize that it disposes of those objects for you, then you are not a SharePoint Development expert. You are not a SharePoint Development expert if you do not know how to properly elevate privileges Just one of those development basics that any decent SharePoint Developer has got to have down and understand how and why it’s used You are not a SharePoint Development expert if you don’t know all of the development options available to SharePoint and when they should be used Okay… so all you hard core .NET SharePoint dev geeks take a moment to listen. You may be the most top not SharePoint .NET developer in the world, but if you are opening Visual Studio to solve every problem in SharePoint, then you are NOT a SharePoint development expert. The SharePoint developer’s tool kit is growing every day with tools like Visual Studio, Data View Web Parts, XSL, jQuery, SPServices, etc. etc… If you don’t have the ability to at least recognize that “hey, you can basically do the same thing here but just dropping in Easy Tabs instead of writing some weird web part” then you are NOT a SharePoint Development expert AND you are doing a huge disservice to your clients and customers. You are probably NOT a SharePoint Development expert if you call yourself an Expert So, truth telling time. I’m not an expert. There, I said it. I feel so much better. Now, I realize the word “expert” has been used with my name before, but I am quick to point out that I KNOW the experts and know that they will help me if I need it, but I’m not an expert in all things SharePoint. The minute you take on that moniker you are setting yourself up for a fall. It’s too big, there’s too much to know, and there’s WAY too much you can do wrong. You are not a SharePoint Development expert if you are not involved in the community I expect to get the most flack for this one, but it’s always a huge red flag for me when someone says they are an expert and has ZERO knowledge of the SharePoint community. The SharePoint community is ABSOLUTELY CRITICAL to be an effective SharePoint developer, admin, architect, power user or whatever the heck you are!! The community keeps you sane, tells you when you are NOT using a best practice, recommends the best practice, and even knows when Microsoft is giving you the wrong information (*gasp* it does happen). If you can’t tell me who you are following on twitter, who's blog you read, what conferences you attend, or name the experts who you monitor to make sure you are not doing something stupid, then you are probably doing something stupid. Again, not asking you to be a speaker, blogger, or the least bit extroverted but you should be at LEAST stalking the experts. So… what’s the point? So… yeah… what’s my point in all this. Well, first of all let me point out that this is by far not a finished list and I could come up with a LOT more specific “deep dive” questions, but these should be high enough level that even non experts can recognize and ask them. If you have some common ones you run into let me know and add them in the comments below. Also, keep in mind I’m not saying you as a developer HAVE to know EVERYTHING, but you DO need to know what you don’t know and proudly and honestly state “I don’t know, but I’ll learn and find out”.  Those of us hiring SharePoint developers and know and have a passion for SharePoint are not looking for that elusive “expert” who knows everything. We are looking for someone who “gets it”, has a similar passion, great attitude, an understanding that they DON’T know everything, and a desire to do it right.  I would bet money that most SharePoint development disasters happen because of “experts” who think they know everything rather than the developer who is cautious and knows he doesn’t. Lastly, I know there’s a raging debate over what a “SharePoint Developer” is (I should know, as I keep bringing it up). So, obviously this blog post is more closely tied to the .NET side of SharePoint development and less towards the client side, middle tier, or whatever you want to call it. So, let’s please not get that argument going here as well…  Thanks

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Silverlight Cream for February 10, 2011 -- #1045

    - by Dave Campbell
    In this Issue: Mark Monster, Jaime Rodriguez, Mark Hopkins, WindowsPhoneGeek, David Anson, Jesse Liberty, Jeremy Likness, Martin Krüger(-2-), Beth Massi, Joost van Schaik, Laurent Bugnion, and Arik Poznanski. Above the Fold: Silverlight: "Parsing the Visual Tree with LINQ" Jeremy Likness WP7: "Silverlight-ready PNG encoder implementation shows one way to use .NET IEnumerables effectively" David Anson Lightswitch: "How to Send Automated Appointments from a LightSwitch Application" Beth Massi Shoutouts: Be sure to visit SilverlightShow... check out their top hits last week: SilverlightShow for Jan 31- Feb 06, 2011 Jaime Rodriguez has a post up that all the WP7 folks will be interested in: FAQ about copy paste functionality in upcoming release From SilverlightCream.com: Make use of WCF FaultContracts in Silverlight clients Mark Monster takes a shot at answering “The remote server returned an error: NotFound” while connecting to a WCF Service problem we all see. Communication between HTML in WebBrowser and Silverlight app Jaime Rodriguez responds to questions he received about communication between HTML and SIlverlight with this post about the bi-directional communication between the control and HTML. WP7 - Real Apps, Real Code Mark Hopkins has a post up about some WP7 starter kits that you can get all the source for and actually download the app from the Marketplace first to see if it interests you! WP7 AboutPrompt in depth WindowsPhoneGeek has this cool post up about the AboutPrompt from the Coding4Fun toolkit in detail... great diagrams showing where all the elements are and code examples with images. Silverlight-ready PNG encoder implementation shows one way to use .NET IEnumerables effectively David Anson describes why he took it upon himself to write his own png encoder for Silverlight... and we all thank him for doing so and providing us with the code! Navigation 101–Cancelling Navigation Jesse Liberty's latest WP7 From Scratch episode is up (number 32), and he's talking about Navigation and how to cancel it if you need to. Parsing the Visual Tree with LINQ Jeremy Likness demonstrates using LINQ to rat out information in the visual tree of your XAML. To Quote Jeremy: "you can easily check for intersections between elements and find any type of element no matter how deep within the tree it is". SpriteAnimationBehavior Martin Krüger has a couple more fun things in the Expression Gallery that I haven't discussed. First up is a behavior that animates up to 999 images and lets you control the FramesPerSecond... great demo on the ExpressionGallery to play with. Second alternative: Storyboard should not start before the Silverlight application is loaded Martin Krüger's latest is a way to programmatically wait for the Loaded event so that you know you can let your animations fly. How to Send Automated Appointments from a LightSwitch Application Beth Massi's latest Lightswitch post follows up her Outlook automation one with sending appointments using the standard iCalendar format... all the code included of course. The case for the Bindable Application Bar for Windows Phone 7 Joost van Schaik posts about a bindable Application Bar for your WP7 apps... grab the code and don't leave home without it :) MVVM Light V4 preview (BL0014) release notes Laurent Bugnion posted an update to MVVMLight to Codeplex a couple days ago. This is an early preview of what he plans on having in version 4, so check out the post for what's new and fun. Search Digg on Windows Phone 7 Arik Poznanski followed up his RSS post from last week with this one on searching Digg on WP7... and he's discussing and providing a utility class for doing it. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Silverlight Cream for May 13, 2010 -- #861

    - by Dave Campbell
    In this Issue: Sigurd Snørteland, Jeff Prosise, DaveDev, Joe Zhou, Chris Eargle, John Papa(-2-, -3-), and David Anson(-2-). Shoutouts: In with the links I've listed below, Sigurd Snørteland also sent a link to this app he's working on which is actually pretty cool to see: ZuneLight. The code is not yet available. He also has a no-code demo of a Silverlight Media Center Pieter Voloshyn, Luiz Thadeu, and Jhun Iti have a very nice Silverlight image editor up: Thumba From SilverlightCream.com: WP7 - Silverlight on mobile Sigurd Snørteland submitted some links for me that have been translated to English from his blog. I hope the pages come out good because he's got a lot of good stuff on there. This one has a link to a presentation he did, and 4 projects you can load up in the emulator that he's converted to the phone: weather, worldclock, coverflow, and solitaire ... pretty cool... thanks for the links Sigurd! Understanding Page Orientation in Silverlight for Windows Phone Jeff Prosise has a really nice post up on page orientation in WP7 ... what it means to your app, how to detect it, and example code for what to do then... also love a quote by Jeff: "Silverlight for Windows Phone is the hottest thing since color TV" Why you should check out Expression Blend Behaviors when using Silverlight DaveDev has a post up describing Behaviors and why we should use them, plus tons of external links to resources, blogs, videos... all good stuff... Fiddler inspector for WCF Silverlight Polling Duplex and WCF RIA Joe Zhou announces and provides a link to a new Fiddler inspector that understands the framing in Polling Duplex and also raw binary xml and binary SOAP. Windows Phone Controls v0.7 Chris Eargle reports the release of Version 0.7 of the Windows Phone Controls project on CodePlex ... this includes a Pivot Control and a Panorama Control... both very nicely done. Binding to Silverlight ComboBox and Using SelectedValue, SelectedValuePath and DisplayMemberPath John Papa responds to a user question and put up a nice post about binding to a ComboBox and then go from the selected item to some other property ... code included No More Boxes! Exploring the PathListBox (Silverlight TV #25) Silverlight TV 25 went up on Tuesday ... thought it was going to be Thursday?? anyway ... John Papa and Adam Kinney are discussing the PathListBox and looking at some cool demos thereof. Exposing SOAP, OData, and JSON Endpoints for RIA Services (Silverlight TV 26) Since today IS Thursday, we have a new Silverlight TV, number 26, and John Papa is chatting with Deepesh Mohnani of the WCF RIA Services team about exposing all sorts of endpoints... should be something in there for everybody :) Workaround for a Silverlight data binding bug affecting various scenarios - including DataGrid+ContextMenu David Anson details the rabbit-trail he and others on the team followed in response to a problem reported via Twitter where the binding on a DataGrid seemed off by a row(!) ... weird but true, validated, and SL3/4 are bug-for-bug compatible with this too! ... But David wouldn't leave us there.. he also has a workaround. Sharing the code for a simple Silverlight 4 REST-based cloud-oriented file management app for Azure and S3 David Anson had an opportunity to build an app he's wanted to build for a while and shares it with us: Blobstore -- a small, lightweight Silverlight 4 application that acts as a basic front-end for the Windows Azure Simple Data Storage and the Amazon Simple Storage Service (S3) -- and remember I said he shared the source :) Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Adventures in MVVM &ndash; ViewModel Location and Creation

    - by Brian Genisio's House Of Bilz
    More Adventures in MVVM In this post, I am going to explore how I prefer to attach ViewModels to my Views.  I have published the code to my ViewModelSupport project on CodePlex in case you'd like to see how it works along with some examples.  Some History My approach to View-First ViewModel creation has evolved over time.  I have constructed ViewModels in code-behind.  I have instantiated ViewModels in the resources sectoin of the view. I have used Prism to resolve ViewModels via Dependency Injection. I have created attached properties that use Dependency Injection containers underneath.  Of all these approaches, I continue to find issues either in composability, blendability or maintainability.  Laurent Bugnion came up with a pretty good approach in MVVM Light Toolkit with his ViewModelLocator, but as John Papa points out, it has maintenance issues.  John paired up with Glen Block to make the ViewModelLocator more generic by using MEF to compose ViewModels.  It is a great approach, but I don’t like baking in specific resolution technologies into the ViewModelSupport project. I bring these people up, not to name drop, but to give them credit for the place I finally landed in my journey to resolve ViewModels.  I have come up with my own version of the ViewModelLocator that is both generic and container agnostic.  The solution is blendable, configurable and simple to use.  Use any resolution mechanism you want: MEF, Unity, Ninject, Activator.Create, Lookup Tables, new, whatever. How to use the locator 1. Create a class to contain your resolution configuration: public class YourViewModelResolver: IViewModelResolver { private YourFavoriteContainer container = new YourFavoriteContainer(); public YourViewModelResolver() { // Configure your container } public object Resolve(string viewModelName) { return container.Resolve(viewModelName); } } Examples of doing this are on CodePlex for MEF, Unity and Activator.CreateInstance. 2. Create your ViewModelLocator with your custom resolver in App.xaml: <VMS:ViewModelLocator x:Key="ViewModelLocator"> <VMS:ViewModelLocator.Resolver> <local:YourViewModelResolver /> </VMS:ViewModelLocator.Resolver> </VMS:ViewModelLocator> 3. Hook up your data context whenever you want a ViewModel (WPF): <Border DataContext="{Binding YourViewModelName, Source={StaticResource ViewModelLocator}}"> This example uses dynamic properties on the ViewModelLocator and passes the name to your resolver to figure out how to compose it. 4. What about Silverlight? Good question.  You can't bind to dynamic properties in Silverlight 4 (crossing my fingers for Silverlight 5), but you CAN use string indexing: <Border DataContext="{Binding [YourViewModelName], Source={StaticResource ViewModelLocator}}"> But, as John Papa points out in his article, there is a silly bug in Silverlight 4 (as of this writing) that will call into the indexer 6 times when it binds.  While this is little more than a nuisance when getting most properties, it can be much more of an issue when you are resolving ViewModels six times.  If this gets in your way, the solution (as pointed out by John), is to use an IndexConverter (instantiated in App.xaml and also included in the project): <Border DataContext="{Binding Source={StaticResource ViewModelLocator}, Converter={StaticResource IndexConverter}, ConverterParameter=YourViewModelName}"> It is a bit uglier than the WPF version (this method will also work in WPF if you prefer), but it is still not all that bad.  Conclusion This approach works really well (I suppose I am a bit biased).  It allows for composability from any mechanisim you choose.  It is blendable (consider serving up different objects in Design Mode if you wish... or different constructors… whatever makes sense to you).  It works in Cider.  It is configurable.  It is flexible.  It is the best way I have found to manage View-First ViewModel hookups.  Thanks to the guys mentioned in this article for getting me to something I love using.  Enjoy.

    Read the article

  • Silverlight Cream for March 10, 2011 -- #1058

    - by Dave Campbell
    In this Issue: Ian T. Lackey, Peter Kuhn, WindowsPhoneGeek(-2-), Jesse Liberty(-2-), Martin Krüger, John Papa, Jeremy Likness, Karl Shifflett, and Colin Eberhardt. Above the Fold: Silverlight: "Silverlight TV 65: 3D Graphics" John Papa WP7: "Developing a Windows Phone 7 Jump List Control" Colin Eberhardt Shoutouts: Telerik announced a special sale on their RadControls for WP7... check it out: RadControls for Windows Phone 7 - on Sale from March 16th at a Special Promo Price! From SilverlightCream.com: Prism BootStrapper Load ModuleCatalog Ansyc Ian T. Lackey has a post up about reading the module catalog for Prism from an XML file asynchronously... fun stuff... this is how we kick-started our app... XNA for Silverlight developers: Part 6 - Input (accelerometer) Peter Kuhn has Part 6 of his XNA for Silverlight devs up at SilverlightShow. This post is on the use of the accelerometer... some great diagrams and explanations of it's use along with some code to play with... including a 'problems and pitfalls' section, and some good external links. Getting Started with Unit Testing in Silverlight for WP7 WindowsPhoneGeek has an introduction to Unit Testing in general, and then moves into Unit Testing in Silverlight for WP7, providing 3 options with links to the materials and code demonstrating the concepts. Using DockPanel in WP7 Responding to reader's questions, WindowsPhoneGeek's next post is on the DockPanel from the Silverlight Toolkit, and using it in WP7... defined declaratively and in code. Reactive Extensions–More About Chaining Jesse Liberty has post number 10 on Rx up and is a follow-on to the last one on Chaining. This time he exercises the chaining aspect of SelectMany. Yet Another Podcast #26–Walt Ritscher In his next post, Jesse Liberty has his 26th 'Yet Another Podcast' up and is chatting with my friend Walt Ritscher. If you don't know who Walt is, check out the links Jesse has on the post... I'm sure you've crossed paths. How to: Create A half square from a regular polygon (triangle) Martin Krüger demonstrates the exact placement of a half-square (isosceles right triangle), formed with a regular polygon in Blend... this is much more involved than I've made it sound... check out his post. Silverlight TV 65: 3D Graphics John Papa has Silverlight TV number 65 up and it's all about the 3D graphics stuff we saw at the Firestarter. John is talking with Danny Riddel, the CEO of Archetype, the company that built the awesome 3D demo we all gushed over. Jounce Part 12: Providing History-Based Back Navigation Jeremy Likness has part 12 of his Jounce exploration up... and discussing the stack of navigated pages that Jounce retains and providing a 'go back' functionality... and provides a good example of using it all. Prism 4 Region Navigation with Silverlight Frame Navigation and Unity Karl Shifflett has a post for all us Prism afficianados... Prism, Unity, and the Silverlight Frame Navigation framework. Some great external links for 'required reading' too. Developing a Windows Phone 7 Jump List Control Colin Eberhardt has an awesome tutorial up for creating a JumpList control for WP7... what a bunch of effort... this is a step-by-step description of designing the control he built and blogged about a while back... and it's still cool! Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • LexisNexis and Oracle Join Forces to Prevent Fraud and Identity Abuse

    - by Tanu Sood
    Author: Mark Karlstrand About the Writer:Mark Karlstrand is a Senior Product Manager at Oracle focused on innovative security for enterprise web and mobile applications. Over the last sixteen years Mark has served as director in a number of tech startups before joining Oracle in 2007. Working with a team of talented architects and engineers Mark developed Oracle Adaptive Access Manager, a best of breed access security solution.The world’s top enterprise software company and the world leader in data driven solutions have teamed up to provide a new integrated security solution to prevent fraud and misuse of identities. LexisNexis Risk Solutions, a Gold level member of Oracle PartnerNetwork (OPN), today announced it has achieved Oracle Validated Integration of its Instant Authenticate product with Oracle Identity Management.Oracle provides the most complete Identity and Access Management platform. The only identity management provider to offer advanced capabilities including device fingerprinting, location intelligence, real-time risk analysis, context-aware authentication and authorization makes the Oracle offering unique in the industry. LexisNexis Risk Solutions provides the industry leading Instant Authenticate dynamic knowledge based authentication (KBA) service which offers customers a secure and cost effective means to authenticate new user or prove authentication for password resets, lockouts and such scenarios. Oracle and LexisNexis now offer an integrated solution that combines the power of the most advanced identity management platform and superior data driven user authentication to stop identity fraud in its tracks and, in turn, offer significant operational cost savings. The solution offers the ability to challenge users with dynamic knowledge based authentication based on the risk of an access request or transaction thereby offering an additional level to other authentication methods such as static challenge questions or one-time password when needed. For example, with Oracle Identity Management self-service, the forgotten password reset workflow utilizes advanced capabilities including device fingerprinting, location intelligence, risk analysis and one-time password (OTP) via short message service (SMS) to secure this sensitive flow. Even when a user has lost or misplaced his/her mobile phone and, therefore, cannot receive the SMS, the new integrated solution eliminates the need to contact the help desk. The Oracle Identity Management platform dynamically switches to use the LexisNexis Instant Authenticate service for authentication if the user is not able to authenticate via OTP. The advanced Oracle and LexisNexis integrated solution, thus, both improves user experience and saves money by avoiding unnecessary help desk calls. Oracle Identity and Access Management secures applications, Juniper SSL VPN and other web resources with a thoroughly modern layered and context-aware platform. Users don't gain access just because they happen to have a valid username and password. An enterprise utilizing the Oracle solution has the ability to predicate access based on the specific context of the current situation. The device, location, temporal data, and any number of other attributes are evaluated in real-time to determine the specific risk at that moment. If the risk is elevated a user can be challenged for additional authentication, refused access or allowed access with limited privileges. The LexisNexis Instant Authenticate dynamic KBA service plugs into the Oracle platform to provide an additional layer of security by validating a user's identity in high risk access or transactions. The large and varied pool of data the LexisNexis solution utilizes to quiz a user makes this challenge mechanism even more robust. This strong combination of Oracle and LexisNexis user authentication capabilities greatly mitigates the risk of exposing sensitive applications and services on the Internet which helps an enterprise grow their business with confidence.Resources:Press release: LexisNexis® Achieves Oracle Validated Integration with Oracle Identity Management Oracle Access Management (HTML)Oracle Adaptive Access Manager (pdf)

    Read the article

  • Three Key Tenets of Optimal Social Collaboration

    - by kellsey.ruppel
    Today's blog post comes to us from John Bruswick! This post is an abridged version of John’s white paper in which he discusses three principals to optimize social collaboration within an enterprise.   By john[email protected], Oracle Principal Sales Consultant Effective social collaboration is actionable, deeply contextual and inherently derives its value from business entities outside of itself. How does an organization begin the journey from traditional, siloed collaboration to natural, business entity based social collaboration? Successful enablement of enterprise social collaboration requires that organizations embrace the following tenets and understand that traditional collaborative functionality has inherent limits - it is innovation and integration in accordance with the following tenets that will provide net-new efficiency benefits. Key Tenets of Optimal Social Collaboration Leverage a Ubiquitous Social Fabric - Collaborative activities should be supported through a ubiquitous social fabric, providing a personalized experience, broadcasting key business events and connecting people and business processes.  This supports education of participants working in and around a specific business entity that will benefit from an implicit capture of tacit knowledge and provide continuity between participants.  In the absence of this ubiquitous platform activities can still occur but are essentially siloed causing frequent duplication of effort across similar tasks, with critical tacit knowledge eluding capture. Supply Continuous Context to Support Decision Making and Problem Solving - People generally engage in collaborative behavior to obtain a decision or the resolution for a specific issue.  The time to achieve resolution is referred to as "Solve Time".  Users have traditionally been forced to switch or "alt-tab" between business systems and synthesize their own context across disparate systems and processes.  The constant loss of context forces end users to exert a large amount of effort that could be spent on higher value problem solving. Extend the Collaborative Lifecycle into Back Office - Beyond the solve time from decision making efforts, additional time is expended formalizing the resolution that was generated from collaboration in a system of record.  Extending collaboration to result in the capture of an explicit decision maximizes efficiencies, creating a closed circuit for a particular thread.  This type of structured action may exist today within your organization's customer support system around opening, solving and closing support issues, but generally does not extend to Sales focused collaborative activities. Excelling in the Unstructured Future We will always have to deal with unstructured collaborative processes within our organizations.  Regardless of the participants and nature of the collaborate process, two things are certain – the origination and end points are generally known and relate to a business entity, perhaps a customer, opportunity, order, shipping location, product or otherwise. Imagine the benefits if an organization's key business systems supported a social fabric, provided continuous context and extended the lifecycle around the collaborative decision making to include output into back office systems of record.   The technical hurdle to embracing optimal social collaboration would fall away, leaving the company with an opportunity to focus on and refine how processes were approached.  Time and resources previously required could then be reallocated to focusing on innovation to support competitive differentiation unique to your business. How can you achieve optimal social collaboration? Oracle Social Network enables business users to collaborate with each other using a broad range of collaboration styles and integrates data from a variety of sources and business applications -- allowing you to achieve optimal social collaboration. Looking to learn more? Read John's white paper, where he discusses in further detail the three principals to optimize social collaboration within an enterprise. 

    Read the article

  • ArchBeat Link-o-Rama for October 14-20, 2012

    - by Bob Rhubart
    The Top 10 items shared on the OTN ArchBeat Facebook page for the week of October 14-21, 2012. Panel: On the Impact of Software | InfoQ Les Hatton (Oakwood Computing Associates), Clive King (Oracle), Paul Good (Shell), Mike Andrews (Microsoft) and Michiel van Genuchten (moderator) discuss the impact of software engineering on our lives in this panel discussion recorded at the Computer Society Software Experts Summit 2012. ResCare Solves Content Lifecycle Challenges with Oracle WebCenter Learn how ResCare solves content lifecycle challenges with Oracle WebCenter. Speakers: Joe Lichtefeld, VP of Application Services & PMO, ResCare Wayne Boerger, Product Manager, TEAM Informatics Doug Thompson, EVP Global Development, TEAM Informatics Date: Tuesday, October 30, 2012 Time: 10:00 a.m. PT / 1:00 p.m. ET WebLogic Server 11gR1 Interactive Quick Reference "The WebLogic Server 11gR1 Administration interactive quick reference," explains Juergen Kress, "is a multimedia tool for various terms and concepts used in WebLogic Server architecture. This tool is available for administrators for online or offline use. This is built as a multimedia web page which provides descriptions of WebLogic Server Architectural components, and references to relevant documentation. This tool offers valuable reference information for any complex concept or product in an intuitive and useful manner." Oracle ACE Directors Nordic Tour 2012 : Venues and BI Presentations | Mark Rittman Oracle ACE Director Mark Rittman shares information on the Oracle ACE Director Tour, as the community leaders make their way through the land of the midnight sun, with events in Copenhagen, Stockholm, Oslo and Helsinki. Mobile Apps for EBS | Capgemini Oracle Blog Capgemini solution architect Satish Iyer breifly describes how Oracle ADF and Oracle SOA Suite can be used to fill the gap in mobile applications for Oracle EBS. Introducing the New Face of Fusion Applications | Misha Vaughan Oracle ACE Directors Debra Lilly and Floyd Teter have already blogged about the the new face of Oracle Fusion Applications. Now Applications User Experience Architect Misha Vaughan shares a brief overview of how the Oracle Applications User Experience (UX) team developed the new look. BPM 11g - Dynamic Task Assignment with Multi-level Organization Units | Mark Foster "I've seen several requirements to have a more granular level of task assignment in BPM 11g based on some value in the data passed to the process," says Fusion Middleware A-Team architect Mark Foster. "Parametric Roles is normally the first port of call to try to satisfy this requirement, but in this blog we will show how a lot of use-cases can be satisfied by the easier to implement and flexible Organization Unit." OTN Architect Day Los Angeles - Oct 25 Oracle Technology Network Architect Day in Los Angeles happens in one week. Register now to make sure you don't miss out on a rich schedule of expert technical sessions and peer interaction covering the use of Oracle technologies in cloud computing, SOA, and more. Even better: it's all free. When: October 25, 2012, 8:30am - 5:00pm. Where: Sofitel Los Angeles, 8555 Beverly Boulevard, Los Angeles, CA 90048. Oracle VM VirtualBox 4.2.2 released | Oracle's Virtualization Blog The Fat Bloke weighs in with a short post with information on where you can find information and the download for the latest VirtualBox release. Advanced Oracle SOA Suite #OOW 2012 SOA Presentations The Oracle SOA Product Management team has compiled a complete list of all twelve of their Oracle SOA Suite presentations from Oracle OpenWorld 2012, with links to the slide decks. Thought for the Day "Software: do you write it like a book, grow it like a plant, accrete it like a pearl, or construct it like a building?" — Jeff Atwood Source: softwarequotes.com

    Read the article

  • ArchBeat Link-o-Rama Top 10 for October 21-27, 2012

    - by Bob Rhubart
    The Top 10 most popular items shared on the OTN ArchBeat Facebook Page for the week of October 21-27, 2012. OTN Architect Day: Los Angeles This is your brain on IT architecture. Stuff your cranium with architecture by attending Oracle Technology Network Architect Day in Los Angeles, October 25, 2012, at the Sofitel Los Angeles, 8555 Beverly Boulevard, Los Angeles, CA 90048. Technical sessions, panel Q&A, and peer roundtables—plus a free lunch. [NOTE: The event was last week, of course. Big thanks to the session presenters and especially to those Angelinos who came out for the event.] WebLogic Server 11gR1 Interactive Quick Reference"The WebLogic Server 11gR1 Administration interactive quick reference," explains Juergen Kress, "is a multimedia tool for various terms and concepts used in WebLogic Server architecture. This tool is available for administrators for online or offline use. This is built as a multimedia web page which provides descriptions of WebLogic Server Architectural components, and references to relevant documentation. This tool offers valuable reference information for any complex concept or product in an intuitive and useful manner." Podcast: Are You Future Proof? The latest OTN ArchBeat Podcast series features Oracle ACE Directors Ron Batra, Basheer Khan, and Ronald van Luttikhuizen, three practicing architects in an open discussion about how changes in enterprise IT are raising the bar for success for software architects and developers. Play Oracle Vanquisher Here's a little respite from whatever it is you normally spend your time on. Oracle Vanquisher is an online diversion that makes a game of data center optimization. According to the description: "Armed with a cool Oracle vacuum pack suit and a strategic IT roadmap, you will thwart threats and optimize your data center to increase your company’s stock price and boost your company’s position." Mainly you avoid electric shock and killer birds. The current high score belongs to someone identified as 'TEN." My score? Never mind. Advanced Oracle SOA Suite OOW 2012 PresentationsThe Oracle SOA Product Management team has compiled a complete list of all twelve of their Oracle SOA Suite presentations from Oracle OpenWorld 2012, with links to the slide decks. OAM and OIM 11g Academies Looking for technical how-to content covering Oracle Access Manager and Oracle Identity Manager? The people behind the Oracle Middleware Security blog have indexed relevant blog posts into what they call "Academies." "These indexes contain the articles we’ve written that we believe provide long lasting guidance on OAM and OIM. Posts covered in these series include articles on key aspects of OAM and OIM 11g, best practice architectural guidance, integrations, and customizations." Oracle’s Analytics, Engineered Systems, and Big Data Strategy | Mark Rittman Part 1 of 3 in Oracle ACE Director Mark Rittman's series on Oracle Exalytics, Oracle R Enterprise and Endeca. Oracle ACE Directors Nordic Tour 2012 : Venues and BI Presentations | Mark RittmanOracle ACE Director Mark Rittman shares information on the Oracle ACE Director Tour, as the community leaders make their way through the land of the midnight sun, with events in Copenhagen, Stockholm, Oslo and Helsinki. Following the Thread in OSB | Antony Reynolds Antony Reynolds recently led an Oracle Service Bus POC in which his team needed to get high throughput from an OSB pipeline. "Imagine our surprise when, on stressing the system, we saw it lock up, with large numbers of blocked threads." He shares the details of the problem and the solution in this extensive technical post. OW12: Oracle Business Process Management/Oracle ADF Integration Best Practices | Andrejus Baranovskis The Oracle OpenWorld presentations keep coming! Oracle ACE Director Andrejus Baranovskis shares the slides from "Oracle Business Process Management/Oracle ADF Integration Best Practices," co-presented with Danilo Schmiedel from Opitz Consulting. Thought for the Day "Not everything that can be counted counts, and not everything that counts can be counted." — Albert Einstein (March 14, 1879 – April 18, 1955) Source: Quotes For Software Engineers

    Read the article

  • Project Jigsaw: Late for the train: The Q&A

    - by Mark Reinhold
    I recently proposed, to the Java community in general and to the SE 8 (JSR 337) Expert Group in particular, to defer Project Jigsaw from Java 8 to Java 9. I also proposed to aim explicitly for a regular two-year release cycle going forward. Herewith a summary of the key questions I’ve seen in reaction to these proposals, along with answers. Making the decision Q Has the Java SE 8 Expert Group decided whether to defer the addition of a module system and the modularization of the Platform to Java SE 9? A No, it has not yet decided. Q By when do you expect the EG to make this decision? A In the next month or so. Q How can I make sure my voice is heard? A The EG will consider all relevant input from the wider community. If you have a prominent blog, column, or other communication channel then there’s a good chance that we’ve already seen your opinion. If not, you’re welcome to send it to the Java SE 8 Comments List, which is the EG’s official feedback channel. Q What’s the overall tone of the feedback you’ve received? A The feedback has been about evenly divided as to whether Java 8 should be delayed for Jigsaw, Jigsaw should be deferred to Java 9, or some other, usually less-realistic, option should be taken. Project Jigsaw Q Why is Project Jigsaw taking so long? A Project Jigsaw started at Sun, way back in August 2008. Like many efforts during the final years of Sun, it was not well staffed. Jigsaw initially ran on a shoestring, with just a handful of mostly part-time engineers, so progress was slow. During the integration of Sun into Oracle all work on Jigsaw was halted for a time, but it was eventually resumed after a thorough consideration of the alternatives. Project Jigsaw was really only fully staffed about a year ago, around the time that Java 7 shipped. We’ve added a few more engineers to the team since then, but that can’t make up for the inadequate initial staffing and the time lost during the transition. Q So it’s really just a matter of staffing limitations and corporate-integration distractions? A Aside from these difficulties, the other main factor in the duration of the project is the sheer technical difficulty of modularizing the JDK. Q Why is modularizing the JDK so hard? A There are two main reasons. The first is that the JDK code base is deeply interconnected at both the API and the implementation levels, having been built over many years primarily in the style of a monolithic software system. We’ve spent considerable effort eliminating or at least simplifying as many API and implementation dependences as possible, so that both the Platform and its implementations can be presented as a coherent set of interdependent modules, but some particularly thorny cases remain. Q What’s the second reason? A We want to maintain as much compatibility with prior releases as possible, most especially for existing classpath-based applications but also, to the extent feasible, for applications composed of modules. Q Is modularizing the JDK even necessary? Can’t you just put it in one big module? A Modularizing the JDK, and more specifically modularizing the Java SE Platform, will enable standard yet flexible Java runtime configurations scaling from large servers down to small embedded devices. In the long term it will enable the convergence of Java SE with the higher-end Java ME Platforms. Q Is Project Jigsaw just about modularizing the JDK? A As originally conceived, Project Jigsaw was indeed focused primarily upon modularizing the JDK. The growing demand for a truly standard module system for the Java Platform, which could be used not just for the Platform itself but also for libraries and applications built on top of it, later motivated expanding the scope of the effort. Q As a developer, why should I care about Project Jigsaw? A The introduction of a modular Java Platform will, in the long term, fundamentally change the way that Java implementations, libraries, frameworks, tools, and applications are designed, built, and deployed. Q How much progress has Project Jigsaw made? A We’ve actually made a lot of progress. Much of the core functionality of the module system has been prototyped and works at both compile time and run time. We’ve extended the Java programming language with module declarations, worked out a structure for modular source trees and corresponding compiled-class trees, and implemented these features in javac. We’ve defined an efficient module-file format, extended the JVM to bootstrap a modular JRE, and designed and implemented a preliminary API. We’ve used the module system to make a good first cut at dividing the JDK and the Java SE API into a coherent set of modules. Among other things, we’re currently working to retrofit the java.util.ServiceLoader API to support modular services. Q I want to help! How can I get involved? A Check out the project page, read the draft requirements and design overview documents, download the latest prototype build, and play with it. You can tell us what you think, and follow the rest of our work in real time, on the jigsaw-dev list. The Java Platform Module System JSR Q What’s the relationship between Project Jigsaw and the eventual Java Platform Module System JSR? A At a high level, Project Jigsaw has two phases. In the first phase we’re exploring an approach to modularity that’s markedly different from that of existing Java modularity solutions. We’ve assumed that we can change the Java programming language, the virtual machine, and the APIs. Doing so enables a design which can strongly enforce module boundaries in all program phases, from compilation to deployment to execution. That, in turn, leads to better usability, diagnosability, security, and performance. The ultimate goal of the first phase is produce a working prototype which can inform the work of the Module-System JSR EG. Q What will happen in the second phase of Project Jigsaw? A The second phase will produce the reference implementation of the specification created by the Module-System JSR EG. The EG might ultimately choose an entirely different approach than the one we’re exploring now. If and when that happens then Project Jigsaw will change course as necessary, but either way I think that the end result will be better for having been informed by our current work. Maven & OSGi Q Why not just use Maven? A Maven is a software project management and comprehension tool. As such it can be seen as a kind of build-time module system but, by its nature, it does nothing to support modularity at run time. Q Why not just adopt OSGi? A OSGi is a rich dynamic component system which includes not just a module system but also a life-cycle model and a dynamic service registry. The latter two facilities are useful to some kinds of sophisticated applications, but I don’t think they’re of wide enough interest to be standardized as part of the Java SE Platform. Q Okay, then why not just adopt the module layer of OSGi? A The OSGi module layer is not operative at compile time; it only addresses modularity during packaging, deployment, and execution. As it stands, moreover, it’s useful for library and application modules but, since it’s built strictly on top of the Java SE Platform, it can’t be used to modularize the Platform itself. Q If Maven addresses modularity at build time, and the OSGi module layer addresses modularity during deployment and at run time, then why not just use the two together, as many developers already do? A The combination of Maven and OSGi is certainly very useful in practice today. These systems have, however, been built on top of the existing Java platform; they have not been able to change the platform itself. This means, among other things, that module boundaries are weakly enforced, if at all, which makes it difficult to diagnose configuration errors and impossible to run untrusted code securely. The prototype Jigsaw module system, by contrast, aims to define a platform-level solution which extends both the language and the JVM in order to enforce module boundaries strongly and uniformly in all program phases. Q If the EG chooses an approach like the one currently being taken in the Jigsaw prototype, will Maven and OSGi be made obsolete? A No, not at all! No matter what approach is taken, to ensure wide adoption it’s essential that the standard Java Platform Module System interact well with Maven. Applications that depend upon the sophisticated features of OSGi will no doubt continue to use OSGi, so it’s critical that implementations of OSGi be able to run on top of the Java module system and, if suitably modified, support OSGi bundles that depend upon Java modules. Ideas for how to do that are currently being explored in Project Penrose. Java 8 & Java 9 Q Without Jigsaw, won’t Java 8 be a pretty boring release? A No, far from it! It’s still slated to include the widely-anticipated Project Lambda (JSR 335), work on which has been going very well, along with the new Date/Time API (JSR 310), Type Annotations (JSR 308), and a set of smaller features already in progress. Q Won’t deferring Jigsaw to Java 9 delay the eventual convergence of the higher-end Java ME Platforms with Java SE? A It will slow that transition, but it will not stop it. To allow progress toward that convergence to be made with Java 8 I’ve suggested to the Java SE 8 EG that we consider specifying a small number of Profiles which would allow compact configurations of the SE Platform to be built and deployed. Q If Jigsaw is deferred to Java 9, would the Oracle engineers currently working on it be reassigned to other Java 8 features and then return to working on Jigsaw again after Java 8 ships? A No, these engineers would continue to work primarily on Jigsaw from now until Java 9 ships. Q Why not drop Lambda and finish Jigsaw instead? A Even if the engineers currently working on Lambda could instantly switch over to Jigsaw and immediately become productive—which of course they can’t—there are less than nine months remaining in the Java 8 schedule for work on major features. That’s just not enough time for the broad review, testing, and feedback which such a fundamental change to the Java Platform requires. Q Why not ship the module system in Java 8, and then modularize the platform in Java 9? A If we deliver a module system in one release but don’t use it to modularize the JDK until some later release then we run a big risk of getting something fundamentally wrong. If that happens then we’d have to fix it in the later release, and fixing fundamental design flaws after the fact almost always leads to a poor end result. Q Why not ship Jigsaw in an 8.5 release, less than two years after 8? Or why not just ship a new release every year, rather than every other year? A Many more developers work on the JDK today than a couple of years ago, both because Oracle has dramatically increased its own investment and because other organizations and individuals have joined the OpenJDK Community. Collectively we don’t, however, have the bandwidth required to ship and then provide long-term support for a big JDK release more frequently than about every other year. Q What’s the feedback been on the two-year release-cycle proposal? A For just about every comment that we should release more frequently, so that new features are available sooner, there’s been another asking for an even slower release cycle so that large teams of enterprise developers who ship mission-critical applications have a chance to migrate at a comfortable pace.

    Read the article

  • Google I/O 2011: 3D Graphics on Android: Lessons learned from Google Body

    Google I/O 2011: 3D Graphics on Android: Lessons learned from Google Body Nico Weber Google originally built Google Body, a 3D application that renders the human body in incredible detail, for WebGL-capable browsers running on high-end bPCs. To bring the app to Android at a high resolution and frame rate, Nico Weber and Won Chun had a close encounter with Android's graphics stack. In this session Nico will present their findings as best practices for high-end 3D graphics using OpenGL ES 2.0 on Android. The covered topics range from getting accelerated pixels on the screen to fast resource loading, performance guidelines, texture compression, mipmapping, recommended vertex attribute formats, and shader handling. The talk also touches on related topics such as SDK vs NDK, picking, and resource loading. From: GoogleDevelopers Views: 6077 29 ratings Time: 56:09 More in Science & Technology

    Read the article

  • Are VB.NET to C# converters actually compilers?

    - by Rowan Freeman
    Whenever I see programs or scripts that convert between high-level programming languages they are always labelled as converters. "VB.NET to C# converter" on Google results in expected, useful hits. However "VB.NET to C# compiler" on Google results in things like comparisons between the C# and VB.NET compilers and other hits that are not quite what you'd be looking for. Webopedia defines Compiler as A program that translates source code into object code Eric Lipper in an answer to: "How do I create my own programming language and a compiler for it" suggests: One of the best ways to get started writing a compiler is by writing a high-level-language-to-high-level-language compiler. Is a converter really just a compiler? What separates the two?

    Read the article

  • GDC 2012: From Console to Chrome

    GDC 2012: From Console to Chrome (Pre-recorded GDC content) Cutting-edge HTML5 brings high performance console-style 3d games to the browser, but developing a modern HTML5 game engine can be a challenge. Adapting to HTML5 and Javascript can be bewildering to game programmers coming from C / C++. This talk is an overview of the tools, techniques, and topics you need to be familiar with to adapt to programming high performance 3D games for the web. Topics will include cutting edge HTML5 APIs, writing high performance Javascript, and profiling / debugging tools. Speaker: Lilli Thompson From: GoogleDevelopers Views: 3845 80 ratings Time: 01:02:14 More in Science & Technology

    Read the article

  • Online Multiplayer Game Architecture [on hold]

    - by Eric
    I am just starting to research online multiplayer game development and I have a high-level architectural question regarding how online multiple games function. I have server-side and client-side programming experience, and I understand how AJAX-esque transfer protocol operates. What I don't understand yet is how online multiple fits into all of that. For example, an online Tetris multiplayer game. Would both players have the entire Tetris game built out on their client-side and then get pushed "moves" from the other player via some AJAX-esque mechanism, in which case each client would have to be constantly listening via JavaScript for inbound "moves" and update the client appropriately? Or would each client build out the aesthetics and run a virtual server per game to which each client connects and thus pull and push commands in real-time via something like web sockets? I apologize if this question is too high-level and general, but I couldn't find anything online that offered this high-level of a perspective on the topic.

    Read the article

  • UK Connected Systems User Group - Udi Dahan Event Topic change

    - by Michael Stephenson
    Hi Just wanted to get the word out about a change to the may user group event.  Udi Dahan will present a new topic which he has not presented in the UK before.  Details below. To register for this event please refer to: http://ukconnectedsystemsusergroup.org/UpcomingEvents.aspx Title: High Availability - A Contrarian View   Abstract: Many developers are aware of the importance of high availability, critically analyzing any single points of failure in the infrastructure. Those same developers rarely give a second thought to the periods of time when a system is being upgraded. Even if all the servers are running, most systems cannot function in-between versions. Yet with the increased pace of business, users are demanding ever more frequent releases. The poor maintenance programmers and system administrators are left holding the bag long after the architecture that sealed their fate was formulated. Join Udi for some different perspectives on high availability - architecture and methodology for the real world.

    Read the article

  • The Calmest IT Guy in the World

    - by Markus Weber
    Unplanned outages and downtime still result not only in major productivity losses, but also major financial losses. Along the same lines, if zero planned downtime and zero data loss are key to your IT environment and your business requirements, planning for those becomes very important, all while balancing between performance, high availability, and cost. Oracle Database High Availability technologies will help you achieve these mission-critical goals, and are reflected in Oracle's best practices offerings of the Maximum Availability Architecture, or MAA. We created three neat, short videos showcasing some typical use cases, and highlighting three important components (amongst many more) of MAA: Oracle Real Application Clusters (RAC) Oracle Active Data Guard Oracle Flashback Technologies Make sure to watch those videos here, and learn about challenges, and solutions, around High Availability database environments from a recent Independent Oracle Users Group (IOUG) survey. 

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >