Search Results

Search found 23567 results on 943 pages for 'max link'.

Page 93/943 | < Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >

  • Wake-on-lan under Ubuntu 12.04

    - by iUngi
    I would like to setup the wake-on-lan, the two PCs are connected through a switch. Here is the configuration of the eth0, in the BIOS I couldn't find any information regarding the wake-on-lan. Supported ports: [ TP MII ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full Supported pause frame use: No Supports auto-negotiation: Yes Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full Advertised pause frame use: Symmetric Receive-only Advertised auto-negotiation: Yes Link partner advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full Link partner advertised pause frame use: Symmetric Link partner advertised auto-negotiation: Yes Speed: 1000Mb/s Duplex: Full Port: MII PHYAD: 0 Transceiver: internal Auto-negotiation: on Supports Wake-on: pumbg Wake-on: g Current message level: 0x00000033 (51) drv probe ifdown ifup Link detected: yes After I shut down the PC, I used different tools to send out the magic package, but nothing happens. Any suggestion?

    Read the article

  • jquery toggle+paginate+multiple instances

    - by mark
    Hi, I'm a jquery newbie - wanted to ask what might be the best strategy for achieving what I am after as I think it uses a mix of jquery functions : If list of items exceeds 5 items a 'more' link appears which when toggled will reveal the rest of the items. If items list is 5 or less no 'more' link is shown. Hide button also at bottom of long full revealed list. (perhaps this is toggle+pagination?) And then also that this can be used in multiple instances, as it is for multiple category menu's.(to be used in typical indexhibit websites structure like http://mikeyburton.com/) link 1 link 2 link 3 link 4 link 5 link 6 link 7 link 8 more Any help or links greatly appreciated.

    Read the article

  • network is not available even when cisco vpn client is connected. wrong route?

    - by javapowered
    I'm using Vodafone 3G modem. I've disabled other network devices in the system (ethernet, wifi, wimax) turned off firewall and antivirus. cisco vpn client connects successfully but I still can not access computer 192.168.147.120 (as well as any other computer from network). Any suggestions are welcome as I don't know what to do. ipconfig /all and route print commands (translated to english): Microsoft Windows [Version 6.1.7601] (C) Microsoft Corporation (Microsoft Corp.), 2009. All rights reserved. C: \ Users \ Oleg> ipconfig / all IP Configuration for Windows The name of the computer. . . . . . . . . : OlegPC The primary DNS-suffix. . . . . . : Node Type. . . . . . . . . . . . . : Hybrid IP-routing is enabled. . . . : No WINS-proxy enabled. . . . . . . : No Ethernet adapter Local Area Connection 4: DNS-suffix for this connection. . . . . : Description. . . . . . . . . . . . . : Cisco Systems VPN Adapter Physical Address. . . . . . . . . 00-05-9A-3C-78-00 DHCP is enabled. . . . . . . . . . . : No Autoconfiguration Enabled. . . . . . : Yes Local IPv6-address channel. . . : Fe80:: c073: 41b2: 852f: eb87% 26 (Preferred) IPv4-address. . . . . . . . . . . . : 10.53.127.204 (Preferred) The subnet mask. . . . . . . . . . : 255.0.0.0 Default Gateway. . . . . . . . . : IAID DHCPv6. . . . . . . . . . . : 536872346 DUID the client DHCPv6. . . . . . . 00-01-00-01-14-6F-4C-8D-60-EB-69-85-10-2D DNS-servers. . . . . . . . . . . : Fec0: 0:0: ffff:: 1% 1 fec0: 0:0: ffff:: 2% 1 fec0: 0:0: ffff:: 3% 1 NetBios over TCP / IP. . . . . . . . : Disabled Adapter mobile broadband connection through a broadband adapter mobile communications: DNS-suffix for this connection. . . . . : Description. . . . . . . . . . . . . : Vodafone Mobile Broadband Network Adapter (Huawei) Physical Address. . . . . . . . . 58-2C-80-13-92-63 DHCP is enabled. . . . . . . . . . . : No Autoconfiguration Enabled. . . . . . : Yes IPv4-address. . . . . . . . . . . . : 10.229.227.77 (Preferred) The subnet mask. . . . . . . . . . : 255.255.255.252 Default Gateway. . . . . . . . . : 10.229.227.78 DNS-servers. . . . . . . . . . . : 163.121.128.134 212.103.160.18 NetBios over TCP / IP. . . . . . . . : Disabled Tunnel adapter isatap. {737FF02E-D473-4F91-840E-2A4DD293FC12}: State of the environment. . . . . . . . : DNS Suffix. DNS-suffix for this connection. . . . . : Description. . . . . . . . . . . . . : Adapter Microsoft ISATAP # 3 Physical Address. . . . . . . . . 00-00-00-00-00-00-00-E0 DHCP is enabled. . . . . . . . . . . : No Autoconfiguration Enabled. . . . . . : Yes Tunnel adapter isatap. {EF585226-5B07-4446-A5A4-CB1B8E4B13AC}: State of the environment. . . . . . . . : DNS Suffix. DNS-suffix for this connection. . . . . : Description. . . . . . . . . . . . . : Adapter Microsoft ISATAP # 4 Physical Address. . . . . . . . . 00-00-00-00-00-00-00-E0 DHCP is enabled. . . . . . . . . . . : No Autoconfiguration Enabled. . . . . . : Yes Tunnel adapter Teredo Tunneling Pseudo-Interface: DNS-suffix for this connection. . . . . : Description. . . . . . . . . . . . . : Teredo Tunneling Pseudo-Interface Physical Address. . . . . . . . . 00-00-00-00-00-00-00-E0 DHCP is enabled. . . . . . . . . . . : No Autoconfiguration Enabled. . . . . . : Yes IPv6-address. . . . . . . . . . . . : 2001:0:4137:9 e76: ea: b77: f51a: 1cb2 (Basically d) Local IPv6-address channel. . . : Fe80:: ea: b77: f51a: 1cb2% 16 (Preferred) Default Gateway. . . . . . . . . ::: NetBios over TCP / IP. . . . . . . . : Disabled C: \ Users \ Oleg> route print ================================================== ========================= List of interfaces 26 ... 00 05 9a 3c 78 00 ...... Cisco Systems VPN Adapter 23 ... 58 2c 80 13 92 63 ...... Vodafone Mobile Broadband Network Adapter (Huawei) 1 ........................... Software Loopback Interface 1 19 ... 00 00 00 00 00 00 00 e0 Adapter Microsoft ISATAP # 3 20 ... 00 00 00 00 00 00 00 e0 Adapter Microsoft ISATAP # 4 16 ... 00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface ================================================== ========================= IPv4 Route Table ================================================== ========================= Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.229.227.78 10.229.227.77 296 10.0.0.0 255.0.0.0 On-link 10.53.127.204 286 10.6.93.21 255,255,255,255 10.0.0.1 10.53.127.204 100 10.13.50.12 255,255,255,255 10.0.0.1 10.53.127.204 100 10.53.8.0 255.255.252.0 10.0.0.1 10.53.127.204 100 10.53.127.204 255.255.255.255 On-link 10.53.127.204 286 10.53.128.0 255.255.248.0 10.0.0.1 10.53.127.204 100 10.53.148.0 255,255,255,240 10.0.0.1 10.53.127.204 100 10.53.148.16 255,255,255,240 10.0.0.1 10.53.127.204 100 10.229.227.76 255.255.255.252 On-link 10.229.227.77 296 10.229.227.77 255.255.255.255 On-link 10.229.227.77 296 10.229.227.79 255.255.255.255 On-link 10.229.227.77 296 10.255.255.255 255.255.255.255 On-link 10.53.127.204 286 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 192.168.147.0 255,255,255,240 10.0.0.1 10.53.127.204 100 192.168.147.96 255,255,255,240 10.0.0.1 10.53.127.204 100 192,168,147,112 255,255,255,240 10.0.0.1 10.53.127.204 100 192,168,147,128 255,255,255,240 10.0.0.1 10.53.127.204 100 192,168,147,144 255,255,255,240 10.0.0.1 10.53.127.204 100 192,168,147,224 255,255,255,240 10.0.0.1 10.53.127.204 100 192.168.214.0 255.255.255.0 10.0.0.1 10.53.127.204 100 192.168.215.0 255.255.255.0 10.0.0.1 10.53.127.204 100 194.247.133.19 255,255,255,255 10.0.0.1 10.53.127.204 100 213,247,231,194 255,255,255,255 10.229.227.78 10.229.227.77 100 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.229.227.77 296 224.0.0.0 240.0.0.0 On-link 10.53.127.204 286 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.229.227.77 296 255.255.255.255 255.255.255.255 On-link 10.53.127.204 286 ================================================== ========================= Persistent Routes: None IPv6 Route Table ================================================== ========================= Active Routes: If Metric Network Destination Gateway 16 58:: / 0 On-link 1306:: 1 / 128 On-link 16 58 2001:: / 32 On-link 16 306 2001: 0:4137:9 e76: ea: b77: f51a: 1cb2/128 On-link 16 306 fe80:: / 64 On-link 26 286 fe80:: / 64 On-link 16 306 fe80:: ea: b77: f51a: 1cb2/128 On-link 26 286 fe80:: c073: 41b2: 852f: eb87/128 On-link 1306 ff00:: / 8 On-link 16 306 ff00:: / 8 On-link 26 286 ff00:: / 8 On-link ================================================== ========================= Persistent Routes: None C: \ Users \ Oleg>

    Read the article

  • pptpd configuration

    - by Ian R.
    I would like a little help on configuring pptp so I can use my server as a vpn server since I have 10 ip's on it and I travel a lot so that would really help me and my partners. I managed to install everything needed but my vpn client fails to connect due to some reason that I cannot understand. I know there are 2 files in pptp that you're supposed to edit so I will post my 2 files here: /etc/ppp/pptpd-options name pptpd refuse-pap refuse-chap refuse-mschap require-mschap-v2 require-mppe-128 proxyarp nodefaultroute lock nobsdcomp /etc/pptpd.conf option /etc/ppp/pptpd-options logwtmp localip xx.158.177.231 remoteip xx.158.177.103,xx.158.177.116,xx.158.177.121,xx.158.177.124,xx.158.177.125,xx.158.177.131,xx.158.177.134,xx.158.177.139,xx.158.177.142,xx.158.177.145 interfaces file eth0 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.231 Bcast:xx.158.177.255 Mask:255.255.254.0 inet6 addr: xx80::216:3eff:fe51:31ba/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:56352 errors:0 dropped:0 overruns:0 frame:0 TX packets:3xx15 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:4884030 (4.8 MB) TX bytes:6780974 (6.7 MB) Interrupt:16 eth0:1 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.103 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:2 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.116 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:3 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.121 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:4 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.124 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:5 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.125 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:6 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.131 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:7 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.134 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:8 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.139 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:9 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.142 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 eth0:10 Link encap:Ethernet HWaddr 00:16:3e:51:31:ba inet addr:xx.158.177.145 Bcast:xx.158.177.255 Mask:255.255.254.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Interrupt:16 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:3 errors:0 dropped:0 overruns:0 frame:0 TX packets:3 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:286 (286.0 B) TX bytes:286 (286.0 B)

    Read the article

  • Windows 8 ignores more specific route

    - by Lander
    OS: Windows 8 I have a cabled NIC (connected to router with ip 192.168.1.0) and a WIFI NIC (connected to a router with ip 192.168.1.1) . I want all traffic to go through the cabled NIC, except the 192.168.1.0/8 range should use the wifi-nic. This was working fine in Windows 7, without any manual configuration. In Windows 8 however, it's not. My routing table: =========================================================================== Interface List 14...f2 7b cb 13 e7 f0 ......Microsoft Wi-Fi Direct Virtual Adapter 13...b8 ac 6f 54 d2 5c ......Realtek PCIe FE Family Controller 12...f0 7b cb 13 e7 f0 ......Dell Wireless 1397 WLAN Mini-Card 1...........................Software Loopback Interface 1 15...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 16...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.198 30 0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.233 20 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 192.168.0.0 255.255.255.0 On-link 192.168.0.233 276 192.168.0.233 255.255.255.255 On-link 192.168.0.233 276 192.168.0.255 255.255.255.255 On-link 192.168.0.233 276 192.168.1.0 255.255.255.0 192.168.1.1 192.168.1.198 31 192.168.1.198 255.255.255.255 On-link 192.168.1.198 286 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 192.168.0.233 276 224.0.0.0 240.0.0.0 On-link 192.168.1.198 286 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 192.168.0.233 276 255.255.255.255 255.255.255.255 On-link 192.168.1.198 286 =========================================================================== Persistent Routes: None I added the rule for 192.168.1.0. I would think Windows should use this rule for the IP 192.168.1.1 because it's more specific than the default-route. However it's not: C:\Windows\system32>tracert 192.168.1.1 Tracing route to 192.168.1.1 over a maximum of 30 hops 1 58 ms 4 ms 4 ms 192.168.0.1 2 68 ms 12 ms 11 ms ^C So... What do I do wrong? And how can I make Windows use the wireless NIC for 192.168.1.0/8

    Read the article

  • how do i ininitialize a float to it's max/min value?

    - by Faken
    How do i hard code an absolute maximum or minimum value for a float or double? I want to search out the max/min of an array by simply iterating through and catching the largest. There are also positive and negative infinity for floats, should i use those instead? if so, how do i denote that in my code?

    Read the article

  • how do I initialize a float to its max/min value?

    - by Faken
    How do I hard code an absolute maximum or minimum value for a float or double? I want to search out the max/min of an array by simply iterating through and catching the largest. There are also positive and negative infinity for floats, should I use those instead? If so, how do I denote that in my code?

    Read the article

  • Magento - How to select mysql rows by max value?

    - by Damodar Bashyal
    mysql> SELECT * FROM `log_customer` WHERE `customer_id` = 224 LIMIT 0, 30; +--------+------------+-------------+---------------------+-----------+----------+ | log_id | visitor_id | customer_id | login_at | logout_at | store_id | +--------+------------+-------------+---------------------+-----------+----------+ | 817 | 50139 | 224 | 2011-03-21 23:56:56 | NULL | 1 | | 830 | 52317 | 224 | 2011-03-27 23:43:54 | NULL | 1 | | 1371 | 136549 | 224 | 2011-11-16 04:33:51 | NULL | 1 | | 1495 | 164024 | 224 | 2012-02-08 01:05:48 | NULL | 1 | | 2130 | 281854 | 224 | 2012-11-13 23:44:13 | NULL | 1 | +--------+------------+-------------+---------------------+-----------+----------+ 5 rows in set (0.00 sec) mysql> SELECT * FROM `customer_entity` WHERE `entity_id` = 224; +-----------+----------------+---------------------------+----------+---------------------+---------------------+ | entity_id | entity_type_id | email | group_id | created_at | updated_at | +-----------+----------------+---------------------------+----------+---------------------+---------------------+ | 224 | 1 | [email protected] | 3 | 2011-03-21 04:59:17 | 2012-11-13 23:46:23 | +-----------+----------------+---------------------------+----------+--------------+----------+-----------------+ 1 row in set (0.00 sec) How can i search for customers who hasn't logged in for last 10 months and their account has not been updated for last 10 months. I tried below but failed. $collection = Mage::getModel('customer/customer')->getCollection(); $collection->getSelect()->joinRight(array('l'=>'log_customer'), "customer_id=entity_id AND MAX(l.login_at) <= '" . date('Y-m-d H:i:s', strtotime('10 months ago')) . "'")->group('e.entity_id'); $collection->addAttributeToSelect('*'); $collection->addFieldToFilter('updated_at', array( 'lt' => date('Y-m-d H:i:s', strtotime('10 months ago')), 'datetime'=>true, )); $collection->addAttributeToFilter('group_id', array( 'neq' => 5, )); Above tables have one customer for reference. I have no idea how to use MAX() on joins. Thanks UPDATE: This seems returning correct data, but I would like to do magento way using resource collection, so i don't need to do load customer again on for loop. $read = Mage::getSingleton('core/resource')->getConnection('core_read'); $sql = "select * from ( select e.*,l.login_at from customer_entity as e left join log_customer as l on l.customer_id=e.entity_id group by e.entity_id order by l.login_at desc ) as l where ( l.login_at <= '".date('Y-m-d H:i:s', strtotime('10 months ago'))."' or ( l.created_at <= '".date('Y-m-d H:i:s', strtotime('10 months ago'))."' and l.login_at is NULL ) ) and group_id != 5"; $result = $read->fetchAll($sql); I have loaded full shell script to github https://github.com/dbashyal/Magento-ecommerce-Shell-Scripts/blob/master/shell/suspendCustomers.php

    Read the article

  • How to modify the attributes by putting dynamic node paths

    - by sam
    I have a code that selects all elements and their child nodes DECLARE @x XML DECLARE @node_no int DECLARE @count int DECLARE @max INT, @i INT EXECUTE return_xml '1', NULL, @x output Declare @temp Table ( id int not null identity(1,1), ParentNodeName varchar(max), NodeName varchar(max), NodeText varchar(max) ) INSERT INTO @temp SELECT t.c.value('local-name(..)', 'varchar(max)') AS ParentNodeName, t.c.value('local-name(.)', 'varchar(max)') AS NodeName, t.c.value('text()[1]', 'varchar(max)') AS NodeText FROM @x.nodes('/booking//*') AS t(c) select * from @temp Now I want to modify the attributs by putting dynamic node paths SET @x.modify (' insert attribute MyId {sql:variable("@i")} as first into (ParentNodeName/NodeName::*[position() = sql:variable("@i")])[1] ') where id = id of temp table any Idea how can I modify my whole xml this way as I am having a untyped xml and have to add an attribute in every node

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • IP address reuse on macvlan devices

    - by Alex Bubnoff
    I'm trying to create easy to use and possibly simple testing environment for some product and got some strange behaviour of macvlan's. What I'm trying to achieve: make a toolset for one-line start/stop of lxc containers(via docker) bound to external ip(I have enough of it on host machine). So, I'm doing something like this: docker run -d -name=container_name container_image pipework eth1 container_name ip/prefix_len@gateway and pipework here does this: GUEST_IFNAME=ph$NSPID$eth1 ip link add link eth1 dev $GUEST_IFNAME type macvlan mode bridge ip link set eth1 up ip link set $GUEST_IFNAME netns $NSPID ip netns exec $NSPID ip link set $GUEST_IFNAME name eth1 ip netns exec $NSPID ip addr add $IPADDR dev eth1 ip netns exec $NSPID ip route delete default ip netns exec $NSPID ip link set eth1 up ip netns exec $NSPID ip route replace default via $GATEWAY ip netns exec $NSPID arping -c 1 -A -I eth1 $IPADDR And it works for first time per IP. But for second time and later packets for containers IP isn't getting into container, while all configuration seem fine. So it looks like this: External machine ? ping 212.76.131.212 ....silence.... Host machine root@ubuntu:~# ip link show eth1 2: eth1: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:15:17:c9:e1:c9 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr show eth1 2: eth1: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:15:17:c9:e1:c9 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# tcpdump -v -i eth1 icmp tcpdump: WARNING: eth1: no IPv4 address assigned tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes 00:00:46.542042 IP (tos 0x0, ttl 60, id 9623, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2345, length 64 00:00:47.549969 IP (tos 0x0, ttl 60, id 9624, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2346, length 64 00:00:48.558143 IP (tos 0x0, ttl 60, id 9625, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2347, length 64 00:00:49.566319 IP (tos 0x0, ttl 60, id 9626, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2348, length 64 00:00:50.573999 IP (tos 0x0, ttl 60, id 9627, offset 0, flags [DF], proto ICMP (1), length 84) 5.134.221.98 212.76.131.212: ICMP echo request, id 6718, seq 2349, length 64 ^C 5 packets captured 5 packets received by filter 0 packets dropped by kernel 1 packet dropped by interface Host machine, netns of container root@ubuntu:~# ip netns exec 32053 ip link show eth1 48: eth1@if2: mtu 1500 qdisc noqueue state UNKNOWN link/ether b2:12:f7:cc:a1:9d brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip netns exec 32053 ip addr show eth1 48: eth1@if2: mtu 1500 qdisc noqueue state UNKNOWN link/ether b2:12:f7:cc:a1:9d brd ff:ff:ff:ff:ff:ff inet 212.76.131.212/29 scope global eth1 inet6 fe80::b012:f7ff:fecc:a19d/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip netns exec 32053 tcpdump -v -i eth1 icmp tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes ....silence.... ^C 0 packets captured 0 packets received by filter 0 packets dropped by kernel So, can anyone say, what can it be? Can this be caused by not a bug in macvlan implementation? Is there any tools I can use to debug that configuration?

    Read the article

  • KVM/Libvirt bridged/routed networking not working on newer guest kernels

    - by SharkWipf
    I have a dedicated server running Debian 6, with Libvirt (0.9.11.3) and Qemu-KVM (qemu-kvm-1.0+dfsg-11, Debian). I am having a problem getting bridged/routed networking to work in KVM guests with newer kernels (2.6.38). NATted networking works fine though. Older kernels work perfectly fine as well. The host kernel is at version 3.2.0-2-amd64, the problem was also there on an older host kernel. The contents of the host's /etc/network/interfaces (ip removed): # Loopback device: auto lo iface lo inet loopback # bridge auto br0 iface br0 inet static address 176.9.xx.xx broadcast 176.9.xx.xx netmask 255.255.255.224 gateway 176.9.xx.xx pointopoint 176.9.xx.xx bridge_ports eth0 bridge_stp off bridge_maxwait 0 bridge_fd 0 up route add -host 176.9.xx.xx dev br0 # VM IP post-up mii-tool -F 100baseTx-FD br0 # default route to access subnet up route add -net 176.9.xx.xx netmask 255.255.255.224 gw 176.9.xx.xx br0 The output of ifconfig -a on the host: br0 Link encap:Ethernet HWaddr 54:04:a6:8a:66:13 inet addr:176.9.xx.xx Bcast:176.9.xx.xx Mask:255.255.255.224 inet6 addr: fe80::5604:a6ff:fe8a:6613/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:20216729 errors:0 dropped:0 overruns:0 frame:0 TX packets:19962220 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:14144528601 (13.1 GiB) TX bytes:7990702656 (7.4 GiB) eth0 Link encap:Ethernet HWaddr 54:04:a6:8a:66:13 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:26991788 errors:0 dropped:12066 overruns:0 frame:0 TX packets:19737261 errors:270082 dropped:0 overruns:0 carrier:270082 collisions:1686317 txqueuelen:1000 RX bytes:15459970915 (14.3 GiB) TX bytes:6661808415 (6.2 GiB) Interrupt:17 Memory:fe500000-fe520000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:6240133 errors:0 dropped:0 overruns:0 frame:0 TX packets:6240133 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:6081956230 (5.6 GiB) TX bytes:6081956230 (5.6 GiB) virbr0 Link encap:Ethernet HWaddr 52:54:00:79:e4:5a inet addr:192.168.100.1 Bcast:192.168.100.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:225016 errors:0 dropped:0 overruns:0 frame:0 TX packets:412958 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:16284276 (15.5 MiB) TX bytes:687827984 (655.9 MiB) virbr0-nic Link encap:Ethernet HWaddr 52:54:00:79:e4:5a BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:500 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) vnet0 Link encap:Ethernet HWaddr fe:54:00:93:4e:68 inet6 addr: fe80::fc54:ff:fe93:4e68/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:607670 errors:0 dropped:0 overruns:0 frame:0 TX packets:5932089 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:500 RX bytes:83574773 (79.7 MiB) TX bytes:1092482370 (1.0 GiB) vnet1 Link encap:Ethernet HWaddr fe:54:00:ed:6a:43 inet6 addr: fe80::fc54:ff:feed:6a43/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:922132 errors:0 dropped:0 overruns:0 frame:0 TX packets:6342375 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:500 RX bytes:251091242 (239.4 MiB) TX bytes:1629079567 (1.5 GiB) vnet2 Link encap:Ethernet HWaddr fe:54:00:0d:cb:3d inet6 addr: fe80::fc54:ff:fe0d:cb3d/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:9461 errors:0 dropped:0 overruns:0 frame:0 TX packets:665189 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:500 RX bytes:4990275 (4.7 MiB) TX bytes:49229647 (46.9 MiB) vnet3 Link encap:Ethernet HWaddr fe:54:cd:83:eb:aa inet6 addr: fe80::fc54:cdff:fe83:ebaa/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1649 errors:0 dropped:0 overruns:0 frame:0 TX packets:12177 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:500 RX bytes:77233 (75.4 KiB) TX bytes:2127934 (2.0 MiB) The guest's /etc/network/interfaces, in this case running Ubuntu 12.04 (ip removed): # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback auto eth0 iface eth0 inet static address 176.9.xx.xx netmask 255.255.255.248 gateway 176.9.xx.xx # Host IP pointopoint 176.9.xx.xx # Host IP dns-nameservers 8.8.8.8 8.8.4.4 The output of ifconfig -a on the guest: eth0 Link encap:Ethernet HWaddr 52:54:cd:83:eb:aa inet addr:176.9.xx.xx Bcast:0.0.0.0 Mask:255.255.255.255 inet6 addr: fe80::5054:cdff:fe83:ebaa/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:14190 errors:0 dropped:0 overruns:0 frame:0 TX packets:1768 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:2614642 (2.6 MB) TX bytes:82700 (82.7 KB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:954 errors:0 dropped:0 overruns:0 frame:0 TX packets:954 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:176679 (176.6 KB) TX bytes:176679 (176.6 KB) Output of ping -c4 on the guest: PING google.nl (173.194.35.151) 56(84) bytes of data. 64 bytes from muc03s01-in-f23.1e100.net (173.194.35.151): icmp_req=1 ttl=55 time=14.7 ms From static.174.82.xx.xx.clients.your-server.de (176.9.xx.xx): icmp_seq=2 Redirect Host(New nexthop: static.161.82.9.176.clients.your-server.de (176.9.82.161)) 64 bytes from muc03s01-in-f23.1e100.net (173.194.35.151): icmp_req=2 ttl=55 time=15.1 ms From static.198.170.9.176.clients.your-server.de (176.9.170.198) icmp_seq=3 Destination Host Unreachable From static.198.170.9.176.clients.your-server.de (176.9.170.198) icmp_seq=4 Destination Host Unreachable --- google.nl ping statistics --- 4 packets transmitted, 2 received, +2 errors, 50% packet loss, time 3002ms rtt min/avg/max/mdev = 14.797/14.983/15.170/0.223 ms, pipe 2 The static.174.82.xx.xx.clients.your-server.de (176.9.xx.xx) is the host's IP. I have encountered this problem with every guest OS I've tried, that being Fedora, Ubuntu (server/desktop) and Debian with an upgraded kernel. I've also tried compiling the guest kernel myself, to no avail. I have no problem with recompiling a kernel, though the host cannot afford any downtime. Any ideas on this problem are very welcome. EDIT: I can ping the host from inside the guest.

    Read the article

< Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >