Search Results

Search found 36773 results on 1471 pages for 'sql statement syntax'.

Page 830/1471 | < Previous Page | 826 827 828 829 830 831 832 833 834 835 836 837  | Next Page >

  • I have to generate PL/SQL using Java. Most of the procedures are common. Only a few keeps changing.

    - by blog
    I have to generate PL-SQL code, with some common code(invariable) and a variable code. I don't want to use any external tools. Some ways that I can think: Can I go and maintain the common code in a template and with markers, where my java code will generate code in the markers and generate a new file. Maintain the common code in static constant String and then generate the whole code in StringBuffer and at last write to file. But, I am not at all satisfied with both the ideas. Can you please suggest any better ways of doing this or the use of any design patterns or anything? Thanks in Advance.

    Read the article

  • How can I get an error or a warning from a PreparedStatement?

    - by Geo
    I had an update like this: update table set col1=?,col2=?,col3=? where col4=?; and I filled it up like this: statement.setString(1,"some_value"); statement.setString(2,"some_value"); statement.setString(3,"some_value"); and I forgot to add a fourth value.I did a executeUpdate and of course nothing happened to the database. I spent about 1 hour debugging it, to see where it goes wrong. I then modified my code to print the SQLWarning object returned by the getWarnings method. It always returned null. I even modified the code to the buggy state it was, before I set the fourth parameter, and still no warning. Does anyone know how one can get an error/warning? If it matters, my Connection is set to autoCommit.

    Read the article

  • What does :this means in Ruby on Rails?

    - by Marco
    Hi, I'm new to the Ruby and Ruby on Rails world. I've read some guides, but i've some trouble with the following syntax. I think that the usage of :condition syntax is used in Ruby to define a class attribute with some kind of accessor, like: class Sample attr_accessor :condition end that implicitly declares the getter and setter for the "condition" property. While i was looking at some Rails sample code, i found the following examples that i don't fully understand. For example: @post = Post.find(params[:id]) Why it's accessing the id attribute with this syntax, instead of: @post = Post.find(params[id]) Or, for example: @posts = Post.find(:all) Is :all a constant here? If not, what does this code really means? If yes, why the following is not used: @posts = Post.find(ALL) Thanks

    Read the article

  • Why can't there be an "ultimate" programming language? [closed]

    - by sub
    There is an uncountable sum of programming languages out there. They obviously all have their pro's and con's - but why can't there be one to "beat them all"? The main part of a programming language is it's syntax and what's possible with it. The rest are usually only a bunch of libraries, frameworks and extensions wrapped around it. So couldn't you combine all the great aspects and experiences gained from the thousands of programming languages out there to build one with a syntax that fits every task? Wouldn't it be better having only one programming language? I see only problems with the current amount of the ones in use. Why can't there be a perfect language when thinking of syntax, constructs and typing?

    Read the article

  • C# logic order and compiler behavior

    - by Terrapin
    In C#, (and feel free to answer for other languages), what order does the runtime evaluate a logic statement? Example: DataTable myDt = new DataTable(); if (myDt != null && myDt.Rows.Count > 0) { //do some stuff with myDt } Which statement does the runtime evaluate first - myDt != null or: myDt.Rows.Count > 0 ? Is there a time when the compiler would ever evaluate the statement backwards? Perhaps when an "OR" operator is involved?

    Read the article

  • How to evaluate text strings provided by sed/grep/whatever?

    - by T.J.
    This is for UNIX shell programming. It have to be supported by multiple UNIX platforms including Solaris, Linux, and AIX. I have this scenario -- I am to read from a text file a string that may or may not contain an environment variable that may or may not be defined. For example: <foo.bar> This error code was found: $(error_code) I have the following code: statement=$(sed -n $1'p' $messagefile) echo $echo_flag $statement $1 = line number supplied to this particular function/script. $messagefile = filename of log file. $echo_flag = "-e" in Linux, otherwise, empty. $(error_code) = 42. Instead of getting this when running: <foo.bar> This error code was found: 42 I still get this: <foo.bar> This error code was found: $(error_code) How exactly do I tell the shell script that the value of statement should be evaluated further beyond what sed have done?

    Read the article

  • Insert data into table effeciently, postgresql

    - by Rowan_Gaffney
    I am new to postgresql (and databases in general) and was hoping to get some pointers on improving the efficiency of the following statement. I am inserting data from one table to another, and do not want to insert duplicate values. I have a rid (unique identifier in each table) that are indexed and are Primary Keys. I am currently using the following statement: Insert INTO table1 SELECT * FROM table2 WHERE rid NOT IN (SELECT rid FROM table1). As of now the table one is 200,000 records, table2 is 20,000 records. Table1 is going to keep growing (probably to around 2,000,000) and table2 will stay around 20,000 records. As of now the statement takes about 15 minutes to run. I am concerned that as Table1 grows this is going to take way to long. Any suggestions?

    Read the article

  • parallel.foreach with custom collection

    - by SchwartzE
    I am extending the System.Net.Mail.MailAddress class to include an ID field, so I created a new custom MailAddress class that inherited from the existing class and a new custom MailAddressCollection class. I then overrode the existing System.Net.Mail.MailMessage.To to use my new collection. I would like to process the recipients in parallel, but I can't get the syntax right. This is the syntax I am using. Parallel.ForEach(EmailMessage.To, (MailAddress address) => { emailService.InsertRecipient(emailId, address.DisplayName, address.Address, " "); }); I get the following errors: The best overloaded method match for 'System.Threading.Tasks.Parallel.ForEach(System.Collections.Generic.IEnumerable, System.Action)' has some invalid arguments Argument 1: cannot convert from 'EmailService.MailAddressCollection' to 'System.Collections.Generic.IEnumerable' What syntax do I need to use custom collections?

    Read the article

  • I cant get a field on report from a view

    - by felipedz
    When I get a field, this work good. But, when get a field from a 'VIEW', is a problem because the code of a VIEW is: CREATE OR REPLACE VIEW tabla_clientes AS SELECT id_cliente,nombre, CONCAT('$ ',FORMAT(monto_a_favor,0), '???'), CONCAT('$ ',FORMAT(calcular_monto_por_cobrar_cliente(id_cliente),0)) FROM cliente; When I compile this. Appears errors from the name of fields. Description | Object ---------------------------------------------------------------------------- Syntax error, insert ";" to complete BlockStatements | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} Syntax error on tokens, delete these tokens | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} Syntax error on token ",", delete this token | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} If I change the name at this field appears other error.

    Read the article

  • Caveates on the html options of <pre> <code> [on hold]

    - by user2935199
    Over at html syntax to display literal string i asked about displaying a literal. When i tried : http://sdrv.ms/1bEsPWz (as the posted sample will not display, i need to show a picture, as i don't have 10 xxx, i can't insert a picture, I am only left with a skydrive reference) In english, the and syntax was tried but it failed to show all content inside the block. It only showed the "is equal to - pre sample " part. I thought - did not care what was inside ? Can some explain how to make a truely literal block display ? I have my reasons why i don't want to have the " syntax in the html. Thanks

    Read the article

  • MySQL transaction conundrum

    - by David Faitelson
    I need to perform several inserts in a single atomic transaction. For example: start transaction; insert ... insert ... commit; However when MySQL encounters an error it aborts only the particular statement that caused the error. For example, if there is an error in the second insert statement the commit will still take place and the first insert statement will be recorded. Thus, when errors occur a MySQL transaction is not really a transaction. To overcome this problem I have used an error exit handler where I rollback the transaction. Now the transaction is silently aborted but I don't know what was the problem. So here is the conundrum for you: How can I both make MySQL abort a transaction when it encounters an error, and pass the error code on to the caller?

    Read the article

  • MySQL column names and aliases

    - by user329820
    hi, I have read that after select we use column-names but I have found a statement that was like this: SELECT 'A' FROM T WHERE A = NULL; would you lease help me? thanks (A is a column- name here?) my DBMS is MySQL EDITED : the exact question is this that: Will the above statement produce a row (select all that apply)? Notice that ANSI_NULLS is OFF. I want to know that the above statement will work? because some of you said that we should write IS NULL instead of =null

    Read the article

  • Disabled Select drop down checking through PHP

    - by user541597
    I have a couple of drop down boxes I access through POST with PHP. When the boxes are disabled and not equal to zero I have the program do something. However when they are disabled I do not want them to do anything. The way I check if the boxes are active is by using an if statement if ($_POST['box'] != "blank"){ //do something } So basically I check if the box is not in the default blank position run the if statement. However when it is disabled I am not sure how to check or what kind of value it returns if any. What can I add to the if statement so it will not go into the loop when the boxes are disabled? I tried: if ($_POST['box'] != "blank" || $_POST['box'] != ""){ //do something } But that did not work. Any ideas?

    Read the article

  • PHP variable question

    - by Kyle Parisi
    This works: $customerBox = mysql_query("MY SQL STATEMENT HERE"); $boxRow = mysql_fetch_array($customerBox); $customerBox = mysql_query("MY SQL STATEMENT AGAIN"); while($item = mysql_fetch_assoc($customerBox)) { foreach ($item as $columnName = $value) { if (empty($value)) { print $columnName; } } } This does not: $customerBox = mysql_query("MY SQL STATEMENT HERE"); $boxRow = mysql_fetch_array($customerBox); while($item = mysql_fetch_assoc($customerBox)) { foreach ($item as $columnName = $value) { if (empty($value)) { print $columnName; } } } Why? I guess I don't understand how variables work yet.

    Read the article

  • FILE Type Not Recognized in MFC

    - by Chicko Bueno
    I'm using FILE type in my MFC project but after compiled, it shows the following errors: Error 23 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int Error 24 error C4430: missing type specifier - int assumed. Note: C++ does not support default-int Error 22 error C2146: syntax error : missing ';' before identifier 'm_pFileW' Those errors are referring to this code: FILE *m_pFileW; Did I missing any library header to use FILE syntax? Do I need to use different approach and replace FILE syntax? This errors are only generated when I placed it into my MFC project. This is not happening in C++ Console. Please help. Thank you.

    Read the article

  • Can return and else statements be used interchangable in CFScript?

    - by Mel
    I would like to know your opinion on using return and else statements interchangeably in CFScript. I generally use the following syntax: if (something) { // Do something } else { // Do something else } It recently occurred to me I could do this instead: if (something) { // Do something return; } // Do something else Would those two styles yield a different end result? I like not having to wrap code in an else statement. My thinking is that if the if statement evaluates true and returns, the code below it will not run. If it does not evaluate true, then the code below it will run regardless of whether it is wrapped in an else statement or not. Does that sound write?

    Read the article

  • Chaining your own method in Ruby on Rails

    - by steven_noble
    In my Rails app, I am used to using syntax like the following in a number of places, including helpers/application_helper.rb: def my_method(x,y) return x+y end I am also used to calling the resulting method from basically anywhere in my app using syntax like this: my_method(2,3) However, I'd like to be able to use syntax like like this: class_from_my_rails_app.my_method(3) How and where do I define my_method so I can use it like this? I'm happy to consult the documentation, but I just don't know what the latter style is called. What do you call it? Many thanks, Steven.

    Read the article

  • The Cash or Credit problem

    - by Josh K
    If you go to a store and ask "Cash or Credit?" they might simply say "Yes." This doesn't tell you anything as you posed an OR statement. if(cash || credit) With humans it's possible that they might respond "Both" to that question, or "Only {cash | credit}." Is there a way (or operator) to force the a statement to return the TRUE portions of a statement? For example: boolean cash = true; boolean credit = true; boolean cheque = false; if(cash || credit || cheque ) { // In here you would have an array with cash and credit in it because both of those are true }

    Read the article

  • Java Insert Help...???

    - by El Classico
    I am trying to do an Insert, Update and Delete on a table in MS Access. Everything works fine for a SELECT statement. But when doing the other three operations, I don't seem to get any errors, but the actions are not reflected on to the DB. Please help... THe INSERT statement is as follows: PreparedStatement ps = con.prepareStatement("INSERT INTO Student VALUES (?, ?, ?, ?, ?, ?, ?, ?)"); ps.setInt(1,1); ps.setString(2,"ish"); ps.setInt(3,100); ps.setInt(4,100); ps.setInt(5,100); ps.setInt(6,300); ps.setInt(7,100); ps.setString(8,"A"); ps.executeUpdate(); Also may I know why PreparedStatement is used except for SELECT statement...

    Read the article

  • "this" in JavaScript

    - by cf_PhillipSenn
    I'm trying to understand the syntax of how to put together a JavaScript function as an object. Q: Is this the right way to do it? The reason why I ask is because I'm looking at it in Firebug and I was hoping to be able to drill down and see the value of myVar and myVariable, but instead Firebug only says that "this" is an object Object. var myObject = { init: function() { var myVar = 1; myObject.myVariable = 2; console.log('"this" when called as an object: ' + this); } } myObject.init(); Also, what's the funny little syntax to call it directly upon declaration? Something about (), but when I remove the last line and put () at the end of the declaration, I get a syntax error.

    Read the article

  • Parsing SQLIO Output to Excel Charts using Regex in PowerShell

    - by Jonathan Kehayias
    Today Joe Webb ( Blog | Twitter ) blogged about The Power of Regex in Powershell, and in his post he shows how to parse the SQL Server Error Log for events of interest. At the end of his blog post Joe asked about other places where Regular Expressions have been useful in PowerShell so I thought I’d blog my script for parsing SQLIO output using Regex in PowerShell, to populate an Excel worksheet and build charts based on the results automatically. If you’ve never used SQLIO, Brent Ozar ( Blog | Twitter...(read more)

    Read the article

  • Parsing SQLIO Output to Excel Charts using Regex in PowerShell

    - by Jonathan Kehayias
    Today Joe Webb ( Blog | Twitter ) blogged about The Power of Regex in Powershell, and in his post he shows how to parse the SQL Server Error Log for events of interest.  At the end of his blog post Joe asked about other places where Regular Expressions have been useful in PowerShell so I thought I’d blog my script for parsing SQLIO output using Regex in PowerShell, to populate an Excel worksheet and build charts based on the results automatically. If you’ve never used SQLIO, Brent Ozar ( Blog...(read more)

    Read the article

  • Reporting Services - It's a Wrap!

    - by smisner
    If you have any experience at all with Reporting Services, you have probably developed a report using the matrix data region. It's handy when you want to generate columns dynamically based on data. If users view a matrix report online, they can scroll horizontally to view all columns and all is well. But if they want to print the report, the experience is completely different and you'll have to decide how you want to handle dynamic columns. By default, when a user prints a matrix report for which the number of columns exceeds the width of the page, Reporting Services determines how many columns can fit on the page and renders one or more separate pages for the additional columns. In this post, I'll explain two techniques for managing dynamic columns. First, I'll show how to use the RepeatRowHeaders property to make it easier to read a report when columns span multiple pages, and then I'll show you how to "wrap" columns so that you can avoid the horizontal page break. Included with this post are the sample RDLs for download. First, let's look at the default behavior of a matrix. A matrix that has too many columns for one printed page (or output to page-based renderer like PDF or Word) will be rendered such that the first page with the row group headers and the inital set of columns, as shown in Figure 1. The second page continues by rendering the next set of columns that can fit on the page, as shown in Figure 2.This pattern continues until all columns are rendered. The problem with the default behavior is that you've lost the context of employee and sales order - the row headers - on the second page. That makes it hard for users to read this report because the layout requires them to flip back and forth between the current page and the first page of the report. You can fix this behavior by finding the RepeatRowHeaders of the tablix report item and changing its value to True. The second (and subsequent pages) of the matrix now look like the image shown in Figure 3. The problem with this approach is that the number of printed pages to flip through is unpredictable when you have a large number of potential columns. What if you want to include all columns on the same page? You can take advantage of the repeating behavior of a tablix and get repeating columns by embedding one tablix inside of another. For this example, I'm using SQL Server 2008 R2 Reporting Services. You can get similar results with SQL Server 2008. (In fact, you could probably do something similar in SQL Server 2005, but I haven't tested it. The steps would be slightly different because you would be working with the old-style matrix as compared to the new-style tablix discussed in this post.) I created a dataset that queries AdventureWorksDW2008 tables: SELECT TOP (100) e.LastName + ', ' + e.FirstName AS EmployeeName, d.FullDateAlternateKey, f.SalesOrderNumber, p.EnglishProductName, sum(SalesAmount) as SalesAmount FROM FactResellerSales AS f INNER JOIN DimProduct AS p ON p.ProductKey = f.ProductKey INNER JOIN DimDate AS d ON d.DateKey = f.OrderDateKey INNER JOIN DimEmployee AS e ON e.EmployeeKey = f.EmployeeKey GROUP BY p.EnglishProductName, d.FullDateAlternateKey, e.LastName + ', ' + e.FirstName, f.SalesOrderNumber ORDER BY EmployeeName, f.SalesOrderNumber, p.EnglishProductName To start the report: Add a matrix to the report body and drag Employee Name to the row header, which also creates a group. Next drag SalesOrderNumber below Employee Name in the Row Groups panel, which creates a second group and a second column in the row header section of the matrix, as shown in Figure 4. Now for some trickiness. Add another column to the row headers. This new column will be associated with the existing EmployeeName group rather than causing BIDS to create a new group. To do this, right-click on the EmployeeName textbox in the bottom row, point to Insert Column, and then click Inside Group-Right. Then add the SalesOrderNumber field to this new column. By doing this, you're creating a report that repeats a set of columns for each EmployeeName/SalesOrderNumber combination that appears in the data. Next, modify the first row group's expression to group on both EmployeeName and SalesOrderNumber. In the Row Groups section, right-click EmployeeName, click Group Properties, click the Add button, and select [SalesOrderNumber]. Now you need to configure the columns to repeat. Rather than use the Columns group of the matrix like you might expect, you're going to use the textbox that belongs to the second group of the tablix as a location for embedding other report items. First, clear out the text that's currently in the third column - SalesOrderNumber - because it's already added as a separate textbox in this report design. Then drag and drop a matrix into that textbox, as shown in Figure 5. Again, you need to do some tricks here to get the appearance and behavior right. We don't really want repeating rows in the embedded matrix, so follow these steps: Click on the Rows label which then displays RowGroup in the Row Groups pane below the report body. Right-click on RowGroup,click Delete Group, and select the option to delete associated rows and columns. As a result, you get a modified matrix which has only a ColumnGroup in it, with a row above a double-dashed line for the column group and a row below the line for the aggregated data. Let's continue: Drag EnglishProductName to the data textbox (below the line). Add a second data row by right-clicking EnglishProductName, pointing to Insert Row, and clicking Below. Add the SalesAmount field to the new data textbox. Now eliminate the column group row without eliminating the group. To do this, right-click the row above the double-dashed line, click Delete Rows, and then select Delete Rows Only in the message box. Now you're ready for the fit and finish phase: Resize the column containing the embedded matrix so that it fits completely. Also, the final column in the matrix is for the column group. You can't delete this column, but you can make it as small as possible. Just click on the matrix to display the row and column handles, and then drag the right edge of the rightmost column to the left to make the column virtually disappear. Next, configure the groups so that the columns of the embedded matrix will wrap. In the Column Groups pane, right-click ColumnGroup1 and click on the expression button (labeled fx) to the right of Group On [EnglishProductName]. Replace the expression with the following: =RowNumber("SalesOrderNumber" ). We use SalesOrderNumber here because that is the name of the group that "contains" the embedded matrix. The next step is to configure the number of columns to display before wrapping. Click any cell in the matrix that is not inside the embedded matrix, and then double-click the second group in the Row Groups pane - SalesOrderNumber. Change the group expression to the following expression: =Ceiling(RowNumber("EmployeeName")/3) The last step is to apply formatting. In my example, I set the SalesAmount textbox's Format property to C2 and also right-aligned the text in both the EnglishProductName and the SalesAmount textboxes. And voila - Figure 6 shows a matrix report with wrapping columns. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • SSIS packages incompatibilities between SSIS 2008 and SSIS 2008 R2

    - by Marco Russo (SQLBI)
    When you install SQL 2008 R2 workstation components you get a newer version of BIDS (BI Developer Studio, included in the workstation components) that replaces BIDS 2008 version (BIDS 2005 still live side-by-side). Everything would be good if you can use the newer version to edit any 2008 AND 2008R2 project. SSIS editor doesn't offer a way to set the "compatibility level" of the package, becuase it is almost all unchanged. However, if a package has an ADO.NET Destination Adapter, there is a difference...(read more)

    Read the article

< Previous Page | 826 827 828 829 830 831 832 833 834 835 836 837  | Next Page >