Search Results

Search found 4133 results on 166 pages for 'boost graph'.

Page 9/166 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • How to use boost::transform_iterator to iterate over modifed std::map values?

    - by Frank
    I have an std::map, and I would like to define an iterator that returns modified values. Typically, a std::map<int,double>::iterator iterates over std::pair<int,double>, and I would like the same behavior, just the double value is multiplied by a constant. I tried it with boost::transform_iterator, but it doesn't compile: #include <map> #include <boost/iterator/transform_iterator.hpp> #include <boost/functional.hpp> typedef std::map<int,double> Map; Map m; m[100] = 2.24; typedef boost::binder2nd< std::multiplies<double> > Function; typedef boost::transform_iterator<Function, Map::value_type*> MultiplyIter; MultiplyIter begin = boost::make_transform_iterator(m.begin(), Function(std::multiplies<double>(), 4)); // now want to similarly create an end iterator // and then iterate over the modified map The error is: error: conversion from 'boost ::transform_iterator< boost::binder2nd<multiplies<double> >, gen_map<int, double>::iterator , boost::use_default, boost::use_default >' to non-scalar type 'boost::transform_iterator< boost::binder2nd<multiplies<double> >, pair<const int, double> * , boost::use_default, boost::use_default >' requested What is gen_map and do I really need it? I adapted the transform_iterator tutorial code from here to write this code ...

    Read the article

  • Boost Regex unknown number of var

    - by Katrin Thielmann
    I got a Problem with a regex expression and need help. I have some expressions like these in mein .txt File: 19 = NAND (1, 19) regex expression : http://rubular.com/r/U8rO09bvTO With this regex expression i got seperated matches for the numbers. But now I need a regex expression with a unknown size of numbers in the bracket . For example: 19 = NAND (1, 23, 13, 24) match1: 19 match2: 1 match3: 23 match4: 13 match5: 24 I don't know the number of the numbers. So i need a main expression for min 2 numbers in the bracket till a unknow number. I hope somebody can help me.

    Read the article

  • Exposing a pointer in Boost.Python

    - by Goose Bumper
    I have this very simple C++ class: class Tree { public: Node *head; }; BOOST_PYTHON_MODULE(myModule) { class_<Tree>("Tree") .def_readwrite("head",&Tree::head) ; } I want to access the head variable from Python, but the message I see is: No to_python (by-value) converter found for C++ type: Node* From what I understand, this happens because Python is freaking out because it has no concept of pointers. How can I access the head variable from Python? I understand I should use encapsulation, but I'm currently stuck with needing a non-encapsulation solution.

    Read the article

  • boost::spirit (qi) decision between float and double

    - by ChrisInked
    I have a parser which parses different data types from an input file. I already figured out, that spirit can decide between short and int, for example: value %= (shortIntNode | longIntNode); with shortIntNode %= (qi::short_ >> !qi::double_) [qi::_val = phoenix::bind(&CreateShortIntNode, qi::_1)]; longIntNode %= (qi::int_ >> !qi::double_) [qi::_val = phoenix::bind(&CreateLongIntNode, qi::_1)]; I used this type of rules to detect doubles as well (from the answers here and here). The parser was able to decide between int for numbers 65535 and short for numbers <= 65535. But, for float_ and double_ it does not work as expected. It just rounds these values to parse it into a float value, if there is a rule like this: value %= (floatNode | doubleFloatNode); with floatNode %= (qi::float_) [qi::_val = phoenix::bind(&CreateFloatNode, qi::_1)]; doubleFloatNode %= (qi::double_) [qi::_val = phoenix::bind(&CreateDoubleFloatNode, qi::_1)]; Do you know if there is something like an option or some other trick to decide between float_ and double_ depending on the data type range? Thank you very much!

    Read the article

  • Boost Test dynamically or statically linked?

    - by Halt
    We use Boost statically linked with our app but now I wan't to use Boost Test with an external test runner and that requires the tests themselves to link dynamically with Boost.Test through the use of the required BOOST_TEST_DYN_LINK define. Is this going to be a problem or is the way Boost Test links completely unrelated to the way the other Boost libraries are linked? Thx.

    Read the article

  • boost.asio's socket's recieve/send functions are bad?

    - by the_drow
    Data may be read from or written to a connected TCP socket using the receive(), async_receive(), send() or async_send() member functions. However, as these could result in short writes or reads, an application will typically use the following operations instead: read(), async_read(), write() and async_write(). I don't really understand that remark as read(), async_read(), write() and async_write() can also end up in short writes or reads, right? Why are those functions not the same? Should I use them at all? Can someone clarify that remark for me?

    Read the article

  • upgrading boost version

    - by idimba
    I'm using RHEL 5.3, shipped with gcc 4.1.2 and boost 1.33. So, there's no boost::unorded_map, no make_shared() factory function to create boost::shared_ptr and other features available in newer releases of boost. Is there're a newer version of boost compatible with the version of gcc? If yes, how the upgrade is performed?

    Read the article

  • Generic Adjacency List Graph implementation

    - by DmainEvent
    I am trying to come up with a decent Adjacency List graph implementation so I can start tooling around with all kinds of graph problems and algorithms like traveling salesman and other problems... But I can't seem to come up with a decent implementation. This is probably because I am trying to dust the cobwebs off my data structures class. But what I have so far... and this is implemented in Java... is basically an edgeNode class that has a generic type and a weight-in the event the graph is indeed weighted. public class edgeNode<E> { private E y; private int weight; //... getters and setters as well as constructors... } I have a graph class that has a list of edges a value for the number of Vertices and and an int value for edges as well as a boolean value for whether or not it is directed. The brings up my first question, if the graph is indeed directed, shouldn't I have a value in my edgeNode class? Or would I just need to add another vertices to my LinkedList? That would imply that a directed graph is 2X as big as an undirected graph wouldn't it? public class graph { private List<edgeNode<?>> edges; private int nVertices; private int nEdges; private boolean directed; //... getters and setters as well as constructors... } Finally does anybody have a standard way of initializing there graph? I was thinking of reading in a pipe-delimited file but that is so 1997. public graph GenereateGraph(boolean directed, String file){ List<edgeNode<?>> edges; graph g; try{ int count = 0; String line; FileReader input = new FileReader("C:\\Users\\derekww\\Documents\\JavaEE Projects\\graphFile"); BufferedReader bufRead = new BufferedReader(input); line = bufRead.readLine(); count++; edges = new ArrayList<edgeNode<?>>(); while(line != null){ line = bufRead.readLine(); Object edgeInfo = line.split("|")[0]; int weight = Integer.parseInt(line.split("|")[1]); edgeNode<String> e = new edgeNode<String>((String) edges.add(e); } return g; } catch(Exception e){ return null; } } I guess when I am adding edges if boolean is true I would be adding a second edge. So far, this all depends on the file I write. So if I wrote a file with the following Vertices and weights... Buffalo | 18 br Pittsburgh | 20 br New York | 15 br D.C | 45 br I would obviously load them into my list of edges, but how can I represent one vertices connected to the other... so on... I would need the opposite vertices? Say I was representing Highways connected to each city weighted and un-directed (each edge is bi-directional with weights in some fictional distance unit)... Would my implementation be the best way to do that? I found this tutorial online Graph Tutorial that has a connector object. This appears to me be a collection of vertices pointing to each other. So you would have A and B each with there weights and so on, and you would add this to a list and this list of connectors to your graph... That strikes me as somewhat cumbersome and a little dismissive of the adjacency list concept? Am I wrong and that is a novel solution? This is all inspired by steve skiena's Algorithm Design Manual. Which I have to say is pretty good so far. Thanks for any help you can provide.

    Read the article

  • Using boost::random as the RNG for std::random_shuffle

    - by Greg Rogers
    I have a program that uses the mt19937 random number generator from boost::random. I need to do a random_shuffle and want the random numbers generated for this to be from this shared state so that they can be deterministic with respect to the mersenne twister's previously generated numbers. I tried something like this: void foo(std::vector<unsigned> &vec, boost::mt19937 &state) { struct bar { boost::mt19937 &_state; unsigned operator()(unsigned i) { boost::uniform_int<> rng(0, i - 1); return rng(_state); } bar(boost::mt19937 &state) : _state(state) {} } rand(state); std::random_shuffle(vec.begin(), vec.end(), rand); } But i get a template error calling random_shuffle with rand. However this works: unsigned bar(unsigned i) { boost::mt19937 no_state; boost::uniform_int<> rng(0, i - 1); return rng(no_state); } void foo(std::vector<unsigned> &vec, boost::mt19937 &state) { std::random_shuffle(vec.begin(), vec.end(), bar); } Probably because it is an actual function call. But obviously this doesn't keep the state from the original mersenne twister. What gives? Is there any way to do what I'm trying to do without global variables?

    Read the article

  • How to represent a graph with multiple edges allowed between nodes and edges that can selectively disappear

    - by Pops
    I'm trying to figure out what sort of data structure to use for modeling some hypothetical, idealized network usage. In my scenario, a number of users who are hostile to each other are all trying to form networks of computers where all potential connections are known. The computers that one user needs to connect may not be the same as the ones another user needs to connect, though; user 1 might need to connect computers A, B and D while user 2 might need to connect computers B, C and E. Image generated with the help of NCTM Graph Creator I think the core of this is going to be an undirected cyclic graph, with nodes representing computers and edges representing Ethernet cables. However, due to the nature of the scenario, there are a few uncommon features that rule out adjacency lists and adjacency matrices (at least, without non-trivial modifications): edges can become restricted-use; that is, if one user acquires a given network connection, no other user may use that connection in the example, the green user cannot possibly connect to computer A, but the red user has connected B to E despite not having a direct link between them in some cases, a given pair of nodes will be connected by more than one edge in the example, there are two independent cables running from D to E, so the green and blue users were both able to connect those machines directly; however, red can no longer make such a connection if two computers are connected by more than one cable, each user may own no more than one of those cables I'll need to do several operations on this graph, such as: determining whether any particular pair of computers is connected for a given user identifying the optimal path for a given user to connect target computers identifying the highest-latency computer connection for a given user (i.e. longest path without branching) My first thought was to simply create a collection of all of the edges, but that's terrible for searching. The best thing I can think to do now is to modify an adjacency list so that each item in the list contains not only the edge length but also its cost and current owner. Is this a sensible approach? Assuming space is not a concern, would it be reasonable to create multiple copies of the graph (one for each user) rather than a single graph?

    Read the article

  • Graphviz or Dynagraph for Graph-manipulation Program?

    - by noahlavine
    I'm looking into writing a program that will show a graph to the user. The graph will change over time (the user should be able to right-click on a graph item and ask for more detail, which will pop out new bits of the graph), and the user might be able to drag parts of the graph around. I would ideally also like to be able to specify the relative layout of certain parts of the graph myself while leaving the overall layout up to a library, but that's not essential. I'm trying to decide on a graph layout library to use. As far as I can tell, the two leading candidates are Graphviz and Dynagraph. The Dynagraph website suggests that Graphviz is for drawing static graphs, and that Dynagraph was forked from Graphviz and contains algorithms for graphs that will be updated. It has a sample program called Dynasty that does exactly what I want. However, the Graphviz site contains an example program called Lefty which seems to do exactly what I want. Graphviz also seems to be much more widely used, judging by Google (and SO) results. Finally, I'd like to code the GUI part in a language like Python or Scheme, which makes me a bit hesitant to use C++ because I understand it's harder to interface that to interpreters. So my question is, which library is better for what I'm trying to do? Do they both have strong and weak points? Has one of them actually ceased development and is just leaving its website up to confuse me? (I've seen http://stackoverflow.com/questions/464000/simple-dynamic-graph-display-for-c and http://stackoverflow.com/questions/2376987/open-source-libraries-to-design-directed-graphs, but I can't tell whether they're right about the Graphviz or Dynagraph choice because of Lefty and also the language issue.)

    Read the article

  • Scalable / Parallel Large Graph Analysis Library?

    - by Joel Hoff
    I am looking for good recommendations for scalable and/or parallel large graph analysis libraries in various languages. The problems I am working on involve significant computational analysis of graphs/networks with 1-100 million nodes and 10 million to 1+ billion edges. The largest SMP computer I am using has 256 GB memory, but I also have access to an HPC cluster with 1000 cores, 2 TB aggregate memory, and MPI for communication. I am primarily looking for scalable, high-performance graph libraries that could be used in either single or multi-threaded scenarios, but parallel analysis libraries based on MPI or a similar protocol for communication and/or distributed memory are also of interest for high-end problems. Target programming languages include C++, C, Java, and Python. My research to-date has come up with the following possible solutions for these languages: C++ -- The most viable solutions appear to be the Boost Graph Library and Parallel Boost Graph Library. I have looked briefly at MTGL, but it is currently slanted more toward massively multithreaded hardware architectures like the Cray XMT. C - igraph and SNAP (Small-world Network Analysis and Partitioning); latter uses OpenMP for parallelism on SMP systems. Java - I have found no parallel libraries here yet, but JGraphT and perhaps JUNG are leading contenders in the non-parallel space. Python - igraph and NetworkX look like the most solid options, though neither is parallel. There used to be Python bindings for BGL, but these are now unsupported; last release in 2005 looks stale now. Other topics here on SO that I've looked at have discussed graph libraries in C++, Java, Python, and other languages. However, none of these topics focused significantly on scalability. Does anyone have recommendations they can offer based on experience with any of the above or other library packages when applied to large graph analysis problems? Performance, scalability, and code stability/maturity are my primary concerns. Most of the specialized algorithms will be developed by my team with the exception of any graph-oriented parallel communication or distributed memory frameworks (where the graph state is distributed across a cluster).

    Read the article

  • is Boost Library's weighted median broken?

    - by user624188
    I confess that I am no expert in C++. I am looking for a fast way to compute weighted median, which Boost seemed to have. But it seems I am not able to make it work. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/median.hpp> #include <boost/accumulators/statistics/weighted_median.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::median > > acc1; accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << median(acc1) << std::endl; std::cout << "Weighted Median: " << median(acc2) << std::endl; return 0; } produces the following output, which is clearly wrong. Median: 0.3 Weighted Median: 0.3 Am I doing something wrong? Any help will be greatly appreciated. * however, the weighted sum works correctly * @glowcoder: The weighted sum works perfectly fine like this. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/sum.hpp> #include <boost/accumulators/statistics/weighted_sum.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::sum > > acc1; accumulator_set<double, stats<tag::sum >, float> acc2; // accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << sum(acc1) << std::endl; std::cout << "Weighted Median: " << sum(acc2) << std::endl; return 0; } and the result is Sum: 2.1 Weighted Sum: 1.5

    Read the article

  • trying to build Boost MPI, but the lib files are not created. What's going on?

    - by unknownthreat
    I am trying to run a program with Boost MPI, but the thing is I don't have the .lib. So I try to create one by following the instruction at http://www.boost.org/doc/libs/1_43_0/doc/html/mpi/getting_started.html#mpi.config The instruction says "For many users using LAM/MPI, MPICH, or OpenMPI, configuration is almost automatic", I got myself OpenMPI in C:\, but I didn't do anything more with it. Do we need to do anything with it? Beside that, another statement from the instruction: "If you don't already have a file user-config.jam in your home directory, copy tools/build/v2/user-config.jam there." Well, I simply do what it says. I got myself "user-config.jam" in C:\boost_1_43_0 along with "using mpi ;" into the file. Next, this is what I've done: bjam --with-mpi C:\boost_1_43_0>bjam --with-mpi WARNING: No python installation configured and autoconfiguration failed. See http://www.boost.org/libs/python/doc/building.html for configuration instructions or pass --without-python to suppress this message and silently skip all Boost.Python targets Building the Boost C++ Libraries. warning: skipping optional Message Passing Interface (MPI) library. note: to enable MPI support, add "using mpi ;" to user-config.jam. note: to suppress this message, pass "--without-mpi" to bjam. note: otherwise, you can safely ignore this message. warning: Unable to construct ./stage-unversioned warning: Unable to construct ./stage-unversioned Component configuration: - date_time : not building - filesystem : not building - graph : not building - graph_parallel : not building - iostreams : not building - math : not building - mpi : building - program_options : not building - python : not building - random : not building - regex : not building - serialization : not building - signals : not building - system : not building - test : not building - thread : not building - wave : not building ...found 1 target... The Boost C++ Libraries were successfully built! The following directory should be added to compiler include paths: C:\boost_1_43_0 The following directory should be added to linker library paths: C:\boost_1_43_0\stage\lib C:\boost_1_43_0> I see that there are many libs in C:\boost_1_43_0\stage\lib, but I see no trace of libboost_mpi-vc100-mt-1_43.lib or libboost_mpi-vc100-mt-gd-1_43.lib at all. These are the libraries required for linking in mpi applications. What could possibly gone wrong when libraries are not being built?

    Read the article

  • Do newer versions of BJam support backwards compatibility with older versions of Boost?

    - by cmmacphe
    I'm trying to build version 1.35 of Boost with the newest version of bjam that is bundled with version 1.42 Boost. Will this adversely affect the results of the build? Is this even possible? The reason I'm trying to do this is because the newest version of BJam has support for command line options that are not included in the older version of BJam that comes bundled with 1.35 of boost.

    Read the article

  • Can't figure out where race condition is occuring

    - by Nik
    I'm using Valgrind --tool=drd to check my application that uses Boost::thread. Basically, the application populates a set of "Book" values with "Kehai" values based on inputs through a socket connection. On a seperate thread, a user can connect and get the books send to them. Its fairly simple, so i figured using a boost::mutex::scoped_lock on the location that serializes the book and the location that clears out the book data should be suffice to prevent any race conditions. Here is the code: void Book::clear() { boost::mutex::scoped_lock lock(dataMutex); for(int i =NUM_KEHAI-1; i >= 0; --i) { bid[i].clear(); ask[i].clear(); } } int Book::copyChangedKehaiToString(char* dst) const { boost::mutex::scoped_lock lock(dataMutex); sprintf(dst, "%-4s%-13s",market.c_str(),meigara.c_str()); int loc = 17; for(int i = 0; i < Book::NUM_KEHAI; ++i) { if(ask[i].changed > 0) { sprintf(dst+loc,"A%i%-21s%-21s%-21s%-8s%-4s",i,ask[i].price.c_str(),ask[i].volume.c_str(),ask[i].number.c_str(),ask[i].postTime.c_str(),ask[i].status.c_str()); loc += 77; } } for(int i = 0; i < Book::NUM_KEHAI; ++i) { if(bid[i].changed > 0) { sprintf(dst+loc,"B%i%-21s%-21s%-21s%-8s%-4s",i,bid[i].price.c_str(),bid[i].volume.c_str(),bid[i].number.c_str(),bid[i].postTime.c_str(),bid[i].status.c_str()); loc += 77; } } return loc; } The clear() function and the copyChangedKehaiToString() function are called in the datagetting thread and data sending thread,respectively. Also, as a note, the class Book: struct Book { private: Book(const Book&); Book& operator=(const Book&); public: static const int NUM_KEHAI=10; struct Kehai; friend struct Book::Kehai; struct Kehai { private: Kehai& operator=(const Kehai&); public: std::string price; std::string volume; std::string number; std::string postTime; std::string status; int changed; Kehai(); void copyFrom(const Kehai& other); Kehai(const Kehai& other); inline void clear() { price.assign(""); volume.assign(""); number.assign(""); postTime.assign(""); status.assign(""); changed = -1; } }; std::vector<Kehai> bid; std::vector<Kehai> ask; tm recTime; mutable boost::mutex dataMutex; Book(); void clear(); int copyChangedKehaiToString(char * dst) const; }; When using valgrind --tool=drd, i get race condition errors such as the one below: ==26330== Conflicting store by thread 1 at 0x0658fbb0 size 4 ==26330== at 0x653AE68: std::string::_M_mutate(unsigned int, unsigned int, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653AFC9: std::string::_M_replace_safe(unsigned int, unsigned int, char const*, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653B064: std::string::assign(char const*, unsigned int) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x653B134: std::string::assign(char const*) (in /usr/lib/libstdc++.so.6.0.8) ==26330== by 0x8055D64: Book::Kehai::clear() (Book.h:50) ==26330== by 0x8094A29: Book::clear() (Book.cpp:78) ==26330== by 0x808537E: RealKernel::start() (RealKernel.cpp:86) ==26330== by 0x804D15A: main (main.cpp:164) ==26330== Allocation context: BSS section of /usr/lib/libstdc++.so.6.0.8 ==26330== Other segment start (thread 2) ==26330== at 0x400BB59: pthread_mutex_unlock (drd_pthread_intercepts.c:633) ==26330== by 0xC59565: pthread_mutex_unlock (in /lib/libc-2.5.so) ==26330== by 0x805477C: boost::mutex::unlock() (mutex.hpp:56) ==26330== by 0x80547C9: boost::unique_lock<boost::mutex>::~unique_lock() (locks.hpp:340) ==26330== by 0x80949BA: Book::copyChangedKehaiToString(char*) const (Book.cpp:134) ==26330== by 0x80937EE: BookSerializer::serializeBook(Book const&, std::string const&) (BookSerializer.cpp:41) ==26330== by 0x8092D05: BookSnapshotManager::getSnaphotDataList() (BookSnapshotManager.cpp:72) ==26330== by 0x8088179: SnapshotServer::getDataList() (SnapshotServer.cpp:246) ==26330== by 0x808870F: SnapshotServer::run() (SnapshotServer.cpp:183) ==26330== by 0x808BAF5: boost::_mfi::mf0<void, RealThread>::operator()(RealThread*) const (mem_fn_template.hpp:49) ==26330== by 0x808BB4D: void boost::_bi::list1<boost::_bi::value<RealThread*> >::operator()<boost::_mfi::mf0<void, RealThread>, boost::_bi::list0>(boost::_bi::type<void>, boost::_mfi::mf0<void, RealThread>&, boost::_bi::list0&, int) (bind.hpp:253) ==26330== by 0x808BB90: boost::_bi::bind_t<void, boost::_mfi::mf0<void, RealThread>, boost::_bi::list1<boost::_bi::value<RealThread*> > >::operator()() (bind_template.hpp:20) ==26330== Other segment end (thread 2) ==26330== at 0x400B62A: pthread_mutex_lock (drd_pthread_intercepts.c:580) ==26330== by 0xC59535: pthread_mutex_lock (in /lib/libc-2.5.so) ==26330== by 0x80546B8: boost::mutex::lock() (mutex.hpp:51) ==26330== by 0x805473B: boost::unique_lock<boost::mutex>::lock() (locks.hpp:349) ==26330== by 0x8054769: boost::unique_lock<boost::mutex>::unique_lock(boost::mutex&) (locks.hpp:227) ==26330== by 0x8094711: Book::copyChangedKehaiToString(char*) const (Book.cpp:113) ==26330== by 0x80937EE: BookSerializer::serializeBook(Book const&, std::string const&) (BookSerializer.cpp:41) ==26330== by 0x808870F: SnapshotServer::run() (SnapshotServer.cpp:183) ==26330== by 0x808BAF5: boost::_mfi::mf0<void, RealThread>::operator()(RealThread*) const (mem_fn_template.hpp:49) ==26330== by 0x808BB4D: void boost::_bi::list1<boost::_bi::value<RealThread*> >::operator()<boost::_mfi::mf0<void, RealThread>, boost::_bi::list0>(boost::_bi::type<void>, boost::_mfi::mf0<void, RealThread>&, boost::_bi::list0&, int) (bind.hpp:253) For the life of me, i can't figure out where the race condition is. As far as I can tell, clearing the kehai is done only after having taken the mutex, and the same holds true with copying it to a string. Does anyone have any ideas what could be causing this, or where I should look? Thank you kindly.

    Read the article

  • Boost::Asio - Remove the "null"-character in the end of tcp packets.

    - by shump
    I'm trying to make a simple msn client mostly for fun but also for educational purposes. And I started to try some tcp package sending and receiving using Boost Asio as I want cross-platform support. I have managed to send a "VER"-command and receive it's response. However after I send the following "CVR"-command, Asio casts an "End of file"-error. After some further researching I found by packet sniffing that my tcp packets to the messenger server got an extra "null"-character (Ascii code: 00) at the end of the message. This means that my VER-command gets an extra character in the end which I don't think the messenger server like and therefore shuts down the connection when I try to read the CVR response. This is how my package looks when sniffing it, (it's Payload): (Hex:) 56 45 52 20 31 20 4d 53 4e 50 31 35 20 43 56 52 30 0a 0a 00 (Char:) VER 1 MSNP15 CVR 0... and this is how Adium(chat client for OS X)'s package looks: (Hex:) 56 45 52 20 31 20 4d 53 4e 50 31 35 20 43 56 52 30 0d 0a (Char:) VER 1 MSNP15 CVR 0.. So my question is if there is any way to remove the null-character in the end of each package, of if I've misunderstood something and used Asio in a wrong way. My write function (slightly edited) looks lite this: int sendVERMessage() { boost::system::error_code ignored_error; char sendBuf[] = "VER 1 MSNP15 CVR0\r\n"; boost::asio::write(socket, boost::asio::buffer(sendBuf), boost::asio::transfer_all(), ignored_error); if(ignored_error) { cout << "Failed to send to host!" << endl; return 1; } cout << "VER message sent!" << endl; return 0; } And here's the main documentation on the msn protocol I'm using. Hope I've been clear enough.

    Read the article

  • How do boost operators work?

    - by FredOverflow
    boost::operators automatically defines operators like + based on manual implementations like += which is very useful. To generate those operators for T, one inherits from boost::operators<T> as shown by the boost example: class MyInt : boost::operators<MyInt> I am familiar with the CRTP pattern, but I fail to see how it works here. Specifically, I am not really inheriting any facilities since the operators aren't members. boost::operators seems to be completely empty, but I'm not very good at reading boost source code. Could anyone explain how this works in detail? Is this mechanism well-known and widely used?

    Read the article

  • Boost Thread Hanging on _endthreadex

    - by FranticPedantic
    I think I am making a simple mistake, but since I noticed there are many boost experts here, I thought I would ask for help. I am trying to use boost threads(1_40) on windows xp. The main program loads a dll, starts the thread like so (note this is not in a class, the static does not mean static to a class but private to the file). static boost::thread network_thread; network_start() { // do network stuff until quit is signaled } DllClass::InitInstance() { network_thread = boost::thread(boost::bind<void>(network_start)); } DllClass::ExitInstance() { //signal quit (which works) //the following code is slightly verbose because I'm trying to figure out what's wrong try { if (network_thread.joinable() ) { network_thread.join(); } else { TRACE("Too late!"); } } catch (boost::thread_interrupted&) { TRACE("NET INTERRUPTED"); } } The problem is that the main thread is hanging on the join, and the network thread is hanging at the end of _endthreadex. What am I misunderstanding?

    Read the article

  • Generating a reasonable ctags database for Boost

    - by Robert S. Barnes
    I'm running Ubuntu 8.04 and I ran the command: $ ctags -R --c++-kinds=+p --fields=+iaS --extra=+q -f ~/.vim/tags/stdlibcpp /usr/include/c++/4.2.4/ to generate a ctags database for the standard C++ library and STL ( libstdc++ ) on my system for use with the OmniCppComplete vim script. This gave me a very reasonable 4MB tags file which seems to work fairly well. However, when I ran the same command against the installed Boost headers: $ ctags -R --c++-kinds=+p --fields=+iaS --extra=+q -f ~/.vim/tags/boost /usr/include/boost/ I ended up with a 1.4 GB tags file! I haven't tried it yet, but that seems likes it's going to be too large to be useful. Is there a way to get a slimmer, more usable tags file for my installed Boost headers? Edit Just as a note, libstdc++ includes TR1, which has allot of Boost libs in it. So there must be something weird going on for libstdc++ to come out with a 4 MB tags file and Boost to end up with a 1.4 GB tags file.

    Read the article

  • Modelling boost::Lockable with semaphore rather than mutex (previously titled: Unlocking a mutex fr

    - by dan
    I'm using the C++ boost::thread library, which in my case means I'm using pthreads. Officially, a mutex must be unlocked from the same thread which locks it, and I want the effect of being able to lock in one thread and then unlock in another. There are many ways to accomplish this. One possibility would be to write a new mutex class which allows this behavior. For example: class inter_thread_mutex{ bool locked; boost::mutex mx; boost::condition_variable cv; public: void lock(){ boost::unique_lock<boost::mutex> lck(mx); while(locked) cv.wait(lck); locked=true; } void unlock(){ { boost::lock_guard<boost::mutex> lck(mx); if(!locked) error(); locked=false; } cv.notify_one(); } // bool try_lock(); void error(); etc. } I should point out that the above code doesn't guarantee FIFO access, since if one thread calls lock() while another calls unlock(), this first thread may acquire the lock ahead of other threads which are waiting. (Come to think of it, the boost::thread documentation doesn't appear to make any explicit scheduling guarantees for either mutexes or condition variables). But let's just ignore that (and any other bugs) for now. My question is, if I decide to go this route, would I be able to use such a mutex as a model for the boost Lockable concept. For example, would anything go wrong if I use a boost::unique_lock< inter_thread_mutex for RAII-style access, and then pass this lock to boost::condition_variable_any.wait(), etc. On one hand I don't see why not. On the other hand, "I don't see why not" is usually a very bad way of determining whether something will work. The reason I ask is that if it turns out that I have to write wrapper classes for RAII locks and condition variables and whatever else, then I'd rather just find some other way to achieve the same effect. EDIT: The kind of behavior I want is basically as follows. I have an object, and it needs to be locked whenever it is modified. I want to lock the object from one thread, and do some work on it. Then I want to keep the object locked while I tell another worker thread to complete the work. So the first thread can go on and do something else while the worker thread finishes up. When the worker thread gets done, it unlocks the mutex. And I want the transition to be seemless so nobody else can get the mutex lock in between when thread 1 starts the work and thread 2 completes it. Something like inter_thread_mutex seems like it would work, and it would also allow the program to interact with it as if it were an ordinary mutex. So it seems like a clean solution. If there's a better solution, I'd be happy to hear that also. EDIT AGAIN: The reason I need locks to begin with is that there are multiple master threads, and the locks are there to prevent them from accessing shared objects concurrently in invalid ways. So the code already uses loop-level lock-free sequencing of operations at the master thread level. Also, in the original implementation, there were no worker threads, and the mutexes were ordinary kosher mutexes. The inter_thread_thingy came up as an optimization, primarily to improve response time. In many cases, it was sufficient to guarantee that the "first part" of operation A, occurs before the "first part" of operation B. As a dumb example, say I punch object 1 and give it a black eye. Then I tell object 1 to change it's internal structure to reflect all the tissue damage. I don't want to wait around for the tissue damage before I move on to punch object 2. However, I do want the tissue damage to occur as part of the same operation; for example, in the interim, I don't want any other thread to reconfigure the object in such a way that would make tissue damage an invalid operation. (yes, this example is imperfect in many ways, and no I'm not working on a game) So we made the change to a model where ownership of an object can be passed to a worker thread to complete an operation, and it actually works quite nicely; each master thread is able to get a lot more operations done because it doesn't need to wait for them all to complete. And, since the event sequencing at the master thread level is still loop-based, it is easy to write high-level master-thread operations, as they can be based on the assumption that an operation is complete when the corresponding function call returns. Finally, I thought it would be nice to use inter_thread mutex/semaphore thingies using RAII with boost locks to encapsulate the necessary synchronization that is required to make the whole thing work.

    Read the article

  • Compiling OpenSSL for boost asio for Microsoft Visual Studio 2010

    - by user560106
    I compiled boost with bjam, and then I compiled OpenSSL. Both of them work separately. I set up the links in Visual Studio 10 to point to my OpenSSL library directory. But when I attempt to compile example boost ssl asio programs I get 44 unresolved external linker errors like this one: 1testing.obj : error LNK2019: unresolved external symbol _SSLv23_server_method referenced in function "public: void __thiscall boost::asio::ssl::detail::openssl_context_service::create(struct ssl_ctx_st * &,enum boost::asio::ssl::context_base::method)" (?create@openssl_context_service@detail@ssl@asio@boost@@QAEXAAPAUssl_ctx_st@@W4method@context_base@345@@Z) Can you please give me step-by-step instructions on properly linking OpenSSL to boost? Thank you so much

    Read the article

  • Boost Regex throwing an error

    - by Srinivasa Varadan
    Hi ALL, I have the following error when I try to compile my code in g+ compiler using eclipse In function `ZSt19__iterator_categoryIPKSsENSt15iterator_traitsIT_E17iterator_categoryERKS3_': C:/Program Files (x86)/mingw/bin/../lib/gcc/mingw32/3.4.5/../../../../include/c++/3.4.5/bits/stl_algobase.h:(.text$_ZN5boost11basic_regexIcNS_12regex_traitsIcNS_16cpp_regex_traitsIcEEEEE6assignEPKcS7_j[boost::basic_regex<char, boost::regex_traits<char, boost::cpp_regex_traits<char> > >::assign(char const*, char const*, unsigned int)]+0x22): undefined reference to `boost::basic_regex<char, boost::regex_traits<char, boost::cpp_regex_traits<char> > >::do_assign(char const*, char const*, unsigned int)' collect2: ld returned 1 exit status Build error occurred, build is stopped All I have done is this statement boost::regex re("\s+"); along with the header #inlucde Could you kindly tell me how to proceed ?

    Read the article

  • Linker Issues with boost::thread under linux using Eclipse and CMake

    - by OcularProgrammer
    I'm in the process of attempting to port some code across from PC to Ubuntu, and am having some issues due to limited experience developing under linux. We use CMake to generate all our build stuff. Under windows I'm making VS2010 projects, and under Linux I'm making Eclipse projects. I've managed to get my OpenCV stuff ported across successfully, but am having major headaches trying to port my threaded boost apps. Just so we're clear, the steps I have followed so-far on a clean Ubuntu 12 installation. (I've done 2 clean re-installs to try and fix potential library cock-ups, now I'm just giving up and asking): Install Eclipse and Eclipse CDT using my package manager Install CMake and CMake Gui using my package manager Install libboost-all-dev using my package manager So-far that's all I've done. I can create the eclipse project using CMake with no errors, so CMake is successfully finding my boost install. When I try and build through eclipse is when I get issues; The app I'm attempting to build uses boost::asio for some UDP I/O and boost::thread to create worker threads for the asio I/O services. I can successfully compile each module, but when I come to link I get spammed with errors such as: /usr/bin/c++ CMakeFiles/RE05DevelopmentDemo.dir/main.cpp.o CMakeFiles/RE05DevelopmentDemo.dir/RE05FusionListener/RE05FusionListener.cpp.o CMakeFiles/RE05DevelopmentDemo.dir/NewEye/NewEye.cpp.o -o RE05DevelopmentDemo -rdynamic -Wl,-Bstatic -lboost_system-mt -lboost_date_time-mt -lboost_regex-mt -lboost_thread-mt -Wl,-Bdynamic /usr/lib/gcc/x86_64-linux-gnu/4.6/../../../../lib/libboost_thread-mt.a(thread.o): In function `void boost::call_once<void (*)()>(boost::once_flag&, void (*)()) [clone .constprop.98]': make[2]: Leaving directory `/home/david/Code/Build/Support/RE05DevDemo' (.text+0xc8): undefined reference to `pthread_key_create' /usr/lib/gcc/x86_64-linux-gnu/4.6/../../../../lib/libboost_thread-mt.a(thread.o): In function `boost::this_thread::interruption_enabled()': (.text+0x540): undefined reference to `pthread_getspecific' make[1]: Leaving directory `/home/david/Code/Build/Support/RE05DevDemo' /usr/lib/gcc/x86_64-linux-gnu/4.6/../../../../lib/libboost_thread-mt.a(thread.o): In function `boost::this_thread::disable_interruption::disable_interruption()': (.text+0x570): undefined reference to `pthread_getspecific' /usr/lib/gcc/x86_64-linux-gnu/4.6/../../../../lib/libboost_thread-mt.a(thread.o): In function `boost::this_thread::disable_interruption::disable_interruption()': (.text+0x59f): undefined reference to `pthread_getspecific' Some Gotchas that I have collected from other StackOverflow posts and have already checked: The boost libs are all present at /usr/lib I am not getting any compile errors for inability to find the boost headers, so they must be getting found. I am trying to link statically, but I believe eclipse should be passing the correct arguments to make that happen since my CMakeLists.txt includes SET(Boost_USE_STATIC_LIBS ON) I'm officially out of ideas here, I have tried doing local builds of boost and a bunch of other stuff with no more success. I even re-installed Ubuntu to ensure I haven't completely fracked the libs directories and links with multiple weird versions or anything else. Any help would be muchly appreciated.

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >