Search Results

Search found 2 results on 1 pages for 'rgrey'.

Page 1/1 | 1 

  • An implementation of Sharir's or Aurenhammer's deterministic algorithm for calculating the intersect

    - by RGrey
    The problem of finding the intersection/union of 'N' discs/circles on a flat plane was first proposed by M. I. Shamos in his 1978 thesis: Shamos, M. I. “Computational Geometry” Ph.D. thesis, Yale Univ., New Haven, CT 1978. Since then, in 1985, Micha Sharir presented an O(n log2n) time and O(n) space deterministic algorithm for the disc intersection/union problem (based on modified Voronoi diagrams): Sharir, M. Intersection and closest-pair problems for a set of planar discs. SIAM .J Comput. 14 (1985), pp. 448-468. In 1988, Franz Aurenhammer presented a more efficient O(n log n) time and O(n) space algorithm for circle intersection/union using power diagrams (generalizations of Voronoi diagrams): Aurenhammer, F. Improved algorithms for discs and balls using power diagrams. Journal of Algorithms 9 (1985), pp. 151-161. Earlier in 1983, Paul G. Spirakis also presented an O(n^2) time deterministic algorithm, and an O(n) probabilistic algorithm: Spirakis, P.G. Very Fast Algorithms for the Area of the Union of Many Circles. Rep. 98, Dept. Comput. Sci., Courant Institute, New York University, 1983. I've been searching for any implementations of the algorithms above, focusing on computational geometry packages, and I haven't found anything yet. As neither appear trivial to put into practice, it would be really neat if someone could point me in the right direction!

    Read the article

  • When can a freely moving sphere escape from a ‘cage’ defined by a set of impassible coordinates?

    - by RGrey
    Hopefully there are some computational geometry folks here who can help me out with the following problem - Please imagine that I take a freely moving ball in 3-space and create a 'cage' around it by defining a set of impassible coordinates, Sc (i.e. points in 3-space that no part of the diffusing ball is allowed to overlap). These points reside within the volume, V(cage), of some larger sphere, where V(cage) V(ball). Provided the set of impassible coordinates, Sc, is there a computationally efficient and/or nice way to determine if the ball can ever escape the cage?

    Read the article

1