Search Results

Search found 154 results on 7 pages for 'quadratic probing'.

Page 1/7 | 1 2 3 4 5 6 7  | Next Page >

  • Moving from Linear Probing to Quadratic Probing (hash collisons)

    - by Nazgulled
    Hi, My current implementation of an Hash Table is using Linear Probing and now I want to move to Quadratic Probing (and later to chaining and maybe double hashing too). I've read a few articles, tutorials, wikipedia, etc... But I still don't know exactly what I should do. Linear Probing, basically, has a step of 1 and that's easy to do. When searching, inserting or removing an element from the Hash Table, I need to calculate an hash and for that I do this: index = hash_function(key) % table_size; Then, while searching, inserting or removing I loop through the table until I find a free bucket, like this: do { if(/* CHECK IF IT'S THE ELEMENT WE WANT */) { // FOUND ELEMENT return; } else { index = (index + 1) % table_size; } while(/* LOOP UNTIL IT'S NECESSARY */); As for Quadratic Probing, I think what I need to do is change how the "index" step size is calculated but that's what I don't understand how I should do it. I've seen various pieces of code, and all of them are somewhat different. Also, I've seen some implementations of Quadratic Probing where the hash function is changed to accommodated that (but not all of them). Is that change really needed or can I avoid modifying the hash function and still use Quadratic Probing? EDIT: After reading everything pointed out by Eli Bendersky below I think I got the general idea. Here's part of the code at http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_hashtable.aspx: 15 for ( step = 1; table->table[h] != EMPTY; step++ ) { 16 if ( compare ( key, table->table[h] ) == 0 ) 17 return 1; 18 19 /* Move forward by quadratically, wrap if necessary */ 20 h = ( h + ( step * step - step ) / 2 ) % table->size; 21 } There's 2 things I don't get... They say that quadratic probing is usually done using c(i)=i^2. However, in the code above, it's doing something more like c(i)=(i^2-i)/2 I was ready to implement this on my code but I would simply do: index = (index + (index^index)) % table_size; ...and not: index = (index + (index^index - index)/2) % table_size; If anything, I would do: index = (index + (index^index)/2) % table_size; ...cause I've seen other code examples diving by two. Although I don't understand why... 1) Why is it subtracting the step? 2) Why is it diving it by 2?

    Read the article

  • how does linear probing handle this?

    - by Weadadada Awda
    • the hash function: h(x) = | 2x + 5 | mod M • a bucket array of capacity N • a set of objects with keys: 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, 5 (to input from left to right) 4.a [5 pts] Write the hash table where M=N=11 and collisions are handled using linear probing. So I got up to here x x x x x 44 88 12 23 13 94 but the next variable should go after the 94 now, (the 11) but does it start from the beggining or what? thx

    Read the article

  • moore's law and quadratic algorithm

    - by damon
    I was going thru a video (from coursera - by sedgewick) in which he argues that you cannot sustain Moore's law using a quadratic algorithm.He elaborates like this In year 197* you build a computer of power X ,and need to count N objects.This takes M days According to Moore's law,you have a computer of power 2X after 1.5 years.But now you have 2N objects to count. If you use a quadratic algorithm, In year 197*+1.5 ,it takes (4M)/2 = 2M days 4M because the algorithm is quadratic,and division by 2 because of doubling computer power. I find this hard to understand.I tried to work thru this as below To count N objects using comp=X , it takes M days. -> N/X = M After 1.5 yrs ,you need to count 2N objects using comp=2X -> 2N/(2X) -> N/X -> M days where do I go wrong? can someone please help me understand?

    Read the article

  • Smoothing Small Data Set With Second Order Quadratic Curve

    - by Rev316
    I'm doing some specific signal analysis, and I am in need of a method that would smooth out a given bell-shaped distribution curve. A running average approach isn't producing the results I desire. I want to keep the min/max, and general shape of my fitted curve intact, but resolve the inconsistencies in sampling. In short: if given a set of data that models a simple quadratic curve, what statistical smoothing method would you recommend? If possible, please reference an implementation, library, or framework. Thanks SO!

    Read the article

  • Quadratic Programming with Oracle R Enterprise

    - by Jeff Taylor-Oracle
         I wanted to use quadprog with ORE on a server running Oracle Solaris 11.2 on a Oracle SPARC T-4 server For background, see: Oracle SPARC T4-2 http://docs.oracle.com/cd/E23075_01/ Oracle Solaris 11.2 http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html quadprog: Functions to solve Quadratic Programming Problems http://cran.r-project.org/web/packages/quadprog/index.html Oracle R Enterprise 1.4 ("ORE") 1.4 http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/ore-downloads-1502823.html Problem: path to Solaris Studio doesn't match my installation: $ ORE CMD INSTALL quadprog_1.5-5.tar.gz * installing to library \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library\u2019 * installing *source* package \u2018quadprog\u2019 ... ** package \u2018quadprog\u2019 successfully unpacked and MD5 sums checked ** libs /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c aind.f -o aind.o bash: /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95: No such file or directory *** Error code 1 make: Fatal error: Command failed for target `aind.o' ERROR: compilation failed for package \u2018quadprog\u2019 * removing \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library/quadprog\u2019 $ ls -l /opt/solarisstudio12.3/bin/f95 lrwxrwxrwx   1 root     root          15 Aug 19 17:36 /opt/solarisstudio12.3/bin/f95 -> ../prod/bin/f90 Solution: a symbolic link: $ sudo mkdir -p /opt/SunProd/studio12u3 $ sudo ln -s /opt/solarisstudio12.3 /opt/SunProd/studio12u3/ Now, it is all good: $ ORE CMD INSTALL quadprog_1.5-5.tar.gz * installing to library \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library\u2019 * installing *source* package \u2018quadprog\u2019 ... ** package \u2018quadprog\u2019 successfully unpacked and MD5 sums checked ** libs /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c aind.f -o aind.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/ cc -xc99 -m64 -I/usr/lib/64/R/include -DNDEBUG -KPIC  -xlibmieee  -c init.c -o init.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64  -PIC -g  -c -o solve.QP.compact.o solve.QP.compact.f /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64  -PIC -g  -c -o solve.QP.o solve.QP.f /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c util.f -o util.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/ cc -xc99 -m64 -G -o quadprog.so aind.o init.o solve.QP.compact.o solve.QP.o util.o -xlic_lib=sunperf -lsunmath -lifai -lsunimath -lfai -lfai2 -lfsumai -lfprodai -lfminlai -lfmaxlai -lfminvai -lfmaxvai -lfui -lfsu -lsunmath -lmtsk -lm -lifai -lsunimath -lfai -lfai2 -lfsumai -lfprodai -lfminlai -lfmaxlai -lfminvai -lfmaxvai -lfui -lfsu -lsunmath -lmtsk -lm -L/usr/lib/64/R/lib -lR installing to /u01/app/oracle/product/12.1.0/dbhome_1/R/library/quadprog/libs ** R ** preparing package for lazy loading ** help *** installing help indices   converting help for package \u2018quadprog\u2019     finding HTML links ... done     solve.QP                                html      solve.QP.compact                        html  ** building package indices ** testing if installed package can be loaded * DONE (quadprog) ====== Here is an example from http://cran.r-project.org/web/packages/quadprog/quadprog.pdf > require(quadprog) > Dmat <- matrix(0,3,3) > diag(Dmat) <- 1 > dvec <- c(0,5,0) > Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3) > bvec <- c(-8,2,0) > solve.QP(Dmat,dvec,Amat,bvec=bvec) $solution [1] 0.4761905 1.0476190 2.0952381 $value [1] -2.380952 $unconstrained.solution [1] 0 5 0 $iterations [1] 3 0 $Lagrangian [1] 0.0000000 0.2380952 2.0952381 $iact [1] 3 2 Here, the standard example is modified to work with Oracle R Enterprise require(ORE) ore.connect("my-name", "my-sid", "my-host", "my-pass", 1521) ore.doEval(   function () {     require(quadprog)   } ) ore.doEval(   function () {     Dmat <- matrix(0,3,3)     diag(Dmat) <- 1     dvec <- c(0,5,0)     Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)     bvec <- c(-8,2,0)    solve.QP(Dmat,dvec,Amat,bvec=bvec)   } ) $solution [1] 0.4761905 1.0476190 2.0952381 $value [1] -2.380952 $unconstrained.solution [1] 0 5 0 $iterations [1] 3 0 $Lagrangian [1] 0.0000000 0.2380952 2.0952381 $iact [1] 3 2 Now I can combine the quadprog compute algorithms with the Oracle R Enterprise Database engine functionality: Scale to large datasets Access to tables, views, and external tables in the database, as well as those accessible through database links Use SQL query parallel execution Use in-database statistical and data mining functionality

    Read the article

  • Quadratic Bezier Curve: Calculate Tangent

    - by stefan.at.wpf
    I have a quadratic bezier curve and I want to calculate the slope of the tangent in a given point. For example, let it be the middlepoint of the quadratic bezier curve, therefore t=0.5 (please see the link below for a picture of this). I've calculated the first derivative of the formula for the quadratic bezier curve; however I get 400 as value for the slope, though it should be 0. Maybe I'm using the first derivative in a wrong way? I know I could also calculate the tangents using trigonometric functions; however I'd like to do it using the first derivative, shouldn't this be possible? Thanks for any hint! For clarification / please note: I'm interested in a general way to get the slope in a arbitrary given point on a quadratic bezier curve, not only to get the tangent in the start- and end point. A picture of my problem including the text above: http://cid-0432ee4cfe9c26a0.skydrive.live.com/self.aspx/%c3%96ffentlich/Quadratic%20Bezier%20Curve.pdf Thank you very much for any hint!

    Read the article

  • Help with hash tables and quadratic probing in Java

    - by user313458
    I really need help with inserting into a hash table. I'm just not totally getting it right now. Could someone explain quadratic and linear probing in layman's terms? public void insert(String key) { int homeLocation = 0; int location = 0; int count = 0; if (find(key).getLocation() == -1) // make sure key is not already in the table { //****** ADD YOUR CODE HERE FOR QUADRATIC PROBING ******** } } This is the code I'm working on. I'm not asking anyone to do it, I just really need help with learning the whole concept Any help would be greatly appreciated.

    Read the article

  • python - returns incorrect positive #

    - by tekknolagi
    what i'm trying to do is write a quadratic equation solver but when the solution should be -1, as in quadratic(2, 4, 2) it returns 1 what am i doing wrong? #!/usr/bin/python import math def quadratic(a, b, c): #a = raw_input("What\'s your `a` value?\t") #b = raw_input("What\'s your `b` value?\t") #c = raw_input("What\'s your `c` value?\t") a, b, c = float(a), float(b), float(c) disc = (b*b)-(4*a*c) print "Discriminant is:\n" + str(disc) if disc = 0: root = math.sqrt(disc) top1 = b + root top2 = b - root sol1 = top1/(2*a) sol2 = top2/(2*a) if sol1 != sol2: print "Solution 1:\n" + str(sol1) + "\nSolution 2:\n" + str(sol2) if sol1 == sol2: print "One solution:\n" + str(sol1) else: print "No solution!" EDIT: it returns the following... import mathmodules mathmodules.quadratic(2, 4, 2) Discriminant is: 0.0 One solution: 1.0

    Read the article

  • Why is my view controllers view not quadratic?

    - by mystify
    I created an UIViewController subclass, and figured out that the default implementation of -loadView in UIViewController will ignore my frame size settings in a strange way. To simplify it and to make sure it's really not the fault of my code, I did a clean test with a plain instance of UIViewController directly, rather than making a subclass. The result is the same. I try to make an exactly quadratic view of 320 x 320, but the view appears like 320 x 200. iPhone OS 3.0, please check this out: UIViewController *ts = [[UIViewController alloc] initWithNibName:nil bundle:nil]; ts.view.frame = CGRectMake(0.0f, 0.0f, 320.0f, 320.0f); ts.view.backgroundColor = [UIColor cyanColor]; [self.view addSubview:ts.view]; like you can see, I do this: 1) Create a UIViewController instance 2) Set the frame of the view to a quadratic dimension of 320 x 320 3) Give it a color, so I can see it 4) Added it as a subview. Now the part, that's even more strange: When I make my own implementation of -loadView, i.e. if I put this code in there like this: - (void)loadView { UIView *v = [[UIView alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 320.0f, 320.0f)]; v.backgroundColor = [UIColor cyanColor]; self.view = v; [v release]; } then it looks right. Now lets think about that: In the first example, I do pretty much exactly the same, just that I let UIViewController create the view on it's own, and then take it over in order to change it's frame. Right? So why do I get this strange error? Right now I see no other way of messing around like that to correct this wrong behavior. I did not activate anything like clipsToBounds and there's no other code touching this.

    Read the article

  • Revision, Quadratic Time

    - by stan
    I am not sure if you can post revision programming questions in here but i am stuck with some algorithms revision If an algorithm is quadratic it takes time proportional to the number of n^2 ? So if the slides say its almost 1/2 the square of n records is this the same as saying (n^2 * 0.5) Thanks

    Read the article

  • Testing a quadratic equation

    - by user1201587
    I'm doing a code testing for a program that calculate the results for a quadratic equation I need to have test data for the following situation, when a is not zero and d positive there is two possibilities which are in the code below, I need to find an example for the first satiation when Math.abs(b / a - 200.0) < 1.0e-4 , all the values that I have tried, excute the second one caption= "Two roots"; if (Math.abs(b / a - 200.0) < 1.0e-4) { System.out.println("first one"); x1 = (-100.0 * (1.0 + Math.sqrt(1.0 - 1.0 / (10000.0 * a)))); x2 = (-100.0 * (1.0 - Math.sqrt(1.0 - 1.0 / (10000.0 * a)))); } else { System.out.println("secrst one"); x1 = (-b - Math.sqrt(d)) / (2.0 * a); x2 = (-b + Math.sqrt(d)) / (2.0 * a); } } }

    Read the article

  • Drawing Quadratic Bezier circles with a given radius: how to determine control points

    - by Casey
    Just to clarify; the code below works, but I don't understand where the formula for the variable "controlRadius" comes from. I wrote this function by dissecting an example I found elsewhere, but I can't find any explanation and the original code comments were not able to be translated. Thanks in advance //returns an array of quadratic Bezier segments public static function generateCircularQuadraticBezierSegments(radius:Number, numControlPoints:uint, centerX:Number, centerY:Number):Array { var segments:Array = []; var arcLength:Number = 2 * Math.PI / numControlPoints; var controlRadius:Number; var segment:QuadraticBezierSegment; for (var i:int = 0; i < numControlPoints; i++) { var startX:Number = centerX + radius * Math.cos(arcLength * i); var startY:Number = centerY + radius * Math.sin(arcLength * i); //control radius formula //where does it come from, why does it work? controlRadius = radius / Math.cos(arcLength * .5); //the control point is plotted halfway between the arcLength and uses the control radius var controlX:Number = centerX + controlRadius * Math.cos(arcLength * (i + 1) - arcLength * .5); var controlY:Number = centerY + controlRadius * Math.sin(arcLength * (i + 1) - arcLength * .5); var endX:Number = centerX + radius * Math.cos(arcLength * (i + 1)); var endY:Number = centerY + radius * Math.sin(arcLength * (i + 1)); segment = new QuadraticBezierSegment(new Point(startX, startY), new Point(controlX, controlY), new Point(endX, endY)); segments.push(segment); } return segments; }

    Read the article

  • Solving quadratic programming using R

    - by user702846
    I would like to solve the following quadratic programming equation using ipop function from kernlab : min 0.5*x'*H*x + f'*x subject to: A*x <= b Aeq*x = beq LB <= x <= UB where in our example H 3x3 matrix, f is 3x1, A is 2x3, b is 2x1, LB and UB are both 3x1. edit 1 My R code is : library(kernlab) H <- rbind(c(1,0,0),c(0,1,0),c(0,0,1)) f = rbind(0,0,0) A = rbind(c(1,1,1), c(-1,-1,-1)) b = rbind(4.26, -1.73) LB = rbind(0,0,0) UB = rbind(100,100,100) > ipop(f,H,A,b,LB,UB,0) Error in crossprod(r, q) : non-conformable arguments I know from matlab that is something like this : H = eye(3); f = [0,0,0]; nsamples=3; eps = (sqrt(nsamples)-1)/sqrt(nsamples); A=ones(1,nsamples); A(2,:)=-ones(1,nsamples); b=[nsamples*(eps+1); nsamples*(eps-1)]; Aeq = []; beq = []; LB = zeros(nsamples,1); UB = ones(nsamples,1).*1000; [beta,FVAL,EXITFLAG] = quadprog(H,f,A,b,Aeq,beq,LB,UB); and the answer is a vector of 3x1 equals to [0.57,0.57,0.57]; However when I try it on R, using ipop function from kernlab library ipop(f,H,A,b,LB,UB,0)) and I am facing Error in crossprod(r, q) : non-conformable arguments I appreciate any comment

    Read the article

  • linux usb driver: probing already plugged devices

    - by jacob
    hello, im writing a Usb driver and i have an issue. when i insmod the driver with the device already plugged in before, the probe function is not called. it is only called after i disconnect the device and plug it again. i wanna make it work when i start my pc with the device plugged in. could someone please help me? best regards, jacob.

    Read the article

  • How do I draw part of parabola using iText ? Or how do I create quadratic bezier curves from cubic b

    - by drasto
    I need to draw a shape whose boundaries are parts of parabola (that is quadratic bezier curves) using iText. I have found only method for drawing cubic bezier curves in PdfContentByte class. So how do I draw quadratic bezier curves using iText ? One way would be to use method for cubic bezier curves. Is it possible to draw quadratic bezier curves as a cubic bezier curves (with 2 control points). I gues it is but I cannot make up the formula. If somebody states the formula tu "translate" cubic bezier curves to quadratic that would solve the problem. Any other ways to draw quadratic bezier(parts of parabola) curves in iText (and filled shapes made of them) is also the solution. Thanks

    Read the article

  • Linear complexity and quadratic complexity

    - by jasonline
    I'm just not sure... If you have a code that can be executed in either of the following complexities: A sequence of O(n), like for example: two O(n) in sequence O(n²) The preferred version would be the one that can be executed in linear time. Would there be a time such that the sequence of O(n) would be too much and that O(n²) would be preferred? In other words, is the statement C x O(n) < O(n²) always true for any constant C? Why or why not? What are the factors that would affect the condition such that it would be better to choose the O(n²) complexity?

    Read the article

  • Sparse quadratic program solver

    - by Jacob
    This great SO answer points to a good sparse solver, but I've got constraints on x (for Ax = b) such that each element in x is >=0 an <=N. The first thing which comes to mind is an QP solver for large sparse matrices. Also, A is huge (around 2e6x2e6) but very sparse with <=4 elements per row. Any ideas/recommendations?

    Read the article

  • Linear time and quadratic time

    - by jasonline
    I'm just not sure... If you have a code that can be executed in either of the following complexities: (1) A sequence of O(n), like for example: two O(n) in sequence (2) O(n²) The preferred version would be the one that can be executed in linear time. Would there be a time such that the sequence of O(n) would be too much and that O(n²) would be preferred? In other words, is the statement C x O(n) < O(n²) always true for any constant C? If no, what are the factors that would affect the condition such that it would be better to choose the O(n²) complexity?

    Read the article

  • How can I keep the cpu temp low?

    - by Newton
    I have an HP pavilion dv7, I'm using ubuntu 12.04 so the overheating problem with sandybridge cpu is a lot better. However my laptop is still becoming too hot to keep on my legs. The problem is that the fan wait too much before starting, so the medium temp is too hight. When I'm using windows 7 the laptop is room-temperature cold, I've absolutely no problem. On windows the fan is always spinning very low & very silently so the heat is continuously removed, without reaching an unconfortable temp. How can I force the computer to act like that also on ubuntu? PS The bios can't let me control this kind of thing, and this is my experience with lm-sensors and fancontrol al@notebook:~$ sudo sensors-detect [sudo] password for al: # sensors-detect revision 5984 (2011-07-10 21:22:53 +0200) # System: Hewlett-Packard HP Pavilion dv7 Notebook PC (laptop) # Board: Hewlett-Packard 1800 This program will help you determine which kernel modules you need to load to use lm_sensors most effectively. It is generally safe and recommended to accept the default answers to all questions, unless you know what you're doing. Some south bridges, CPUs or memory controllers contain embedded sensors. Do you want to scan for them? This is totally safe. (YES/no): y Module cpuid loaded successfully. Silicon Integrated Systems SIS5595... No VIA VT82C686 Integrated Sensors... No VIA VT8231 Integrated Sensors... No AMD K8 thermal sensors... No AMD Family 10h thermal sensors... No AMD Family 11h thermal sensors... No AMD Family 12h and 14h thermal sensors... No AMD Family 15h thermal sensors... No AMD Family 15h power sensors... No Intel digital thermal sensor... Success! (driver `coretemp') Intel AMB FB-DIMM thermal sensor... No VIA C7 thermal sensor... No VIA Nano thermal sensor... No Some Super I/O chips contain embedded sensors. We have to write to standard I/O ports to probe them. This is usually safe. Do you want to scan for Super I/O sensors? (YES/no): y Probing for Super-I/O at 0x2e/0x2f Trying family `National Semiconductor/ITE'... No Trying family `SMSC'... No Trying family `VIA/Winbond/Nuvoton/Fintek'... No Trying family `ITE'... No Probing for Super-I/O at 0x4e/0x4f Trying family `National Semiconductor/ITE'... Yes Found unknown chip with ID 0x8518 Some hardware monitoring chips are accessible through the ISA I/O ports. We have to write to arbitrary I/O ports to probe them. This is usually safe though. Yes, you do have ISA I/O ports even if you do not have any ISA slots! Do you want to scan the ISA I/O ports? (YES/no): y Probing for `National Semiconductor LM78' at 0x290... No Probing for `National Semiconductor LM79' at 0x290... No Probing for `Winbond W83781D' at 0x290... No Probing for `Winbond W83782D' at 0x290... No Lastly, we can probe the I2C/SMBus adapters for connected hardware monitoring devices. This is the most risky part, and while it works reasonably well on most systems, it has been reported to cause trouble on some systems. Do you want to probe the I2C/SMBus adapters now? (YES/no): y Using driver `i2c-i801' for device 0000:00:1f.3: Intel Cougar Point (PCH) Module i2c-i801 loaded successfully. Module i2c-dev loaded successfully. Next adapter: i915 gmbus disabled (i2c-0) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus ssc (i2c-1) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 GPIOB (i2c-2) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus vga (i2c-3) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 GPIOA (i2c-4) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus panel (i2c-5) Do you want to scan it? (YES/no/selectively): y Client found at address 0x50 Probing for `Analog Devices ADM1033'... No Probing for `Analog Devices ADM1034'... No Probing for `SPD EEPROM'... No Probing for `EDID EEPROM'... Yes (confidence 8, not a hardware monitoring chip) Next adapter: i915 GPIOC (i2c-6) Do you want to scan it? (YES/no/selectively): y Client found at address 0x50 Probing for `Analog Devices ADM1033'... No Probing for `Analog Devices ADM1034'... No Probing for `SPD EEPROM'... No Probing for `EDID EEPROM'... Yes (confidence 8, not a hardware monitoring chip) Next adapter: i915 gmbus dpc (i2c-7) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 GPIOD (i2c-8) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus dpb (i2c-9) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 GPIOE (i2c-10) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus reserved (i2c-11) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 gmbus dpd (i2c-12) Do you want to scan it? (YES/no/selectively): y Next adapter: i915 GPIOF (i2c-13) Do you want to scan it? (YES/no/selectively): y Next adapter: DPDDC-B (i2c-14) Do you want to scan it? (YES/no/selectively): y Now follows a summary of the probes I have just done. Just press ENTER to continue: Driver `coretemp': * Chip `Intel digital thermal sensor' (confidence: 9) To load everything that is needed, add this to /etc/modules: #----cut here---- # Chip drivers coretemp #----cut here---- If you have some drivers built into your kernel, the list above will contain too many modules. Skip the appropriate ones! Do you want to add these lines automatically to /etc/modules? (yes/NO)y Successful! Monitoring programs won't work until the needed modules are loaded. You may want to run 'service module-init-tools start' to load them. Unloading i2c-dev... OK Unloading i2c-i801... OK Unloading cpuid... OK al@notebook:~$ sudo /etc/init.d/module-init-tools restart Rather than invoking init scripts through /etc/init.d, use the service(8) utility, e.g. service module-init-tools restart Since the script you are attempting to invoke has been converted to an Upstart job, you may also use the stop(8) and then start(8) utilities, e.g. stop module-init-tools ; start module-init-tools. The restart(8) utility is also available. module-init-tools stop/waiting al@notebook:~$ sudo service module-init-tools restart stop: Unknown instance: module-init-tools stop/waiting al@notebook:~$ sudo service module-init-tools start module-init-tools stop/waiting al@notebook:~$ sudo pwmconfig # pwmconfig revision 5857 (2010-08-22) This program will search your sensors for pulse width modulation (pwm) controls, and test each one to see if it controls a fan on your motherboard. Note that many motherboards do not have pwm circuitry installed, even if your sensor chip supports pwm. We will attempt to briefly stop each fan using the pwm controls. The program will attempt to restore each fan to full speed after testing. However, it is ** very important ** that you physically verify that the fans have been to full speed after the program has completed. /usr/sbin/pwmconfig: There are no pwm-capable sensor modules installed Is my case too desperate?

    Read the article

  • System.EntryPointNotFoundException

    - by Hema Joshi
    thank, but by using this i am getting the output c2@ubuntu:~/Desktop$ mcs testingsrp.cs -lib:/home/c2/Desktop/libsrp/libsrp.so c2@ubuntu:~/Desktop$ nm -D /home/c2/Desktop/libsrp/libsrp.so | grep SRP_initialize_library c2@ubuntu:~/Desktop$ MONO_LOG_LEVEL="debug" MONO_LOG_MASK="dll" mono testingsrp.exe Mono-INFO: DllImport attempting to load: 'libsrp.so'. Mono-INFO: DllImport loading location: 'libsrp.so.so'. Mono-INFO: DllImport error loading library: 'libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading library: './libsrp.so.so'. Mono-INFO: DllImport error loading library './libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading: 'libsrp.so'. Mono-INFO: Searching for 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_libraryA'. Mono-INFO: Probing 'SRP_initialize_libraryA'. Mono-INFO: DllImport attempting to load: 'libsrp.so'. Mono-INFO: DllImport loading location: 'libsrp.so.so'. Mono-INFO: DllImport error loading library: 'libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading library: './libsrp.so.so'. Mono-INFO: DllImport error loading library './libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading: 'libsrp.so'. Mono-INFO: Searching for 'SRP_finalize_library'. Mono-INFO: Probing 'SRP_finalize_library'. Mono-INFO: Probing 'SRP_finalize_library'. Mono-INFO: Probing 'SRP_finalize_libraryA'. Mono-INFO: Probing 'SRP_finalize_libraryA'. Mono-INFO: DllImport attempting to load: 'libsrp.so'. Mono-INFO: DllImport loading location: 'libsrp.so.so'. Mono-INFO: DllImport error loading library: 'libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading library: './libsrp.so.so'. Mono-INFO: DllImport error loading library './libsrp.so.so: cannot open shared object file: No such file or directory'. Mono-INFO: DllImport loading: 'libsrp.so'. Mono-INFO: Searching for 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_library'. Mono-INFO: Probing 'SRP_initialize_libraryA'. Mono-INFO: Probing 'SRP_initialize_libraryA'. Unhandled Exception: System.EntryPointNotFoundException: SRP_initialize_library at (wrapper managed-to-native) Main.Test:SRP_initialize_library () at Main.Test1.Main (System.String[] args) [0x00000] sorry , but really i am not able to get where is the problem .please help me to finding the the problem. thanks

    Read the article

  • Attempting my first fortran 95 program, to solve quadratic eqn. Getting weird errors.

    - by Damon
    So, I'm attempting my first program in Fortran, trying to solve quadratic eqn. I have double and triple checked my code and don't see anything wrong. I keep getting "Invalid character in name at (1)" and "Unclassifiable statement at (1)" at various locations. Any help would be greatly appreciated... ! This program solves quadratic equations ! of the form ax^2 + bx + c = 0. ! Record: ! Name: Date: Notes: ! Damon Robles 4/3/10 Original Code PROGRAM quad_solv IMPLICIT NONE ! Variables REAL :: a, b, c REAL :: discrim, root1, root2, COMPLEX :: comp1, comp2 CHARACTER(len=1) :: correct ! Prompt user for coefficients. WRITE(*,*) "This program solves quadratic equations " WRITE(*,*) "of the form ax^2 + bx + c = 0. " WRITE(*,*) "Please enter the coefficients a, b, and " WRITE(*,*) "c, separated by commas:" READ(*,*) a, b, c WRITE(*,*) "Is this correct: a = ", a, " b = ", b WRITE(*,*) " c = ", c, " [Y/N]? " READ(*,*) correct IF correct = N STOP IF correct = Y THEN ! Definition discrim = b**2 - 4*a*c ! Calculations IF discrim > 0 THEN root1 = (-b + sqrt(discrim))/(2*a) root2 = (-b - sqrt(discrim))/(2*a) WRITE(*,*) "This equation has two real roots. " WRITE(*,*) "x1 = ", root1 WRITE(*,*) "x2 = ", root2 IF discrim = 0 THEN root1 = -b/(2*a) WRITE(*,*) "This equation has a double root. " WRITE(*,*) "x1 = ", root1 IF discrim < 0 THEN comp1 = (-b + sqrt(discrim))/(2*a) comp2 = (-b - sqrt(discrim))/(2*a) WRITE(*,*) "x1 = ", comp1 WRITE(*,*) "x2 = ", comp2 PROGRAM END quad_solv Thanks in advance!

    Read the article

1 2 3 4 5 6 7  | Next Page >