Search Results

Search found 18985 results on 760 pages for 'reference types'.

Page 1/760 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Error in running script [closed]

    - by SWEngineer
    I'm trying to run heathusf_v1.1.0.tar.gz found here I installed tcsh to make build_heathusf work. But, when I run ./build_heathusf, I get the following (I'm running that on a Fedora Linux system from Terminal): $ ./build_heathusf Compiling programs to build a library of image processing functions. convexpolyscan.c: In function ‘cdelete’: convexpolyscan.c:346:5: warning: incompatible implicit declaration of built-in function ‘bcopy’ [enabled by default] myalloc.c: In function ‘mycalloc’: myalloc.c:68:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘mymalloc’: myalloc.c:101:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘myfree’: myalloc.c:129:27: error: invalid storage class for function ‘find_link’ myalloc.c:131:12: warning: assignment makes pointer from integer without a cast [enabled by default] myalloc.c: At top level: myalloc.c:150:13: warning: conflicting types for ‘store_link’ [enabled by default] myalloc.c:150:13: error: static declaration of ‘store_link’ follows non-static declaration myalloc.c:91:4: note: previous implicit declaration of ‘store_link’ was here myalloc.c:164:24: error: conflicting types for ‘find_link’ myalloc.c:131:14: note: previous implicit declaration of ‘find_link’ was here Building the mammogram resizing program. gcc -O2 -I. -I../common mkimage.o -o mkimage -L../common -lmammo -lm ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [mkimage] Error 1 Building the breast segmentation program. gcc -O2 -I. -I../common breastsegment.o segment.o -o breastsegment -L../common -lmammo -lm breastsegment.o: In function `render_segmentation_sketch': breastsegment.c:(.text+0x43): undefined reference to `mycalloc' breastsegment.c:(.text+0x58): undefined reference to `mycalloc' breastsegment.c:(.text+0x12f): undefined reference to `mycalloc' breastsegment.c:(.text+0x1b9): undefined reference to `myfree' breastsegment.c:(.text+0x1c6): undefined reference to `myfree' breastsegment.c:(.text+0x1e1): undefined reference to `myfree' segment.o: In function `find_center': segment.c:(.text+0x53): undefined reference to `mycalloc' segment.c:(.text+0x71): undefined reference to `mycalloc' segment.c:(.text+0x387): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x4ac): undefined reference to `mycalloc' segment.c:(.text+0x546): undefined reference to `mycalloc' segment.c:(.text+0x651): undefined reference to `mycalloc' segment.c:(.text+0x691): undefined reference to `myfree' segment.o: In function `estimate_tissue_image': segment.c:(.text+0x10d4): undefined reference to `mycalloc' segment.c:(.text+0x14da): undefined reference to `mycalloc' segment.c:(.text+0x1698): undefined reference to `mycalloc' segment.c:(.text+0x1834): undefined reference to `mycalloc' segment.c:(.text+0x1850): undefined reference to `mycalloc' segment.o:segment.c:(.text+0x186a): more undefined references to `mycalloc' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x1bbc): undefined reference to `myfree' segment.c:(.text+0x1c4a): undefined reference to `mycalloc' segment.c:(.text+0x1c7c): undefined reference to `mycalloc' segment.c:(.text+0x1d8e): undefined reference to `myfree' segment.c:(.text+0x1d9b): undefined reference to `myfree' segment.c:(.text+0x1da8): undefined reference to `myfree' segment.c:(.text+0x1dba): undefined reference to `myfree' segment.c:(.text+0x1dc9): undefined reference to `myfree' segment.o:segment.c:(.text+0x1dd8): more undefined references to `myfree' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x20bf): undefined reference to `mycalloc' segment.o: In function `segment_breast': segment.c:(.text+0x24cd): undefined reference to `mycalloc' segment.o: In function `find_center': segment.c:(.text+0x3a4): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x6ac): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label': cc_label.c:(.text+0x20c): undefined reference to `mycalloc' cc_label.c:(.text+0x6c2): undefined reference to `mycalloc' cc_label.c:(.text+0xbaa): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label_0bkgd': cc_label.c:(.text+0xe17): undefined reference to `mycalloc' cc_label.c:(.text+0x12d7): undefined reference to `mycalloc' cc_label.c:(.text+0x17e7): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x18c5): undefined reference to `mycalloc' ../common/libmammo.a(cc_label.o): In function `cc_label_4connect': cc_label.c:(.text+0x1cf0): undefined reference to `mycalloc' cc_label.c:(.text+0x2195): undefined reference to `mycalloc' cc_label.c:(.text+0x26a4): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x1b06): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [breastsegment] Error 1 Building the mass feature generation program. gcc -O2 -I. -I../common afumfeature.o -o afumfeature -L../common -lmammo -lm afumfeature.o: In function `afum_process': afumfeature.c:(.text+0xd80): undefined reference to `mycalloc' afumfeature.c:(.text+0xd9c): undefined reference to `mycalloc' afumfeature.c:(.text+0xe80): undefined reference to `mycalloc' afumfeature.c:(.text+0x11f8): undefined reference to `myfree' afumfeature.c:(.text+0x1207): undefined reference to `myfree' afumfeature.c:(.text+0x1214): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [afumfeature] Error 1 Building the mass detection program. make: Nothing to be done for `all'. Building the performance evaluation program. gcc -O2 -I. -I../common DDSMeval.o polyscan.o -o DDSMeval -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [DDSMeval] Error 1 Building the template creation program. gcc -O2 -I. -I../common mktemplate.o polyscan.o -o mktemplate -L../common -lmammo -lm Building the drawimage program. gcc -O2 -I. -I../common drawimage.o -o drawimage -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [drawimage] Error 1 Building the compression/decompression program jpeg. gcc -O2 -DSYSV -DNOTRUNCATE -c lexer.c lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyin’) lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyout’) lexer.c: In function ‘initparser’: lexer.c:387:21: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c: In function ‘MakeLink’: lexer.c:443:16: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:447:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:452:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:455:34: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:458:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:460:3: warning: incompatible implicit declaration of built-in function ‘strcpy’ [enabled by default] lexer.c: In function ‘getstr’: lexer.c:548:26: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:552:4: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:557:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:557:28: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c:561:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘parser’: lexer.c:794:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:798:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1074:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1078:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1116:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1120:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1154:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1158:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1190:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1247:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1251:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1283:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘yylook’: lexer.c:1867:9: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1867:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:12: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:23: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] make: *** [lexer.o] Error 1

    Read the article

  • Implicit conversion : const reference vs non-const reference vs non-reference

    - by Nawaz
    Consider this code, struct A {}; struct B { B(const A&) {} }; void f(B) { cout << "f()"<<endl; } void g(A &a) { cout << "g()" <<endl; f(a); //a is implicitly converted into B. } int main() { A a; g(a); } This compiles fine, runs fine. But if I change f(B) to f(B&), it doesn't compile. If I write f(const B&), it again compiles fine, runs fine. Why is the reason and rationale? Summary: void f(B); //okay void f(B&); //error void f(const B&); //okay I would like to hear reasons, rationale and reference(s) from the language specification, for each of these cases. Of course, the function signatures themselves are not incorrect. Rather A implicitly converts into B and const B&, but not into B&, and that causes the compilation error.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Qt Linking Error.

    - by Wallah
    Hi, I configure qt-x11 with following options ./configure -prefix /iTalk/qtx11 -prefix-install -bindir /iTalk/qtx11-install/bin -libdir /iTalk/qtx11-install/lib -docdir /iTalk/qtx11-install/doc -headerdir /iTalk/qtx11-install/include -datadir /iTalk/qtx11-install/data -examplesdir /iTalk/qtx11-install/examples -demosdir /iTalk/qtx11-install/demos -debug. Now I am getting following errors in Fedora Core 6. Can you please tell me where the problem is? obj/debug-shared/qapplication_x11.o: In function `qt_init(QApplicationPrivate*, int, _XDisplay*, unsigned long, unsigned long)': /iTalk/QT4/qt/src/gui/kernel/qapplication_x11.cpp:1713: undefined reference to `FcInit' .obj/debug-shared/qfontdatabase.o: In function `queryFont': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1727: undefined reference to `FcFreeTypeQuery' .obj/debug-shared/qfontdatabase.o: In function `registerFont': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1959: undefined reference to `FcConfigGetCurrent' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1963: undefined reference to `FcConfigGetFonts' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1965: undefined reference to `FcConfigAppFontAddFile' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1966: undefined reference to `FcConfigGetFonts' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1985: undefined reference to `FcConfigGetBlanks' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1997: undefined reference to `FcPatternDel' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1998: undefined reference to `FcPatternAddString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:2001: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:2006: undefined reference to `FcFontSetAdd' .obj/debug-shared/qfontdatabase.o: In function `qt_FcPatternToQFontDef(_FcPattern*, QFontDef const&)': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:746: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:751: undefined reference to `FcPatternGetDouble' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:759: undefined reference to `FcPatternGetDouble' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:771: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:776: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:786: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:793: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:800: undefined reference to `FcPatternGetInteger' .obj/debug-shared/qfontdatabase.o: In function `FcFontSetRemove': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1573: undefined reference to `FcPatternDestroy' .obj/debug-shared/qfontdatabase.o: In function `qt_fontSetForPattern(_FcPattern*, QFontDef const&)': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1657: undefined reference to `FcFontSort' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1671: undefined reference to `FcPatternGetBool' .obj/debug-shared/qfontdatabase.o: In function `qt_addPatternProps(_FcPattern*, int, int, QFontDef const&)': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1449: undefined reference to `FcPatternAddInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1456: undefined reference to `FcPatternAddInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1459: undefined reference to `FcPatternAddDouble' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1464: undefined reference to `FcPatternAddInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1468: undefined reference to `FcPatternAddBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1471: undefined reference to `FcPatternAddBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1476: undefined reference to `FcLangSetCreate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1477: undefined reference to `FcLangSetAdd' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1478: undefined reference to `FcPatternAddLangSet' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1479: undefined reference to `FcLangSetDestroy' .obj/debug-shared/qfontdatabase.o: In function `tryPatternLoad': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1588: undefined reference to `FcPatternDuplicate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1593: undefined reference to `FcConfigSubstitute' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1594: undefined reference to `FcDefaultSubstitute' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1596: undefined reference to `FcFontMatch' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1606: undefined reference to `FcPatternDuplicate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1613: undefined reference to `FcPatternGetCharSet' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1615: undefined reference to `FcCharSetHasChar' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1619: undefined reference to `FcPatternGetLangSet' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1621: undefined reference to `FcLangSetHasLang' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1628: undefined reference to `FcPatternDel' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1629: undefined reference to `FcPatternAddBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1646: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1648: undefined reference to `FcPatternDestroy' .obj/debug-shared/qfontdatabase.o: In function `loadFontConfig': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1023: undefined reference to `FcObjectSetCreate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1024: undefined reference to `FcPatternCreate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1037: undefined reference to `FcObjectSetAdd' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1040: undefined reference to `FcFontList' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1041: undefined reference to `FcObjectSetDestroy' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1042: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1046: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1057: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1059: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1061: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1063: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1065: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1067: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1069: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1074: undefined reference to `FcPatternGetLangSet' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1081: undefined reference to `FcLangSetHasLang' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1100: undefined reference to `FcPatternGetCharSet' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1107: undefined reference to `FcCharSetHasChar' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1116: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1136: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1153: undefined reference to `FcPatternGetDouble' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1161: undefined reference to `FcFontSetDestroy' .obj/debug-shared/qfontdatabase.o: In function `getFcPattern': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1494: undefined reference to `FcPatternCreate' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1509: undefined reference to `FcPatternAdd' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1516: undefined reference to `FcPatternAddWeak' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1524: undefined reference to `FcPatternAddWeak' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1531: undefined reference to `FcPatternAddInteger' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1533: undefined reference to `FcPatternAddBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1535: undefined reference to `FcPatternAddBool' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1539: undefined reference to `FcDefaultSubstitute' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1540: undefined reference to `FcConfigSubstitute' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1541: undefined reference to `FcConfigSubstitute' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1550: undefined reference to `FcPatternAddWeak' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1557: undefined reference to `FcPatternAddWeak' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1564: undefined reference to `FcPatternAddWeak' .obj/debug-shared/qfontdatabase.o: In function `loadFc': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1707: undefined reference to `FcFontSetDestroy' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1716: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:1718: undefined reference to `FcPatternDestroy' .obj/debug-shared/qfontdatabase.o: In function `QFontDatabase::removeAllApplicationFonts()': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:2048: undefined reference to `FcConfigAppFontClear' .obj/debug-shared/qfontdatabase.o: In function `QFontDatabase::removeApplicationFont(int)': /iTalk/QT4/qt/src/gui/text/qfontdatabase_x11.cpp:2027: undefined reference to `FcConfigAppFontClear' .obj/debug-shared/qfontengine_x11.o: In function `qt_x11ft_convert_pattern(_FcPattern*, QByteArray*, int*, bool*)': /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:970: undefined reference to `FcPatternGetString' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:972: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:975: undefined reference to `FcPatternGetBool' .obj/debug-shared/qfontengine_x11.o: In function `QFontEngineX11FT': /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:999: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1016: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1041: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1077: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1106: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1112: undefined reference to `FcPatternGetCharSet' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1113: undefined reference to `FcCharSetCopy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1115: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:999: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1016: undefined reference to `FcPatternGetInteger' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1041: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1077: undefined reference to `FcPatternGetBool' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1106: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1112: undefined reference to `FcPatternGetCharSet' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1113: undefined reference to `FcCharSetCopy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:1115: undefined reference to `FcPatternDestroy' .obj/debug-shared/qfontengine_x11.o: In function `engineForPattern': /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:868: undefined reference to `FcFontMatch' .obj/debug-shared/qfontengine_x11.o: In function `QFontEngineMultiFT::loadEngine(int)': /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:929: undefined reference to `FcPatternEqual' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:932: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:941: undefined reference to `FcPatternDuplicate' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:951: undefined reference to `FcConfigSubstitute' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:952: undefined reference to `FcDefaultSubstitute' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:956: undefined reference to `FcPatternDestroy' .obj/debug-shared/qfontengine_x11.o: In function `~QFontEngineMultiFT': /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:895: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:897: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:899: undefined reference to `FcFontSetDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:895: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:897: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:899: undefined reference to `FcFontSetDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:895: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:897: undefined reference to `FcPatternDestroy' /iTalk/QT4/qt/src/gui/text/qfontengine_x11.cpp:899: undefined reference to `FcFontSetDestroy' .obj/debug-shared/qfontengine_ft.o: In function `QFontEngineFT::stringToCMap(QChar const*, int, QGlyphLayout*, int*, QFlags) const': /iTalk/QT4/qt/src/gui/text/qfontengine_ft.cpp:1546: undefined reference to `FcCharSetHasChar' /iTalk/QT4/qt/src/gui/text/qfontengine_ft.cpp:1581: undefined reference to `FcCharSetHasChar' .obj/debug-shared/qfontengine_ft.o: In function `QFreetypeFace::release(QFontEngine::FaceId const&)': /iTalk/QT4/qt/src/gui/text/qfontengine_ft.cpp:308: undefined reference to `FcCharSetDestroy' collect2: ld returned 1 exit status make[1]: *** [../../lib/libQtGui.so.4.5.3] Error 1 make[1]: Leaving directory `/iTalk/QT4/qt/src/gui' make: *** [sub-gui-make_default-ordered] Error 2

    Read the article

  • SQL SERVER – Best Reference – Wait Type – Day 27 of 28

    - by pinaldave
    I have great learning experience to write my article series on Extended Event. This was truly learning experience where I have learned way more than I would have learned otherwise. Besides my blog series there was excellent quality reference available on internet which one can use to learn this subject further. Here is the list of resources (in no particular order): sys.dm_os_wait_stats (Book OnLine) – This is excellent beginning point and official documentations on the wait types description. SQL Server Best Practices Article by Tom Davidson – I think this document goes without saying the BEST reference available on this subject. Performance Tuning with Wait Statistics by Joe Sack – One of the best slide deck available on this subject. It covers many real world scenarios. Wait statistics, or please tell me where it hurts by Paul Randal – Notes from real world from SQL Server Skilled Master Paul Randal. The SQL Server Wait Type Repository… by Bob Ward – A thorough article on wait types and its resolution. A MUST read. Tracking Session and Statement Level Waits by by Jonathan Kehayias – A unique article on the subject where wait stats and extended events are together. Wait Stats Introductory References By Jimmy May – Excellent collection of the reference links. Great Resource On SQL Server Wait Types by Glenn Berry – A perfect DMV to find top wait stats. Performance Blog by Idera – In depth article on top of the wait statistics in community. I have listed all the reference I have found in no particular order. If I have missed any good reference, please leave a comment and I will add the reference in the list. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Tracking Session and Statement Level Waits Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Wait Stats – Wait Types – Wait Queues – Day 0 of 28

    - by pinaldave
    This blog post will have running account of the all the blog post I will be doing in this month related to SQL Server Wait Types and Wait Queues. SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28 SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28 SQL SERVER – DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28 SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28 SQL SERVER – Capturing Wait Types and Wait Stats Information at Interval – Wait Type – Day 5 of 28 SQL SERVER – CXPACKET – Parallelism – Usual Solution – Wait Type – Day 6 of 28 SQL SERVER – CXPACKET – Parallelism – Advanced Solution – Wait Type – Day 7 of 28 SQL SERVER – SOS_SCHEDULER_YIELD – Wait Type – Day 8 of 28 SQL SERVER – PAGEIOLATCH_DT, PAGEIOLATCH_EX, PAGEIOLATCH_KP, PAGEIOLATCH_SH, PAGEIOLATCH_UP – Wait Type – Day 9 of 28 SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28 SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28 SQL SERVER – PAGELATCH_DT, PAGELATCH_EX, PAGELATCH_KP, PAGELATCH_SH, PAGELATCH_UP – Wait Type – Day 12 of 28 SQL SERVER – FT_IFTS_SCHEDULER_IDLE_WAIT – Full Text – Wait Type – Day 13 of 28 SQL SERVER – BACKUPIO, BACKUPBUFFER – Wait Type – Day 14 of 28 SQL SERVER – LCK_M_XXX – Wait Type – Day 15 of 28 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Wait Stats – Wait Types – Wait Queues – Day 0 of 28

    - by pinaldave
    This blog post will have running account of the all the blog post I will be doing in this month related to SQL Server Wait Types and Wait Queues. SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28 SQL SERVER – Single Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Guest Post – Jacob Sebastian – Filestream – Wait Types – Wait Queues – Day 22 of 28

    - by pinaldave
    Jacob Sebastian is a SQL Server MVP, Author, Speaker and Trainer. Jacob is one of the top rated expert community. Jacob wrote the book The Art of XSD – SQL Server XML Schema Collections and wrote the XML Chapter in SQL Server 2008 Bible. See his Blog | Profile. He is currently researching on the subject of Filestream and have submitted this interesting article on the very subject. What is FILESTREAM? FILESTREAM is a new feature introduced in SQL Server 2008 which provides an efficient storage and management option for BLOB data. Many applications that deal with BLOB data today stores them in the file system and stores the path to the file in the relational tables. Storing BLOB data in the file system is more efficient that storing them in the database. However, this brings up a few disadvantages as well. When the BLOB data is stored in the file system, it is hard to ensure transactional consistency between the file system data and relational data. Some applications store the BLOB data within the database to overcome the limitations mentioned earlier. This approach ensures transactional consistency between the relational data and BLOB data, but is very bad in terms of performance. FILESTREAM combines the benefits of both approaches mentioned above without the disadvantages we examined. FILESTREAM stores the BLOB data in the file system (thus takes advantage of the IO Streaming capabilities of NTFS) and ensures transactional consistency between the BLOB data in the file system and the relational data in the database. For more information on the FILESTREAM feature, visit: http://beyondrelational.com/filestream/default.aspx FILESTREAM Wait Types Since this series is on the different SQL Server wait types, let us take a look at the various wait types that are related to the FILESTREAM feature. FS_FC_RWLOCK This wait type is generated by FILESTREAM Garbage Collector. This occurs when Garbage collection is disabled prior to a backup/restore operation or when a garbage collection cycle is being executed. FS_GARBAGE_COLLECTOR_SHUTDOWN This wait type occurs when during the cleanup process of a garbage collection cycle. It indicates that that garbage collector is waiting for the cleanup tasks to be completed. FS_HEADER_RWLOCK This wait type indicates that the process is waiting for obtaining access to the FILESTREAM header file for read or write operation. The FILESTREAM header is a disk file located in the FILESTREAM data container and is named “filestream.hdr”. FS_LOGTRUNC_RWLOCK This wait type indicates that the process is trying to perform a FILESTREAM log truncation related operation. It can be either a log truncate operation or to disable log truncation prior to a backup or restore operation. FSA_FORCE_OWN_XACT This wait type occurs when a FILESTREAM file I/O operation needs to bind to the associated transaction, but the transaction is currently owned by another session. FSAGENT This wait type occurs when a FILESTREAM file I/O operation is waiting for a FILESTREAM agent resource that is being used by another file I/O operation. FSTR_CONFIG_MUTEX This wait type occurs when there is a wait for another FILESTREAM feature reconfiguration to be completed. FSTR_CONFIG_RWLOCK This wait type occurs when there is a wait to serialize access to the FILESTREAM configuration parameters. Waits and Performance System waits has got a direct relationship with the overall performance. In most cases, when waits increase the performance degrades. SQL Server documentation does not say much about how we can reduce these waits. However, following the FILESTREAM best practices will help you to improve the overall performance and reduce the wait types to a good extend. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: Filestream

    Read the article

  • SQLAuthority News – Online Webcast How to Identify Resource Bottlenecks – Wait Types and Queues

    - by pinaldave
    As all of you know I have been working a recently on the subject SQL Server Wait Statistics, the reason is since I have published book on this subject SQL Wait Stats Joes 2 Pros: SQL Performance Tuning Techniques Using Wait Statistics, Types & Queues [Amazon] | [Flipkart] | [Kindle], lots of question and answers I am encountering. When I was writing the book, I kept version 1 of the book in front of me. I wanted to write something which one can use right away. I wanted to create an primer for everybody who have not explored wait stats method of performance tuning. Well, the books have been very well received and in fact we ran out of huge stock 2 times in India so far and once in USA during SQLPASS. I have received so many questions on this subject that I feel I can write one more book of the same size. I have been asked if I can create videos which can go along with this book. Personally I am working with SQL Server 2012 CTP3 and there are so many new wait types, I feel the subject of wait stats is going to be very very crucial in next version of SQL Server. If you have not started learning about this subject, I suggest you at least start exploring this right now. Learn how to begin on this subject atleast as when the next version comes in, you know how to read DMVs. I will be presenting on the same subject of performance tuning by wait stats in webcast embarcadero SQL Server Community Webinar. Here are few topics which we will be covering during the webinar. Beginning with SQL Wait Stats Understanding various aspect of SQL Wait Stats Understanding Query Life Cycle Identifying three TOP wait Stats Resolution of the common 3 wait types and queues Details of the webcast: How to Identify Resource Bottlenecks – Wait Types and Queues Date and Time: Wednesday, November 2, 11:00 AM PDT Registration Link I thank embarcadero for organizing opportunity for me to share my experience on subject of wait stats and connecting me with community to further take this subject to next level. One more interesting thing, I will ask one question at the end of the webinar and I will be giving away 5 copy of my SQL Wait Stats print book to first five correct answers. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Simulating pass by reference for an array reference (i.e. a reference to a reference) in Java

    - by Leif Andersen
    I was wondering, in java, is it possible to in anyway, simulate pass by reference for an array? Yes, I know the language doesn't support it, but is there anyway I can do it. Say, for example, I want to create a method that reverses the order of all the elements in an array. (I know that this code snippet isn't the best example, as there is a better algorithms to do this, but this is a good example of the type of thing I want to do for more complex problems). Currently, I need to make a class like this: public static void reverse(Object[] arr) { Object[] tmpArr = new Object[arr.length]; count = arr.length - 1; for(Object i : arr) tmpArr[count--] = i; // I would like to do arr = tmpArr, but that will only make the shallow // reference tmpArr, I would like to actually change the pointer they passed in // Not just the values in the array, so I have to do this: count = arr.length - 1; for(Object i : tmpArr) arr[count--] = i; return; } Yes, I know that I could just swap the values until I get to the middle, and it would be much more efficient, but for other, more complex purposes, is there anyway that I can manipulate the actual pointer? Again, thank you.

    Read the article

  • Not able to compile dbus-ping-pong

    - by Mahipal
    I have downloaded files from http://cgit.collabora.com/git/user/alban/dbus-ping-pong.git/tree/ I am trying to compile it using the command gcc pkg-config --libs --cflags dbus-1 dbus-glib-1-2 glib-2.0 -o dbus-ping-pong dbus-ping-pong.c However, I get errors: /tmp/ccmJkxXb.o: In function g_once_init_enter: dbus-ping-pong.c:(.text+0x22): undefined reference to g_once_init_enter_impl /tmp/ccmJkxXb.o: In function dbus_glib_marshal_echo_srv__BOOLEAN__STRING_POINTER_POINTER: dbus-ping-pong.c:(.text+0x52): undefined reference to g_return_if_fail_warning dbus-ping-pong.c:(.text+0x79): undefined reference to g_return_if_fail_warning dbus-ping-pong.c:(.text+0x9d): undefined reference to g_value_peek_pointer dbus-ping-pong.c:(.text+0xac): undefined reference to g_value_peek_pointer dbus-ping-pong.c:(.text+0x109): undefined reference to g_value_set_boolean /tmp/ccmJkxXb.o: In function echo_ping_class_intern_init: dbus-ping-pong.c:(.text+0x122): undefined reference to g_type_class_peek_parent /tmp/ccmJkxXb.o: In function echo_ping_get_type: dbus-ping-pong.c:(.text+0x162): undefined reference to g_intern_static_string dbus-ping-pong.c:(.text+0x192): undefined reference to g_type_register_static_simple dbus-ping-pong.c:(.text+0x1a8): undefined reference to g_once_init_leave /tmp/ccmJkxXb.o: In function echo_ping_class_init: dbus-ping-pong.c:(.text+0x1cd): undefined reference to g_type_class_add_private dbus-ping-pong.c:(.text+0x1e2): undefined reference to dbus_g_object_type_install_info /tmp/ccmJkxXb.o: In function echo_ping_init: dbus-ping-pong.c:(.text+0x1fe): undefined reference to g_type_instance_get_private /tmp/ccmJkxXb.o: In function echo_ping: dbus-ping-pong.c:(.text+0x21d): undefined reference to g_strdup /tmp/ccmJkxXb.o: In function client: dbus-ping-pong.c:(.text+0x265): undefined reference to dbus_g_proxy_new_for_name dbus-ping-pong.c:(.text+0x2c3): undefined reference to dbus_g_proxy_call dbus-ping-pong.c:(.text+0x2d1): undefined reference to dbus_g_error_quark dbus-ping-pong.c:(.text+0x2f1): undefined reference to dbus_g_error_get_name dbus-ping-pong.c:(.text+0x305): undefined reference to g_printerr dbus-ping-pong.c:(.text+0x31d): undefined reference to g_printerr dbus-ping-pong.c:(.text+0x328): undefined reference to g_error_free dbus-ping-pong.c:(.text+0x358): undefined reference to g_print dbus-ping-pong.c:(.text+0x363): undefined reference to g_free /tmp/ccmJkxXb.o: In function main: dbus-ping-pong.c:(.text+0x38f): undefined reference to g_type_init dbus-ping-pong.c:(.text+0x3a3): undefined reference to dbus_g_bus_get dbus-ping-pong.c:(.text+0x3c7): undefined reference to g_object_new dbus-ping-pong.c:(.text+0x3df): undefined reference to g_type_check_instance_cast dbus-ping-pong.c:(.text+0x3f9): undefined reference to dbus_g_connection_register_g_object dbus-ping-pong.c:(.text+0x406): undefined reference to dbus_g_connection_get_connection dbus-ping-pong.c:(.text+0x426): undefined reference to dbus_bus_request_name dbus-ping-pong.c:(.text+0x43a): undefined reference to g_main_loop_new dbus-ping-pong.c:(.text+0x44a): undefined reference to g_main_loop_run How do I resolve this issue ?

    Read the article

  • SCRIPT REFERENCE PROFILER TO GET JAVASCRIPT REFERENCE DETAILS

    Many of us came through a scenario like, you need the details of total JS files referred to a web page. It's not a matter if all JS are directly referring through physical file. But now a days for cache purose we are embedding JS to the assembly. In these situations how you will get the JS reference details? Here coming ScriptReferenceProfiler.

    Read the article

  • TFSBuild/MSBuild and Project Reference vs File Reference

    - by anon
    We Have a large VS solution using project references which is build by TFS Build like so: Solution - Project 1 - Project 2 - Project ... - Project N Because the solution is too large we have several smaller solutions which we use day to day: SubSolution - Project 1 - Project 19 The problem is that developers working on SubSolution find that it is not building because the project references could not be found, so they change the projects to use file references. This then goes on to break the TFS Build which cannot find these file references because they have not been built yet (Even though the projects are in the same solution). Is there a way around this tug of war between the two types of references. What is the correct way of splitting out your solutions?

    Read the article

  • How can I modify a scalar reference passed to a subroutine reference

    - by Mark
    I have a function to convert documents into different formats, which then calls another function based on the type document. It's pretty straight forward for everything aside from HTML documents which require a bit of cleaning up, and that cleaning up is different based on where it's come from. So I had the idea that I could pass a reference to a subroutine to the convert function so the caller has the opportunity to modify the HTML, kinda like so (I'm not at work so this isn't copy-and-pasted): package Converter; ... sub convert { my ($self, $filename, $coderef) = @_; if ($filename =~ /html?$/i) { $self->_convert_html($filename, $coderef); } } sub _convert_html { my ($self, $filename, $coderef) = @_; my $html = $self->slurp($filename); $coderef->(\$html); #this modifies the html $self->save_to_file($filename, $html); } which is then called by: Converter->new->convert("./whatever.html", sub { s/<html>/<xml>/i }); I've tried a couple of different things along these lines but I keep on getting 'Use of uninitialized value in substitution (s///)'. Is there any way of doing what I'm trying to do? Thanks

    Read the article

  • C# reference collection for storing reference types

    - by ivo s
    I like to implement a collection (something like List<T>) which would hold all my objects that I have created in the entire life span of my application as if its an array of pointers in C++. The idea is that when my process starts I can use a central factory to create all objects and then periodically validate/invalidate their state. Basically I want to make sure that my process only deals with valid instances and I don't re-fetch information I already fetched from the database. So all my objects will basically be in one place - my collection. A cool thing I can do with this is avoid database calls to get data from the database if I already got it (even if I updated it after retrieval its still up-to-date if of course some other process didn't update it but that a different concern). I don't want to be calling new Customer("James Thomas"); again if I initted James Thomas already sometime in the past. Currently I will end up with multiple copies of the same object across the appdomain - some out of sync other in sync and even though I deal with this using timestamp field on the MSSQL server I'd like to keep only one copy per customer in my appdomain (if possible process would be better). I can't use regular collections like List or ArrayList for example because I cannot pass parameters by their real local reference to the their existing Add() methods where I'm creating them using ref so that's not to good I think. So how can this be implemented/can it be implemented at all ? A 'linked list' type of class with all methods working with ref & out params is what I'm thinking now but it may get ugly pretty quickly. Is there another way to implement such collection like RefList<T>.Add(ref T obj)? So bottom line is: I don't want re-create an object if I've already created it before during the entire application life unless I decide to re-create it explicitly (maybe its out-of-date or something so I have to fetch it again from the db). Is there alternatives maybe ?

    Read the article

  • C++: Reference and Pointer question (example regarding OpenGL)

    - by Jay
    I would like to load textures, and then have them be used by multiple objects. Would this work? class Sprite { GLuint* mTextures; // do I need this to also be a reference? Sprite( GLuint* textures ) // do I need this to also be a reference? { mTextures = textures; } void Draw( textureNumber ) { glBindTexture( GL_TEXTURE_2D, mTextures[ textureNumber ] ); // drawing code } }; // normally these variables would be inputed, but I did this for simplicity. const int NUMBER_OF_TEXTURES = 40; const int WHICH_TEXTURE = 10; void main() { std::vector<GLuint> the_textures; the_textures.resize( NUMBER_OF_TEXTURES ); glGenTextures( NUMBER_OF_TEXTURES, &the_textures[0] ); // texture loading code Sprite the_sprite( &the_textures[0] ); the_sprite.Draw( WHICH_TEXTURE ); } And is there a different way I should do this, even if it would work? Thanks.

    Read the article

  • QtOpenCl make errors. Please help.

    - by Skkard
    So I downloaded the ATI Stream SDK. I don't have a gpu now so I use the '-device cpu' and got the programs/examples in the OpenCl directory working by adding the directory to LD_LIBRARY_PATH etc. Now the problem is when installing QtOpenCl. configure script gives me: skkard@skkard-desktop:~/Applications/qt-labs-opencl$ ./configure This is the QtOpenCL configuration utility. Qt version ............. 4.6.2 qmake .................. /usr/bin/qmake OpenCL ................. yes OpenCL/OpenGL interop .. yes Extra QMAKE_CXXFLAGS ... Extra INCLUDEPATH ...... Extra LIBS ............. -lOpenCL QtOpenCL has been configured. Run '/usr/bin/make' to build. Make gives me: skkard@skkard-desktop:~/Applications/qt-labs-opencl$ make cd src/ && make -f Makefile make[1]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src' cd opencl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src/opencl' make[2]: Nothing to be done for `first'. make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src/opencl' cd openclgl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/src/openclgl' make[2]: Nothing to be done for `first'. make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src/openclgl' make[1]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/src' cd examples/ && make -f Makefile make[1]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples' cd opencl/ && make -f Makefile make[2]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl' cd vectoradd/ && make -f Makefile make[3]: Entering directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl/vectoradd' g++ -o vectoradd vectoradd.o qrc_vectoradd.o -L/usr/lib -L../../../lib -L../../../bin -lQtOpenCL -lQtGui -lQtCore -lpthread ../../../lib/libQtOpenCL.so: undefined reference to `clBuildProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clSetCommandQueueProperty' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueNDRangeKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clSetKernelArg' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyBufferToImage' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clFinish' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueUnmapMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clGetMemObjectInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueReadImage' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMarker' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetCommandQueueInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyImage' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseContext' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainMemObject' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseEvent' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWriteBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMapImage' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueReadBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clUnloadCompiler' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueBarrier' ../../../lib/libQtOpenCL.so: undefined reference to `clGetProgramBuildInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWaitForEvents' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateContext' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateImage3D' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueMapBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clGetDeviceIDs' ../../../lib/libQtOpenCL.so: undefined reference to `clGetContextInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetDeviceInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetSamplerInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetPlatformIDs' ../../../lib/libQtOpenCL.so: undefined reference to `clGetSupportedImageFormats' ../../../lib/libQtOpenCL.so: undefined reference to `clGetPlatformInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clWaitForEvents' ../../../lib/libQtOpenCL.so: undefined reference to `clGetEventInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetEventProfilingInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clGetImageInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateProgramWithBinary' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateCommandQueue' ../../../lib/libQtOpenCL.so: undefined reference to `clGetKernelWorkGroupInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainEvent' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainContext' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clFlush' ../../../lib/libQtOpenCL.so: undefined reference to `clGetProgramInfo' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueWriteImage' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateKernelsInProgram' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateProgramWithSource' ../../../lib/libQtOpenCL.so: undefined reference to `clReleaseKernel' ../../../lib/libQtOpenCL.so: undefined reference to `clRetainSampler' ../../../lib/libQtOpenCL.so: undefined reference to `clCreateImage2D' ../../../lib/libQtOpenCL.so: undefined reference to `clEnqueueCopyImageToBuffer' ../../../lib/libQtOpenCL.so: undefined reference to `clGetKernelInfo' collect2: ld returned 1 exit status make[3]: *** [vectoradd] Error 1 make[3]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl/vectoradd' make[2]: *** [sub-vectoradd-make_default] Error 2 make[2]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples/opencl' make[1]: *** [sub-opencl-make_default] Error 2 make[1]: Leaving directory `/home/skkard/Applications/qt-labs-opencl/examples' make: *** [sub-examples-make_default-ordered] Error 2 Tried it using the '-no-openclgl', but none of the examples etc are compiled. I'm using ubuntu 10.04 using the Qt which is installed from synaptic.

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • pointer reference type

    - by Codenotguru
    I am trying to write a function that takes a pointer argument, modifies what the pointer points to, and then returns the destination of the pointer as a reference. I am gettin the following error: cannot convert int***' toint*' in return| Code: #include <iostream> using namespace std; int* increment(int** i) { i++; return &i;} int main() { int a=24; int *p=&a; int *p2; p2=increment(&p); cout<<p2; } Thanks for helping!

    Read the article

  • C++ Passing `this` into method by reference

    - by David
    I have a class constructor that expects a reference to another class object to be passed in as an argument. I understand that references are preferable to pointers when no pointer arithmetic will be performed or when a null value will not exist. This is the header declaration of the constructor: class MixerLine { private: MIXERLINE _mixerLine; public: MixerLine(const MixerDevice& const parentMixer, DWORD destinationIndex); ~MixerLine(); } This is the code that calls the constructor (MixerDevice.cpp): void MixerDevice::enumerateLines() { DWORD numLines = getDestinationCount(); for(DWORD i=0;i<numLines;i++) { MixerLine mixerLine( this, i ); // other code here removed } } Compilation of MixerDevice.cpp fails with this error: Error 3 error C2664: 'MixerLine::MixerLine(const MixerDevice &,DWORD)' : cannot convert parameter 1 from 'MixerDevice *const ' to 'const MixerDevice &' But I thought pointer values could be assigned to pointers, e.g. Foo* foo = new Foo(); Foo& bar = foo;

    Read the article

  • New Reference Configuration: Accelerate Deployment of Virtual Infrastructure

    - by monica.kumar
    Today, Oracle announced the availability of Oracle VM blade cluster reference configuration based on Sun servers, storage and Oracle VM software. Assembling and integrating software and hardware systems from different vendors can be a huge barrier to deploying virtualized infrastructures as it is often a complicated, time-consuming, risky and expensive process. Using this tested configuration can help reduce the time to configure and deploy a virtual infrastructure by up to 98% as compared to putting together multi-vendor configurations. Once ready, the infrastructure can be used to easily deploy enterprise applications in a matter of minutes to hours as opposed to days/weeks, by using Oracle VM Templates. Find out more: Press Release Business whitepaper Technical whitepaper

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >