Search Results

Search found 8 results on 1 pages for 'sql2014'.

Page 1/1 | 1 

  • New DMV… not yet

    - by Michael Zilberstein
    Downloaded and installed new toy: And while reading BOL, stumbled upon new extremely useful DMV: sys.dm_exec_query_profiles . This DMV enables DBA to monitor query progress while it is being executed. Counters in the DMV are per operation per thread. So we’ll be able to monitor in real time which thread (even for parallel processing) processes which node in the plan. Or find heavy operations “post mortem”. We all know the uncomfortable feeling when some heavy query runs and the boss starts asking...(read more)

    Read the article

  • sys.dm_exec_query_profiles – FAQ

    - by Michael Zilberstein
    As you probably know, this DMV is new in SQL Server 2014. It had been first announced in CTP1 but only in BOL . Now in CTP2 everyone can “play” with it. Since BOL is a little bit unclear (understatement detected), I’ve prepared this small FAQ as a result of discussion with Adam Machanic ( blog | twitter ) and Matan Yungman ( blog | twitter ). Q: What did you expect from sys.dm_exec_query_profiles? A: Expectations were very high – it promised, for the first time, ability to see _actual_ execution...(read more)

    Read the article

  • Delayed Durability–I start to like it!

    - by Michael Zilberstein
    In my previous post about the subject I’ve complained that according to BOL , this feature is enabled for Hekaton only. Panagiotis Antonopoulos from Microsoft commented that actually BOL is wrong – delayed durability can be used with all sorts of transactions, not just In-Memory ones. There is a database-level setting for delayed durability: default value is “Disabled”, other two options are “Allowed” and “Forced”. We’ll switch between “Disabled” and “Forced” and measure IO generated by a simple...(read more)

    Read the article

  • SQL Server 2014 – delayed transaction durability

    - by Michael Zilberstein
    As I’m downloading SQL Server 2014 CTP2 at this very moment, I’ve noticed new fascinating feature that hadn’t been announced in CTP1 : delayed transaction durability . It means that if your system is heavy on writes and on another hand you can tolerate data loss on some rare occasions – you can consider declaring transaction as DELAYED_DURABILITY = ON . In this case transaction would be committed when log is written to some buffer in memory – not to disk as usual. This way transactions can become...(read more)

    Read the article

  • Updatable columnstore index, sp_spaceused and sys.partitions

    - by Michael Zilberstein
    Columnstore index in SQL Server 2014 contains 2 new important features: it can be clustered and it is updateable. So I decided to play with both. As a “control group” I’ve taken my old columnstore index demo from one of the ISUG (Israeli SQL Server Usergroup) sessions. The script itself isn’t important – it creates partition function with 7 partitions (actually 8 but one remains empty), table on it and populates the table with 63 million rows – 9 million in each partition. So I used the same script...(read more)

    Read the article

  • New DMV–yes… no… that’s complicated

    - by Michael Zilberstein
    Remember the excitement about new sys.dm_exec_query_profiles DMV? It promised to be a gamechanger, providing query visibility at a runtime and easily extractable information about heavy iterators in execution plan. So it has been announced but missing. Now in CTP2 it is finally here. So, singing one of my favorite Queen songs “… It finally happened - I’m slightly mad…” , I tried to observe query execution data at a runtime. And… nothing. Query is running, DMV is empty. That’s really disappointing...(read more)

    Read the article

  • Trace flags - TF 1117

    - by Damian
    I had a session about trace flags this year on the SQL Day 2014 conference that was held in Wroclaw at the end of April. The session topic is important to most of DBA's and the reason I did it was that I sometimes forget about various trace flags :). So I decided to prepare a presentation but I think it is a good idea to write posts about trace flags, too. Let's start then - today I will describe the TF 1117. I assume that we all know how to setup a TF using starting parameters or registry or in the session or on the query level. I will always write if a trace flag is local or global to make sure we know how to use it. Why do we need this trace flag? Let’s create a test database first. This is quite ordinary database as it has two data files (4 MB each) and a log file that has 1MB. The data files are able to expand by 1 MB and the log file grows by 10%: USE [master] GO CREATE DATABASE [TF1117]  ON  PRIMARY ( NAME = N'TF1117',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117.mdf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB ), ( NAME = N'TF1117_1',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_1.ndf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB )  LOG ON ( NAME = N'TF1117_log',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_log.ldf' ,      SIZE = 1024KB ,      MAXSIZE = 2048GB ,      FILEGROWTH = 10% ) GO Without the TF 1117 turned on the data files don’t grow all up at once. When a first file is full the SQL Server expands it but the other file is not expanded until is full. Why is that so important? The SQL Server proportional fill algorithm will direct new extent allocations to the file with the most available space so new extents will be written to the file that was just expanded. When the TF 1117 is enabled it will cause all files to auto grow by their specified increment. That means all files will have the same percent of free space so we still have the benefit of evenly distributed IO. The TF 1117 is global flag so it affects all databases on the instance. Of course if a filegroup contains only one file the TF does not have any effect on it. Now let’s do a simple test. First let’s create a table in which every row will fit to a single page: The table definition is pretty simple as it has two integer columns and one character column of fixed size 8000 bytes: create table TF1117Tab (      col1 int,      col2 int,      col3 char (8000) ) go Now I load some data to the table to make sure that one of the data file must grow: declare @i int select @i = 1 while (@i < 800) begin       insert into TF1117Tab  values (@i, @i+1000, 'hello')        select @i= @i + 1 end I can check the actual file size in the sys.database_files DMV: SELECT name, (size*8)/1024 'Size in MB' FROM sys.database_files  GO   As you can see only the first data file was  expanded and the other has still the initial size:   name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              4 There is also other methods of looking at the events of file autogrows. One possibility is to create an Extended Events session and the other is to look into the default trace file:     DECLARE @path NVARCHAR(260); SELECT    @path = REVERSE(SUBSTRING(REVERSE([path]),          CHARINDEX('\', REVERSE([path])), 260)) + N'log.trc' FROM    sys.traces WHERE   is_default = 1; SELECT    DatabaseName,                 [FileName],                 SPID,                 Duration,                 StartTime,                 EndTime,                 FileType =                         CASE EventClass                                     WHEN 92 THEN 'Data'                                    WHEN 93 THEN 'Log'             END FROM sys.fn_trace_gettable(@path, DEFAULT) WHERE   EventClass IN (92,93) AND StartTime >'2014-07-12' AND DatabaseName = N'TF1117' ORDER BY   StartTime DESC;   After running the query I can see the file was expanded and how long did the process take which might be useful from the performance perspective.    Now it’s time to turn on the flag 1117. DBCC TRACEON(1117)   I dropped the database and recreated it once again. Then I ran the queries and observed the results. After loading the records I see that both files were evenly expanded: name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              5 I found also information in the default trace. The query returned three rows. The last one is connected to my first experiment when the TF was turned off.  The two rows shows that first file was expanded by 1MB and right after that operation the second file was expanded, too. This is what is this TF all about J  

    Read the article

  • SQL SERVER – SSMS: Memory Usage By Memory Optimized Objects Report

    - by Pinal Dave
    At conferences and at speaking engagements at the local UG, there is one question that keeps on coming which I wish were never asked. The question around, “Why is SQL Server using up all the memory and not releasing even when idle?” Well, the answer can be long and with the release of SQL Server 2014, this got even more complicated. This release of SQL Server 2014 has the option of introducing In-Memory OLTP which is completely new concept and our dependency on memory has increased multifold. In reality, nothing much changes but we have memory optimized objects (Tables and Stored Procedures) additional which are residing completely in memory and improving performance. As a DBA, it is humanly impossible to get a hang of all the innovations and the new features introduced in the next version. So today’s blog is around the report added to SSMS which gives a high level view of this new feature addition. This reports is available only from SQL Server 2014 onwards because the feature was introduced in SQL Server 2014. Earlier versions of SQL Server Management Studio would not show the report in the list. If we try to launch the report on the database which is not having In-Memory File group defined, then we would see the message in report. To demonstrate, I have created new fresh database called MemoryOptimizedDB with no special file group. Here is the query used to identify whether a database has memory-optimized file group or not. SELECT TOP(1) 1 FROM sys.filegroups FG WHERE FG.[type] = 'FX' Once we add filegroup using below command, we would see different version of report. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILEGROUP [IMO_FG] CONTAINS MEMORY_OPTIMIZED_DATA GO The report is still empty because we have not defined any Memory Optimized table in the database.  Total allocated size is shown as 0 MB. Now, let’s add the folder location into the filegroup and also created few in-memory tables. We have used the nomenclature of IMO to denote “InMemory Optimized” objects. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILE ( NAME = N'MemoryOptimizedDB_IMO', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\MemoryOptimizedDB_IMO') TO FILEGROUP [IMO_FG] GO You may have to change the path based on your SQL Server configuration. Below is the script to create the table. USE MemoryOptimizedDB GO --Drop table if it already exists. IF OBJECT_ID('dbo.SQLAuthority','U') IS NOT NULL DROP TABLE dbo.SQLAuthority GO CREATE TABLE dbo.SQLAuthority ( ID INT IDENTITY NOT NULL, Name CHAR(500)  COLLATE Latin1_General_100_BIN2 NOT NULL DEFAULT 'Pinal', CONSTRAINT PK_SQLAuthority_ID PRIMARY KEY NONCLUSTERED (ID), INDEX hash_index_sample_memoryoptimizedtable_c2 HASH (Name) WITH (BUCKET_COUNT = 131072) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO As soon as above script is executed, table and index both are created. If we run the report again, we would see something like below. Notice that table memory is zero but index is using memory. This is due to the fact that hash index needs memory to manage the buckets created. So even if table is empty, index would consume memory. More about the internals of how In-Memory indexes and tables work will be reserved for future posts. Now, use below script to populate the table with 10000 rows INSERT INTO SQLAuthority VALUES (DEFAULT) GO 10000 Here is the same report after inserting 1000 rows into our InMemory table.    There are total three sections in the whole report. Total Memory consumed by In-Memory Objects Pie chart showing memory distribution based on type of consumer – table, index and system. Details of memory usage by each table. The information about all three is taken from one single DMV, sys.dm_db_xtp_table_memory_stats This DMV contains memory usage statistics for both user and system In-Memory tables. If we query the DMV and look at data, we can easily notice that the system tables have negative object IDs.  So, to look at user table memory usage, below is the over-simplified version of query. USE MemoryOptimizedDB GO SELECT OBJECT_NAME(OBJECT_ID), * FROM sys.dm_db_xtp_table_memory_stats WHERE OBJECT_ID > 0 GO This report would help DBA to identify which in-memory object taking lot of memory which can be used as a pointer for designing solution. I am sure in future we will discuss at lengths the whole concept of In-Memory tables in detail over this blog. To read more about In-Memory OLTP, have a look at In-Memory OLTP Series at Balmukund’s Blog. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Memory, SQL Reports

    Read the article

1