Search Results

Search found 3861 results on 155 pages for 'assignment operator'.

Page 9/155 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Union,Except and Intersect operator in Linq

    - by Jalpesh P. Vadgama
    While developing a windows service using Linq-To-SQL i was in need of something that will intersect the two list and return a list with the result. After searching on net i have found three great use full operators in Linq Union,Except and Intersect. Here are explanation of each operator. Union Operator: Union operator will combine elements of both entity and return result as third new entities. Except Operator: Except operator will remove elements of first entities which elements are there in second entities and will return as third new entities. Intersect Operator: As name suggest it will return common elements of both entities and return result as new entities. Let’s take a simple console application as  a example where i have used two string array and applied the three operator one by one and print the result using Console.Writeline. Here is the code for that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };             string[] b = { "d","e","f","g"};               var UnResult = a.Union(b);             Console.WriteLine("Union Result");               foreach (string s in UnResult)             {                 Console.WriteLine(s);                          }               var ExResult = a.Except(b);             Console.WriteLine("Except Result");             foreach (string s in ExResult)             {                 Console.WriteLine(s);             }               var InResult = a.Intersect(b);             Console.WriteLine("Intersect Result");             foreach (string s in InResult)             {                 Console.WriteLine(s);             }             Console.ReadLine();                        }          } }   Parsed in 0.022 seconds at 45.54 KB/s Here is the output of console application as Expected. Hope this will help you.. Technorati Tags: Linq,Except,InterSect,Union,C#

    Read the article

  • Using LIKE operator in LINQ to Entity

    - by Draconic
    Hi, everybody! Currently in our project we are using Entity Framework and LINQ. We want to create a search feature where the Client fills different filters but he isn't forced to. To do this "dynamic" query in LINQ, we thought about using the Like operator, searching either for the field, or "%" to get everything if the user didn't fill that field. The joke's on us when we discovered it didn't support Like. After some searching, we read several answers where it's sugested to use StartsWith, but it's useless for us. Is the only solution using something like: ObjectQuery<Contact> contacts = db.Contacts; if (pattern != "") { contacts = contacts.Where(“it.Name LIKE @pattern”); contacts.Parameters.Add(new ObjectParameter(“pattern”, pattern); } However, we'd like to stick with linq only. Happy coding!

    Read the article

  • Why doesn't the conditional operator correctly allow the use of "null" for assignment to nullable ty

    - by Daniel Coffman
    This will not compile, stating "Type of conditional expression cannot be determined because there is no implicit conversion between 'System.DateTime' and ''" task.ActualEndDate = TextBoxActualEndDate.Text != "" ? DateTime.Parse(TextBoxActualEndDate.Text) : null; This works just fine if (TextBoxActualEndDate.Text != "") task.ActualEndDate = DateTime.Parse(TextBoxActualEndDate.Text); else task.ActualEndDate = null;

    Read the article

  • What division operator symbol would you pick?

    - by Mackenzie
    I am currently designing and implementing a small programming language as an extra-credit project in a class I'm taking. My problem is that the language has three numeric types: Long, Double, and Fraction. Fractions can be written in the language as proper or improper fractions (e.g. "2 1/3" or "1/2"). This fact leads to problems such as "2/3.5" (Long/Double) and "2/3"(Long/Long) not being handled correctly by the lexer.The best solution that I see is to change the division operator. So far, I think "\" is the best solution since "//" starts comments. Would you pick "\", if you were designing the language? Would you pick something else? If so, what? Note: changing the way fractions are written is not possible. Thanks in advance for your help,

    Read the article

  • F# operator over-loading question

    - by jyoung
    The following code fails in 'Evaluate' with: "This expression was expected to have type Complex but here has type double list" Am I breaking some rule on operator over-loading on '(+)'? Things are OK if I change '(+)' to 'Add'. open Microsoft.FSharp.Math /// real power series [kn; ...; k0] => kn*S^n + ... + k0*S^0 type Powers = double List let (+) (ls:Powers) (rs:Powers) = let rec AddReversed (ls:Powers) (rs:Powers) = match ( ls, rs ) with | ( l::ltail, r::rtail ) -> ( l + r ) :: AddReversed ltail rtail | ([], _) -> rs | (_, []) -> ls ( AddReversed ( ls |> List.rev ) ( rs |> List.rev) ) |> List.rev let Evaluate (ks:Powers) ( value:Complex ) = ks |> List.fold (fun (acc:Complex) (k:double)-> acc * value + Complex.Create(k, 0.0) ) Complex.Zero

    Read the article

  • Specification Pattern and Boolean Operator Precedence

    - by Anders Nielsen
    In our project, we have implemented the Specification Pattern with boolean operators (see DDD p 274), like so: public abstract class Rule { public Rule and(Rule rule) { return new AndRule(this, rule); } public Rule or(Rule rule) { return new OrRule(this, rule); } public Rule not() { return new NotRule(this); } public abstract boolean isSatisfied(T obj); } class AndRule extends Rule { private Rule one; private Rule two; AndRule(Rule one, Rule two) { this.one = one; this.two = two; } public boolean isSatisfied(T obj) { return one.isSatisfied(obj) && two.isSatisfied(obj); } } class OrRule extends Rule { private Rule one; private Rule two; OrRule(Rule one, Rule two) { this.one = one; this.two = two; } public boolean isSatisfied(T obj) { return one.isSatisfied(obj) || two.isSatisfied(obj); } } class NotRule extends Rule { private Rule rule; NotRule(Rule obj) { this.rule = obj; } public boolean isSatisfied(T obj) { return !rule.isSatisfied(obj); } } Which permits a nice expressiveness of the rules using method-chaining, but it doesn't support the standard operator precedence rules of which can lead to subtle errors. The following rules are not equivalent: Rule<Car> isNiceCar = isRed.and(isConvertible).or(isFerrari); Rule<Car> isNiceCar2 = isFerrari.or(isRed).and(isConvertible); The rule isNiceCar2 is not satisfied if the car is not a convertible, which can be confusing since if they were booleans isRed && isConvertible || isFerrari would be equivalent to isFerrari || isRed && isConvertible I realize that they would be equivalent if we rewrote isNiceCar2 to be isFerrari.or(isRed.and(isConvertible)), but both are syntactically correct. The best solution we can come up with, is to outlaw the method-chaining, and use constructors instead: OR(isFerrari, AND(isConvertible, isRed)) Does anyone have a better suggestion?

    Read the article

  • Java operator overloading

    - by nimcap
    Not using operators makes my code obscure. (aNumber / aNother) * count is better than aNumber.divideBy(aNother).times(count) After 6 months of not writing a single comment I had to write a comment to the simple operation above. Usually I refactor until I don't need comment. And this made me realize that it is easier to read and perceive math symbols and numbers than their written forms. For example TWENTY_THOUSAND_THIRTEEN.plus(FORTY_TWO.times(TWO_HUNDERED_SIXTY_ONE)) is more obscure than 20013 + 42*261 So do you know a way to get rid of obscurity while not using operator overloading in Java? Update: I did not think my exaggeration on comments would cause such trouble to me. I am admitting that I needed to write comment a couple of times in 6 months. But not more than 10 lines in total. Sorry for that. Update 2: Another example: budget.plus(bonusCoefficient.times(points)) is more obscure than budget + bonusCoefficient * points I have to stop and think on the first one, at first sight it looks like clutter of words, on the other hand, I get the meaning at first look for the second one, it is very clear and neat. I know this cannot be achieved in Java but I wanted to hear some ideas about my alternatives.

    Read the article

  • Conditional operator in Mako using Pylons

    - by Antoine Leclair
    In PHP, I often use the conditional operator to add an attribute to an html element if it applies to the element in question. For example: <select name="blah"> <option value="1"<?= $blah == 1 ? ' selected="selected"' : '' ?>> One </option> <option value="2"<?= $blah == 2 ? ' selected="selected"' : '' ?>> Two </option> </select> I'm starting a project with Pylons using Mako for the templating. How can I achieve something similar? Right now, I see two possibilities that are not ideal. Solution 1: <select name="blah"> % if blah == 1: <option value="1" selected="selected">One</option> % else: <option value="1">One</option> % endif % if blah == 2: <option value="2" selected="selected">Two</option> % else: <option value="2">Two</option> % endif </select> Solution 2: <select name="blah"> <option value="1" % if blah == 1: selected="selected" % endif >One</option> <option value="2" % if blah == 2: selected="selected" % endif >Two</option> </select> In this particular case, the value is equal to the variable tested (value="1" = blah == 1), but I use the same pattern in other situations, like <?= isset($variable) ? ' value="$variable" : '' ?>. I am looking for a clean way to achieve this using Mako.

    Read the article

  • Type result with Ternary operator in C#

    - by Vaccano
    I am trying to use the ternary operator, but I am getting hung up on the type it thinks the result should be. Below is an example that I have contrived to show the issue I am having: class Program { public static void OutputDateTime(DateTime? datetime) { Console.WriteLine(datetime); } public static bool IsDateTimeHappy(DateTime datetime) { if (DateTime.Compare(datetime, DateTime.Parse("1/1")) == 0) return true; return false; } static void Main(string[] args) { DateTime myDateTime = DateTime.Now; OutputDateTime(IsDateTimeHappy(myDateTime) ? null : myDateTime); Console.ReadLine(); ^ } | } | // This line has the compile issue ---------------+ On the line indicated above, I get the following compile error: Type of conditional expression cannot be determined because there is no implicit conversion between '< null ' and 'System.DateTime' I am confused because the parameter is a nullable type (DateTime?). Why does it need to convert at all? If it is null then use that, if it is a date time then use that. I was under the impression that: condition ? first_expression : second_expression; was the same as: if (condition) first_expression; else second_expression; Clearly this is not the case. What is the reasoning behind this? (NOTE: I know that if I make "myDateTime" a nullable DateTime then it will work. But why does it need it? As I stated earlier this is a contrived example. In my real example "myDateTime" is a data mapped value that cannot be made nullable.)

    Read the article

  • Efficiency of manually written loops vs operator overloads (C++)

    - by Sagekilla
    Hi all, in the program I'm working on I have 3-element arrays, which I use as mathematical vectors for all intents and purposes. Through the course of writing my code, I was tempted to just roll my own Vector class with simple +, -, *, /, etc overloads so I can simplify statements like: for (int i = 0; i < 3; i++) r[i] = r1[i] - r2[i]; // becomes: r = r1 - r2; Which should be more or less identical in generated code. But when it comes to more complicated things, could this really impact my performance heavily? One example that I have in my code is this: Manually written version: for (int j = 0; j < 3; j++) { p.vel[j] = p.oldVel[j] + (p.oldAcc[j] + p.acc[j]) * dt2 + (p.oldJerk[j] - p.jerk[j]) * dt12; p.pos[j] = p.oldPos[j] + (p.oldVel[j] + p.vel[j]) * dt2 + (p.oldAcc[j] - p.acc[j]) * dt12; } Using a Vector class with operator overloads: p.vel = p.oldVel + (p.oldAcc + p.acc) * dt2 + (p.oldJerk - p.jerk) * dt12; p.pos = p.oldPos + (p.oldVel + p.vel) * dt2 + (p.oldAcc - p.acc) * dt12; I am compiling my code for maximum possible speed, as it's extremely important that this code runs quickly and calculates accurately. So will me relying on my Vector's for these sorts of things really affect me? For those curious, this is part of some numerical integration code which is not trivial to run in my program. Any insight would be appreciated, as would any idioms or tricks I'm unaware of.

    Read the article

  • Pair equal operator overloading for inserting into set

    - by Petwoip
    I am trying to add a pair<int,int> to a set. If a pair shares the same two values as another in the set, it should not be inserted. Here's my non-working code: typedef std::pair<int, int> PairInt; template<> bool std::operator==(const PairInt& l, const PairInt& r) { return (l.first == r.first && l.second == r.second) || (l.first == r.second && l.second == r.first); } int main() { std::set<PairInt> intSet; intSet.insert(PairInt(1,3)); intSet.insert(PairInt(1,4)); intSet.insert(PairInt(1,4)); intSet.insert(PairInt(4,1)); } At the moment, the (4,1) pair gets added even though there is already a (1,4) pair. The final contents of the set are: (1 3) (1 4) (4 1) and I want it to be (1 3) (1 4) I've tried putting breakpoints in the overloaded method, but they never get reached. What have I done wrong?

    Read the article

  • BPM 11g - Dynamic Task Assignment with Multi-level Organization Units

    - by Mark Foster
    I've seen several requirements to have a more granular level of task assignment in BPM 11g based on some value in the data passed to the process. Parametric Roles is normally the first port of call to try to satisfy this requirement, but in this blog we will show how a lot of use-cases can be satisfied by the easier to implement and flexible Organization Unit. The Use-Case Task assignment is to an approval group containing several users. At runtime, a location value in the input data determines which of the particular users the task is ultimately assigned to. In this case we use the Demo Community referenced in the SOA Admin Guide, and specifically the "LoanAnalyticGroup" which contains three users; "szweig", "mmitch" & "fkafka". In our scenario we would like to assign a task to "szweig" if the input data specifies that the location is "JapanCentral", to "fkafka" if the location is "JapanNorth" and to "mmitch" if "JapanSouth", and to all of them if the location is "Japan" i.e....   The Process Simple one human task process.... In the output data association of the "Start" activity we need to set the value of the "Organization Unit" predefined variable based on the input data (note that the  predefined variables can only be set on output data associations)....  ...and in the output data association of the human activity we will reset the "Organization Unit" to empty, always good practice to ensure that the Organization Unit will not be used for any subsequent human activities for which we do not require it.... Set Up the Organization Unit  Log in to the BPM Workspace with an administrator user (weblogic/welcome1 in our case) and choose the "Administration" option. Within "Roles" assign the "ProcessOwner" swim-lane for our process to "LoanAnalyticGroup".... Within "Organization Units" we can model our organization.... "Root Organization Unit" as "Japan" and "Child Organization Unit" as "Central", "South" & "North" as shown. As described previously, add user "szweig" to "Central", "mmitch" to "South" and "fkafka" to "North"....   Test the Process Invalid Data  First let us test with invalid data in the input to see what the consequences are, here we use "X" as input.... ...and looking at the instance we can see it has errored.... Organization Unit Root Level Assignment  Now let us see what happens if we have "Japan" in the input data.... ...looking in the "flow trace" we can see that the task has been assigned....  ... but who has the task been assigned to ? Let us look in the BPM Workspace for user "szweig"....  ...and for "mmitch"....  ... and for "fkafka"....  ...so we can see that with an Organization Unit at "Root" level we have successfully assigned the task to all users. Organization Unit Child Level Assignment  Now let us test with "Japan/North" in the input data.... ...and looking in "fkafka" workspace we see the task has been assigned, remember, he was associated with "JapanNorth"....   ... but what about the workspace of "szweig"....  ...no tasks assigned, neither has "mmitch", just as we expected. Summary  We have seen in this blog how to easily implement multi-level dynamic task routing using Organization Units, a common use-case and a simpler solution than Parametric Roles. 

    Read the article

  • Variable declaration versus assignment syntax

    - by rwallace
    Working on a statically typed language with type inference and streamlined syntax, and need to make final decision about syntax for variable declaration versus assignment. Specifically I'm trying to choose between: // Option 1. Create new local variable with :=, assign with = foo := 1 foo = 2 // Option 2. Create new local variable with =, assign with := foo = 1 foo := 2 Creating functions will use = regardless: // Indentation delimits blocks square x = x * x And assignment to compound objects will do likewise: sky.color = blue a[i] = 0 Which of options 1 or 2 would people find most convenient/least surprising/otherwise best?

    Read the article

  • ASX: Just Another Stock Market Operator

    - by Theresa Hickman
    I try to stay informed with what's happening in global financial markets since we all know they are all interconnected. Last week, on Mar. 11 2010, Australia's Senate passed a law that reduced Australia's stock market's role to just a stock market operator. Before this, ASX (Australian Stock Exchange) acted as both its own regulator and operator (supervising trade actvities and handling the trades) of Australia's stock market. Many viewed this as a conflict of interest. So now, the Australian Securities & Investments Commision (ASIC) will act as regulator and ASX will simply be a stock market operator to ensure the continued integrity of financial markets. I believe what this is doing is laying the groundwork to have more than one stock exchange in Australia. I woudn't be surpised if Nasdaq makes a play. As you may or may not know, Nasdaq had been trying for years to take over control of the London Stock Exchange (LSE), which LSE had rejected because it thinks it is worth more than what Nasdaq is willing to pay. Nasdaq or even NYSE may want a piece of Asia/Pacific because nowadays most of the IPOs are coming from foreign companies outside the US. I didn't know this, but apparently many Asia/Pacific stock exchanges have a monopoly where they act as both regulator and operator. I'll be curious to see what happens after the ASIC meet and decide how to regulate Australia's stock exchange to see how many suitors come running towards Australia's financial market.

    Read the article

  • Nullable types and ?? operator C# [en-US]

    - by ruimachado
    Nullable types vs Non-nullable types   While developing our C# projects its frequent the null comparison operation to avoid null exceptions. This simple operation is mainly coded using the "var x = null" code example inside an if clause. However not all types of variables are nullable, which means that setting a variable to null is not allowed in every cases, it depends on what kind of type are you defining. But what if there was an extension to your non-nullable type that would convert your variable types to nullable? This extension really exists. As I said before in C# you have nullable types which represent all the values of an underlying type, and an additional null value and can be declared easily using "T?", where T is the type of the variable and for example the normal int type cannot be null, so its a non-nullable type, however if you define a "int?" your variable can be null, what you do is convert a non-nullable type to a nullable type. Example: int x=null;     Not allowed     int? x=null;   Allowed     While using nullable types you can check if a variable is null the same way you do it with nullable types:     But what about setting a default value when a certain variable is null?   In this cases the c# .net framework let you set a default value when you try to assign a nullable type to a non-nullable type, using the ?? operator. If you don't use this operator you can still catch the InvalidOperationException which is throw in this cases. For example  without the ?? operator :     Using the ?? operator your code becomes cleaner and more easy to read and you get a bonus, you can set a default value for multiple variables using the ?? in a chain set.     That’s it,   Thanks, Rui Machado rpmachado.wordpress.com

    Read the article

  • C# ?? null coalescing operator

    - by anirudha
    the null coalescing operator is used for set the value when object is null. if object have some value that nothing change and still have their default value they have.  string str = "i am string";            string message = str ?? "it is null";   the message have same value as str variable because str not null. if str is null that message have value “it is null”; as declared in statement. coalescing operator does not work on nullable operator such as int?

    Read the article

  • Why is overloading operator&() prohibited for classes stored in STL containers?

    - by sharptooth
    Suddenly in this article ("problem 2") I see a statement that C++ Standard prohibits using STL containers for storing elemants of class if that class has an overloaded operator&(). Having overloaded operator&() can indeed be problematic, but looks like a default "address-of" operator can be used easily through a set of dirty-looking casts that are used in boost::addressof() and are believed to be portable and standard-compilant. Why is having an overloaded operator&() prohibited for classes stored in STL containers while the boost::addressof() workaround exists?

    Read the article

  • Take,Skip and Reverse Operator in Linq

    - by Jalpesh P. Vadgama
    I have found three more new operators in Linq which is use full in day to day programming stuff. Take,Skip and Reverse. Here are explanation of operators how it works. Take Operator: Take operator will return first N number of element from entities. Skip Operator: Skip operator will skip N number of element from entities and then return remaining elements as a result. Reverse Operator: As name suggest it will reverse order of elements of entities. Here is the examples of operators where i have taken simple string array to demonstrate that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };                           Console.WriteLine("Take Example");             var TkResult = a.Take(2);             foreach (string s in TkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Skip Example");             var SkResult = a.Skip(2);             foreach (string s in SkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Reverse Example");             var RvResult = a.Reverse();             foreach (string s in RvResult)             {                 Console.WriteLine(s);             }                       }     } } Parsed in 0.020 seconds at 44.65 KB/s Here is the output as expected. hope this will help you.. Technorati Tags: Linq,Linq-To-Sql,ASP.NET,C#.NET

    Read the article

  • Operator of the week - Assert

    - by Fabiano Amorim
    Well my friends, I was wondering how to help you in a practical way to understand execution plans. So I think I'll talk about the Showplan Operators. Showplan Operators are used by the Query Optimizer (QO) to build the query plan in order to perform a specified operation. A query plan will consist of many physical operators. The Query Optimizer uses a simple language that represents each physical operation by an operator, and each operator is represented in the graphical execution plan by an icon. I'll try to talk about one operator every week, but so as to avoid having to continue to write about these operators for years, I'll mention only of those that are more common: The first being the Assert. The Assert is used to verify a certain condition, it validates a Constraint on every row to ensure that the condition was met. If, for example, our DDL includes a check constraint which specifies only two valid values for a column, the Assert will, for every row, validate the value passed to the column to ensure that input is consistent with the check constraint. Assert  and Check Constraints: Let's see where the SQL Server uses that information in practice. Take the following T-SQL: IF OBJECT_ID('Tab1') IS NOT NULL   DROP TABLE Tab1 GO CREATE TABLE Tab1(ID Integer, Gender CHAR(1))  GO  ALTER TABLE TAB1 ADD CONSTRAINT ck_Gender_M_F CHECK(Gender IN('M','F'))  GO INSERT INTO Tab1(ID, Gender) VALUES(1,'X') GO To the command above the SQL Server has generated the following execution plan: As we can see, the execution plan uses the Assert operator to check that the inserted value doesn't violate the Check Constraint. In this specific case, the Assert applies the rule, 'if the value is different to "F" and different to "M" than return 0 otherwise returns NULL'. The Assert operator is programmed to show an error if the returned value is not NULL; in other words, the returned value is not a "M" or "F". Assert checking Foreign Keys Now let's take a look at an example where the Assert is used to validate a foreign key constraint. Suppose we have this  query: ALTER TABLE Tab1 ADD ID_Genders INT GO  IF OBJECT_ID('Tab2') IS NOT NULL   DROP TABLE Tab2 GO CREATE TABLE Tab2(ID Integer PRIMARY KEY, Gender CHAR(1))  GO  INSERT INTO Tab2(ID, Gender) VALUES(1, 'F') INSERT INTO Tab2(ID, Gender) VALUES(2, 'M') INSERT INTO Tab2(ID, Gender) VALUES(3, 'N') GO  ALTER TABLE Tab1 ADD CONSTRAINT fk_Tab2 FOREIGN KEY (ID_Genders) REFERENCES Tab2(ID) GO  INSERT INTO Tab1(ID, ID_Genders, Gender) VALUES(1, 4, 'X') Let's look at the text execution plan to see what these Assert operators were doing. To see the text execution plan just execute SET SHOWPLAN_TEXT ON before run the insert command. |--Assert(WHERE:(CASE WHEN NOT [Pass1008] AND [Expr1007] IS NULL THEN (0) ELSE NULL END))      |--Nested Loops(Left Semi Join, PASSTHRU:([Tab1].[ID_Genders] IS NULL), OUTER REFERENCES:([Tab1].[ID_Genders]), DEFINE:([Expr1007] = [PROBE VALUE]))           |--Assert(WHERE:(CASE WHEN [Tab1].[Gender]<>'F' AND [Tab1].[Gender]<>'M' THEN (0) ELSE NULL END))           |    |--Clustered Index Insert(OBJECT:([Tab1].[PK]), SET:([Tab1].[ID] = RaiseIfNullInsert([@1]),[Tab1].[ID_Genders] = [@2],[Tab1].[Gender] = [Expr1003]), DEFINE:([Expr1003]=CONVERT_IMPLICIT(char(1),[@3],0)))           |--Clustered Index Seek(OBJECT:([Tab2].[PK]), SEEK:([Tab2].[ID]=[Tab1].[ID_Genders]) ORDERED FORWARD) Here we can see the Assert operator twice, first (looking down to up in the text plan and the right to left in the graphical plan) validating the Check Constraint. The same concept showed above is used, if the exit value is "0" than keep running the query, but if NULL is returned shows an exception. The second Assert is validating the result of the Tab1 and Tab2 join. It is interesting to see the "[Expr1007] IS NULL". To understand that you need to know what this Expr1007 is, look at the Probe Value (green text) in the text plan and you will see that it is the result of the join. If the value passed to the INSERT at the column ID_Gender exists in the table Tab2, then that probe will return the join value; otherwise it will return NULL. So the Assert is checking the value of the search at the Tab2; if the value that is passed to the INSERT is not found  then Assert will show one exception. If the value passed to the column ID_Genders is NULL than the SQL can't show a exception, in that case it returns "0" and keeps running the query. If you run the INSERT above, the SQL will show an exception because of the "X" value, but if you change the "X" to "F" and run again, it will show an exception because of the value "4". If you change the value "4" to NULL, 1, 2 or 3 the insert will be executed without any error. Assert checking a SubQuery: The Assert operator is also used to check one subquery. As we know, one scalar subquery can't validly return more than one value: Sometimes, however, a  mistake happens, and a subquery attempts to return more than one value . Here the Assert comes into play by validating the condition that a scalar subquery returns just one value. Take the following query: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    |--Assert(WHERE:(CASE WHEN NOT [Pass1016] AND [Expr1015] IS NULL THEN (0) ELSE NULL END))        |--Nested Loops(Left Semi Join, PASSTHRU:([tempdb].[dbo].[Tab1].[ID_TipoSexo] IS NULL), OUTER REFERENCES:([tempdb].[dbo].[Tab1].[ID_TipoSexo]), DEFINE:([Expr1015] = [PROBE VALUE]))              |--Assert(WHERE:([Expr1017]))             |    |--Compute Scalar(DEFINE:([Expr1017]=CASE WHEN [tempdb].[dbo].[Tab1].[Sexo]<>'F' AND [tempdb].[dbo].[Tab1].[Sexo]<>'M' THEN (0) ELSE NULL END))              |         |--Clustered Index Insert(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]), SET:([tempdb].[dbo].[Tab1].[ID_TipoSexo] = [Expr1008],[tempdb].[dbo].[Tab1].[Sexo] = [Expr1009],[tempdb].[dbo].[Tab1].[ID] = [Expr1003]))              |              |--Top(TOP EXPRESSION:((1)))              |                   |--Compute Scalar(DEFINE:([Expr1008]=[Expr1014], [Expr1009]='F'))              |                        |--Nested Loops(Left Outer Join)              |                             |--Compute Scalar(DEFINE:([Expr1003]=getidentity((1856985942),(2),NULL)))              |                             |    |--Constant Scan              |                             |--Assert(WHERE:(CASE WHEN [Expr1013]>(1) THEN (0) ELSE NULL END))              |                                  |--Stream Aggregate(DEFINE:([Expr1013]=Count(*), [Expr1014]=ANY([tempdb].[dbo].[Tab1].[ID_TipoSexo])))             |                                       |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]))              |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[Tab2].[PK__Tab2__3214EC27755C58E5]), SEEK:([tempdb].[dbo].[Tab2].[ID]=[tempdb].[dbo].[Tab1].[ID_TipoSexo]) ORDERED FORWARD)  You can see from this text showplan that SQL Server as generated a Stream Aggregate to count how many rows the SubQuery will return, This value is then passed to the Assert which then does its job by checking its validity. Is very interesting to see that  the Query Optimizer is smart enough be able to avoid using assert operators when they are not necessary. For instance: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1 WHERE ID = 1), 'F') INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT TOP 1 ID_TipoSexo FROM Tab1), 'F')  For both these INSERTs, the Query Optimiser is smart enough to know that only one row will ever be returned, so there is no need to use the Assert. Well, that's all folks, I see you next week with more "Operators". Cheers, Fabiano

    Read the article

  • Like operator in sql server

    - by Geetha
    Hi All, i want to get all the record from the database which contain atleast one word from the input string. Ex: input=Stack over flow select * from sample where name like '%stack%' or name like '%over% or name like '%flow%' Geetha.

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >