Search Results

Search found 19 results on 1 pages for 'techtwaddle'.

Page 1/1 | 1 

  • What happens when you delete all the start screen tiles?

    - by TechTwaddle
    Note: I am currently in the process of relocating my blog from http://www.geekswithblogs.net/techtwaddle to my new address at http://www.techtwaddle.net I suggest you point your feed readers to the new address as I slowly transition to my new shared-hosted, ad-free wordpress blog :)   Well, the start screen disappears and all you see is the application list, which normally shows up when you scroll to the right. Pretty interesting I thought. So the start screen is basically a shortcuts screen on steroids, much nicer looking and with tile notifications.

    Read the article

  • Windows Phone 7 Developer Tools – January 2011 Update

    - by TechTwaddle
    Note: I am currently in the process of relocating my blog from http://www.geekswithblogs.net/techtwaddle to my new address at http://www.techtwaddle.net I suggest you point your feed readers to the new address as I slowly transition to my new shared-hosted, ad-free wordpress blog :) If you haven’t heard already, the Jan 2011 update of the windows phone 7 developer tools is out, er, in Feb. You can download the installation files from here, http://www.microsoft.com/downloads/en/details.aspx?FamilyID=49b9d0c5-6597-4313-912a-f0cca9c7d277 The performance increase with the new emulator is clearly noticeable and the first time deploy is real quick! The emulator image should also be a precursor to the windows phone 7 OS update that we’ve been waiting for ever. The emulator image includes copy-paste functionality which is enabled by default on all textboxes, password boxes and edit controls within web browser control, so existing apps get this feature for free. Go ahead and give the new tools a try. If you want to experiment more you might be interested in a unlocked emulator image, follow the link for more information. http://windowsphonehacker.com/latest_windows_phone_7_emulator_unlocked-02-05-11.php

    Read the article

  • A tale of two dev accounts

    - by TechTwaddle
    Note: I am currently in the process of relocating my blog from http://www.geekswithblogs.net/techtwaddle to my new address at http://www.techtwaddle.net I suggest you point your feed readers to the new address as I slowly transition to my new shared-hosted, ad-free wordpress blog :)   You probably remember my rant from a while back about my windows mobile developer account having problems with the new AppHub, well, there have been few developments and I thought I should share it with you. First up, the issue isn’t fixed yet. I still cannot login to AppHub using my windows mobile 6.x developer account and can’t view details of my Minesweeper app. Who knows how many copies its sold. I had numerous exchanges with Microsoft’s support team on the AppHub forums and via email as well (support ticket), but somehow we never managed to get to the root of it. In fact, the support team itself grew so tired of the problem that they suggested I create a new dev account. I grew impatient, and it was really frustrating to have an app ready for submission but not being able to do anything with it. Eventually, the frustration had to show somewhere, and it was on this forum thread Prabhu Kumar in reply to Nick Nick, I feel for you and totally understand the frustration. Since day one I have been getting the XBOX profile linking error, We encountered an issue connecting your App Hub account with your Xbox Live Profile. Please visit Xbox.com and update your contact information. After you have updated your contact information, please return to the App Hub (https://users.create.msdn.com/Register) to continue. I have an app published on the Windows Mobile 6.x marketplace since Aug, now I can't view the details of this app. I completed work on my WP7 application 1.5 months ago and the first version is ready for submission to marketplace, only if I can login. You can imagine how frustrating all this can be, the issue has taken far too long to be fixed, this has drained all my motivation. I have exchanged numerous mails with Microsoft support team on this issue, and from the looks of it they really are trying their best, unfortunately, their best is not good enough for some of us. During the first week of December I was told that there would be an update happening to AppHub around mid of December. I was hoping that the issue would be fixed but it wasn't. After the update the only change I notice is that the xbox.com link on the error page now takes me to the correct link. Previously, this link used to take me to the 404 page you mentioned above. Out of desperation, I am now considering creating another developer account on AppHub with a new live id, even this I am not 100% sure will work. I asked the support team when the next update to AppHub was planned and got this reply, "We do not have  release date to announce for the next App Hub update at this time. In regards to the login issue you are experiencing at this point the only solution would be to create a new account with a different live ID but make sure to go to xbox.com before hand to get all the information in order on that side." I know it's an extra $99, and not that I can't afford it but it doesn't feel right and I shouldn't have to be doing it in the first place. I have lost all hope of this issue being resolved. I went ahead and created a new dev account, the id verification was in progress when Shaun Taulbee of Microsoft, who has been really helpful in the forums, replied saying, If you find it necessary to pay again to create a new account due to a Microsoft problem, send in a support request asking for a refund and we'll review it (and likely approve it given the circumstances). The thought of refund made me happy, but I had my doubts. So once my second account was verified by Geotrust I applied for a refund through the developer dashboard, by creating a support ticket. Couple of days later I got an email from Microsoft saying that the refund had been approved! yay! Few days and the refund showed up on my bill, Well, thank you Microsoft, it means a lot. I am glad it’s over now. The new account works flawlessly. I would still like to get my first account working again and look at my app numbers for Win Mo 6.x, and probably transfer the credits to the new account somehow, but I’ll save it for another day. If you’ve had similar problems with the AppHub, and had to create a new account to submit your app, I suggest you contact the support team and get your dollars refunded!

    Read the article

  • Transparency and AlphaBlending

    - by TechTwaddle
    In this post we'll look at the AlphaBlend() api and how it can be used for semi-transparent blitting. AlphaBlend() takes a source device context and a destination device context (DC) and combines the bits in such a way that it gives a transparent effect. Follow the links for the msdn documentation. So lets take a image like, and AlphaBlend() it on our window. The code to do so is below, (under the WM_PAINT message of WndProc) HBITMAP hBitmap=NULL, hBitmapOld=NULL; HDC hMemDC=NULL; BLENDFUNCTION bf; hdc = BeginPaint(hWnd, &ps); hMemDC = CreateCompatibleDC(hdc); hBitmap = LoadBitmap(g_hInst, MAKEINTRESOURCE(IDB_BITMAP1)); hBitmapOld = SelectObject(hMemDC, hBitmap); bf.BlendOp = AC_SRC_OVER; bf.BlendFlags = 0; bf.SourceConstantAlpha = 80; //transparency value between 0-255 bf.AlphaFormat = 0;    AlphaBlend(hdc, 0, 25, 240, 100, hMemDC, 0, 0, 240, 100, bf); SelectObject(hMemDC, hBitmapOld); DeleteDC(hMemDC); DeleteObject(hBitmap); EndPaint(hWnd, &ps);   The code above creates a memory DC (hMemDC) using CreateCompatibleDC(), loads a bitmap onto the memory DC and AlphaBlends it on the device DC (hdc), with a transparency value of 80. The result is: Pretty simple till now. Now lets try to do something a little more exciting. Lets get two images involved, each overlapping the other, giving a better demonstration of transparency. I am also going to add a few buttons so that the user can increase or decrease the transparency by clicking on the buttons. Since this is the first time I played around with GDI apis, I ran into something that everybody runs into sometime or the other, flickering. When clicking the buttons the images would flicker a lot, I figured out why and used something called double buffering to avoid flickering. We will look at both my first implementation and the second implementation just to give the concept a little more depth and perspective. A few pre-conditions before I dive into the code: - hBitmap and hBitmap2 are handles to the two images obtained using LoadBitmap(), these variables are global and are initialized under WM_CREATE - The two buttons in the application are labeled Opaque++ (make more opaque, less transparent) and Opaque-- (make less opaque, more transparent) - DrawPics(HWND hWnd, int step=0); is the function called to draw the images on the screen. This is called from under WM_PAINT and also when the buttons are clicked. When Opaque++ is clicked the 'step' value passed to DrawPics() is +20 and when Opaque-- is clicked the 'step' value is -20. The default value of 'step' is 0 Now lets take a look at my first implementation: //this funciton causes flicker, cos it draws directly to screen several times void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL;     BLENDFUNCTION bf;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     //create a memory DC     hMemDC = CreateCompatibleDC(hdc);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents of screen     if (step < 0)     {         RECT rect = {0, 0, 240, 200};         FillRect(hdc, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     BitBlt(hdc, 0, 25, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hdc, 0, 75, 240, 100, hMemDC, 0, 0, 240, 100, bf);     DeleteDC(hMemDC);     ReleaseDC(hWnd, hdc); }   In the code above, we first get the window DC using GetDC() and create a memory DC using CreateCompatibleDC(). Then we select hBitmap2 onto the memory DC and Blt it on the window DC (hdc). Next, we select the other image, hBitmap, onto memory DC and AlphaBlend() it over window DC. As I told you before, this implementation causes flickering because it draws directly on the screen (hdc) several times. The video below shows what happens when the buttons were clicked rapidly: Well, the video recording tool I use captures only 15 frames per second and so the flickering is not visible in the video. So you're gonna have to trust me on this, it flickers (; To solve this problem we make sure that the drawing to the screen happens only once and to do that we create an additional memory DC, hTempDC. We perform all our drawing on this memory DC and finally when it is ready we Blt hTempDC on hdc, and the images are displayed in one go. Here is the code for our new DrawPics() function: //no flicker void DrawPics(HWND hWnd, int step) {     HDC hdc=NULL, hMemDC=NULL, hTempDC=NULL;     BLENDFUNCTION bf;     HBITMAP hBitmapTemp=NULL, hBitmapOld=NULL;     static UINT32 transparency = 100;     //no point in drawing when transparency is 0 and user clicks Opaque--     if (transparency == 0 && step < 0)         return;     //no point in drawing when transparency is 240 (opaque) and user clicks Opaque++     if (transparency == 240 && step > 0)         return;         hdc = GetDC(hWnd);     if (!hdc)         return;     hMemDC = CreateCompatibleDC(hdc);     hTempDC = CreateCompatibleDC(hdc);     hBitmapTemp = CreateCompatibleBitmap(hdc, 240, 150);     hBitmapOld = (HBITMAP)SelectObject(hTempDC, hBitmapTemp);     if (!hMemDC)     {         ReleaseDC(hWnd, hdc);         return;     }     //while increasing transparency, clear the contents     if (step < 0)     {         RECT rect = {0, 0, 240, 150};         FillRect(hTempDC, &rect, (HBRUSH)GetStockObject(WHITE_BRUSH));     }     SelectObject(hMemDC, hBitmap2);     //Blt hBitmap2 directly to hTempDC     BitBlt(hTempDC, 0, 0, 240, 100, hMemDC, 0, 0, SRCCOPY);         SelectObject(hMemDC, hBitmap);     transparency += step;     if (transparency >= 240)         transparency = 240;     if (transparency <= 0)         transparency = 0;     bf.BlendOp = AC_SRC_OVER;     bf.BlendFlags = 0;     bf.SourceConstantAlpha = transparency;     bf.AlphaFormat = 0;            AlphaBlend(hTempDC, 0, 50, 240, 100, hMemDC, 0, 0, 240, 100, bf);     //now hTempDC is ready, blt it directly on hdc     BitBlt(hdc, 0, 25, 240, 150, hTempDC, 0, 0, SRCCOPY);     SelectObject(hTempDC, hBitmapOld);     DeleteObject(hBitmapTemp);     DeleteDC(hMemDC);     DeleteDC(hTempDC);     ReleaseDC(hWnd, hdc); }   This function is very similar to the first version, except for the use of hTempDC. Another point to note is the use of CreateCompatibleBitmap(). When a memory device context is created using CreateCompatibleDC(), the context is exactly one monochrome pixel high and one monochrome pixel wide. So in order for us to draw anything onto hTempDC, we first have to set a bitmap on it. We use CreateCompatibleBitmap() to create a bitmap of required dimension (240x150 above), and then select this bitmap onto hTempDC. Think of it as utilizing an extra canvas, drawing everything on the canvas and finally transferring the contents to the display in one scoop. And with this version the flickering is gone, video follows:   If you want the entire solutions source code then leave a message, I will share the code over SkyDrive.

    Read the article

  • Windows Phone 7: Building a simple dictionary web client

    - by TechTwaddle
    Like I mentioned in this post a while back, I came across a dictionary web service called Aonaware that serves up word definitions from various dictionaries and is really easy to use. The services page on their website, http://services.aonaware.com/DictService/DictService.asmx, lists all the operations that are supported by the dictionary service. Here they are, Word Dictionary Web Service The following operations are supported. For a formal definition, please review the Service Description. Define Define given word, returning definitions from all dictionaries DefineInDict Define given word, returning definitions from specified dictionary DictionaryInfo Show information about the specified dictionary DictionaryList Returns a list of available dictionaries DictionaryListExtended Returns a list of advanced dictionaries (e.g. translating dictionaries) Match Look for matching words in all dictionaries using the given strategy MatchInDict Look for matching words in the specified dictionary using the given strategy ServerInfo Show remote server information StrategyList Return list of all available strategies on the server Follow the links above to get more information on each API. In this post we will be building a simple windows phone 7 client which uses this service to get word definitions for words entered by the user. The application will also allow the user to select a dictionary from all the available ones and look up the word definition in that dictionary. So of all the apis above we will be using only two, DictionaryList() to get a list of all supported dictionaries and DefineInDict() to get the word definition from a particular dictionary. Before we get started, a note to you all; I would have liked to implement this application using concepts from data binding, item templates, data templates etc. I have a basic understanding of what they are but, being a beginner, I am not very comfortable with those topics yet so I didn’t use them. I thought I’ll get this version out of the way and maybe in the next version I could give those a try. A somewhat scary mock-up of the what the final application will look like, Select Dictionary is a list picker control from the silverlight toolkit (you need to download and install the toolkit if you haven’t already). Below it is a textbox where the user can enter words to look up and a button beside it to fetch the word definition when clicked. Finally we have a textblock which occupies the remaining area and displays the word definition from the selected dictionary. Create a silverlight application for windows phone 7, AonawareDictionaryClient, and add references to the silverlight toolkit and the web service. From the solution explorer right on References and select Microsoft.Phone.Controls.Toolkit from under the .NET tab, Next, add a reference to the web service. Again right click on References and this time select Add Service Reference In the resulting dialog paste the service url in the Address field and press go, (url –> http://services.aonaware.com/DictService/DictService.asmx) once the service is discovered, provide a name for the NameSpace, in this case I’ve called it AonawareDictionaryService. Press OK. You can now use the classes and functions that are generated in the AonawareDictionaryClient.AonawareDictionaryService namespace. Let’s get the UI done now. In MainPage.xaml add a namespace declaration to use the toolkit controls, xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Toolkit" the content of LayoutRoot is changed as follows, (sorry, no syntax highlighting in this post) <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,5,0,5">     <TextBlock x:Name="ApplicationTitle" Text="AONAWARE DICTIONARY CLIENT" Style="{StaticResource PhoneTextNormalStyle}"/>     <!--<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>--> </StackPanel> <!--ContentPanel - place additional content here--> <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">     <Grid.RowDefinitions>         <RowDefinition Height="Auto"/>         <RowDefinition Height="Auto"/>         <RowDefinition Height="*"/>     </Grid.RowDefinitions>     <toolkit:ListPicker Grid.Column="1" x:Name="listPickerDictionaryList"                         Header="Select Dictionary :">     </toolkit:ListPicker>     <Grid Grid.Row="1" Margin="0,5,0,0">         <Grid.ColumnDefinitions>             <ColumnDefinition Width="*"/>             <ColumnDefinition Width="Auto" />         </Grid.ColumnDefinitions>         <TextBox x:Name="txtboxInputWord" Grid.Column="0" GotFocus="OnTextboxInputWordGotFocus" />         <Button x:Name="btnGo" Grid.Column="1" Click="OnButtonGoClick" >             <Button.Content>                 <Image Source="/images/button-go.png"/>             </Button.Content>         </Button>     </Grid>     <ScrollViewer Grid.Row="2" x:Name="scrollViewer">         <TextBlock  Margin="12,5,12,5"  x:Name="txtBlockWordMeaning" HorizontalAlignment="Stretch"                    VerticalAlignment="Stretch" TextWrapping="Wrap"                    FontSize="26" />     </ScrollViewer> </Grid> I have commented out the PageTitle as it occupies too much valuable space, and the ContentPanel is changed to contain three rows. First row contains the list picker control, second row contains the textbox and the button, and the third row contains a textblock within a scroll viewer. The designer will now be showing the final ui, Now go to MainPage.xaml.cs, and add the following namespace declarations, using Microsoft.Phone.Controls; using AonawareDictionaryClient.AonawareDictionaryService; using System.IO.IsolatedStorage; A class called DictServiceSoapClient would have been created for you in the background when you added a reference to the web service. This class functions as a wrapper to the services exported by the web service. All the web service functions that we saw at the start can be access through this class, or more precisely through an object of this class. Create a data member of type DictServiceSoapClient in the Mainpage class, and a function which initializes it, DictServiceSoapClient DictSvcClient = null; private DictServiceSoapClient GetDictServiceSoapClient() {     if (null == DictSvcClient)     {         DictSvcClient = new DictServiceSoapClient();     }     return DictSvcClient; } We have two major tasks remaining. First, when the application loads we need to populate the list picker with all the supported dictionaries and second, when the user enters a word and clicks on the arrow button we need to fetch the word’s meaning. Populating the List Picker In the OnNavigatingTo event of the MainPage, we call the DictionaryList() api. This can also be done in the OnLoading event handler of the MainPage; not sure if one has an advantage over the other. Here’s the code for OnNavigatedTo, protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) {     DictServiceSoapClient client = GetDictServiceSoapClient();     client.DictionaryListCompleted += new EventHandler<DictionaryListCompletedEventArgs>(OnGetDictionaryListCompleted);     client.DictionaryListAsync();     base.OnNavigatedTo(e); } Windows Phone 7 supports only async calls to web services. When we added a reference to the dictionary service, asynchronous versions of all the functions were generated automatically. So in the above function we register a handler to the DictionaryListCompleted event which will occur when the call to DictionaryList() gets a response from the server. Then we call the DictionaryListAsynch() function which is the async version of the DictionaryList() api. The result of this api will be sent to the handler OnGetDictionaryListCompleted(), void OnGetDictionaryListCompleted(object sender, DictionaryListCompletedEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     Dictionary[] listOfDictionaries;     if (e.Error == null)     {         listOfDictionaries = e.Result;         PopulateListPicker(listOfDictionaries, settings);     }     else if (settings.Contains("SavedDictionaryList"))     {         listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         PopulateListPicker(listOfDictionaries, settings);     }     else     {         MessageBoxResult res = MessageBox.Show("An error occured while retrieving dictionary list, do you want to try again?", "Error", MessageBoxButton.OKCancel);         if (MessageBoxResult.OK == res)         {             GetDictServiceSoapClient().DictionaryListAsync();         }     }     settings.Save(); } I have used IsolatedStorageSettings to store a few things; the entire dictionary list and the dictionary that is selected when the user exits the application, so that the next time when the user starts the application the current dictionary is set to the last selected value. First we check if the api returned any error, if the error object is null e.Result will contain the list (actually array) of Dictionary type objects. If there was an error, we check the isolated storage settings to see if there is a dictionary list stored from a previous instance of the application and if so, we populate the list picker based on this saved list. Note that in this case there are chances that the dictionary list might be out of date if there have been changes on the server. Finally, if none of these cases are true, we display an error message to the user and try to fetch the list again. PopulateListPicker() is passed the array of Dictionary objects and the settings object as well, void PopulateListPicker(Dictionary[] listOfDictionaries, IsolatedStorageSettings settings) {     listPickerDictionaryList.Items.Clear();     foreach (Dictionary dictionary in listOfDictionaries)     {         listPickerDictionaryList.Items.Add(dictionary.Name);     }     settings["SavedDictionaryList"] = listOfDictionaries;     string savedDictionaryName;     if (settings.Contains("SavedDictionary"))     {         savedDictionaryName = settings["SavedDictionary"] as string;     }     else     {         savedDictionaryName = "WordNet (r) 2.0"; //default dictionary, wordnet     }     foreach (string dictName in listPickerDictionaryList.Items)     {         if (dictName == savedDictionaryName)         {             listPickerDictionaryList.SelectedItem = dictName;             break;         }     }     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string; } We first clear all the items from the list picker, add the dictionary names from the array and then create a key in the settings called SavedDictionaryList and store the dictionary list in it. We then check if there is saved dictionary available from a previous instance, if there is, we set it as the selected item in the list picker. And if not, we set “WordNet ® 2.0” as the default dictionary. Before returning, we save the selected dictionary in the “SavedDictionary” key of the isolated storage settings. Fetching word definitions Getting this part done is very similar to the above code. We get the input word from the textbox, call into DefineInDictAsync() to fetch the definition and when DefineInDictAsync completes, we get the result and display it in the textblock. Here is the handler for the button click, private void OnButtonGoClick(object sender, RoutedEventArgs e) {     txtBlockWordMeaning.Text = "Please wait..";     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     if (txtboxInputWord.Text.Trim().Length <= 0)     {         MessageBox.Show("Please enter a word in the textbox and press 'Go'");     }     else     {         Dictionary[] listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         string selectedDictionary = listPickerDictionaryList.SelectedItem.ToString();         string dictId = "wn"; //default dictionary is wordnet (wn is the dict id)         foreach (Dictionary dict in listOfDictionaries)         {             if (dict.Name == selectedDictionary)             {                 dictId = dict.Id;                 break;             }         }         DictServiceSoapClient client = GetDictServiceSoapClient();         client.DefineInDictCompleted += new EventHandler<DefineInDictCompletedEventArgs>(OnDefineInDictCompleted);         client.DefineInDictAsync(dictId, txtboxInputWord.Text.Trim());     } } We validate the input and then select the dictionary id based on the currently selected dictionary. We need the dictionary id because the api DefineInDict() expects the dictionary identifier and not the dictionary name. We could very well have stored the dictionary id in isolated storage settings too. Again, same as before, we register a event handler for the DefineInDictCompleted event and call the DefineInDictAsync() method passing in the dictionary id and the input word. void OnDefineInDictCompleted(object sender, DefineInDictCompletedEventArgs e) {     WordDefinition wd = e.Result;     scrollViewer.ScrollToVerticalOffset(0.0f);     if (wd.Definitions.Length == 0)     {         txtBlockWordMeaning.Text = String.Format("No definitions were found for '{0}' in '{1}'", txtboxInputWord.Text.Trim(), listPickerDictionaryList.SelectedItem.ToString().Trim());     }     else     {         foreach (Definition def in wd.Definitions)         {             string str = def.WordDefinition;             str = str.Replace("  ", " "); //some formatting             txtBlockWordMeaning.Text = str;         }     } } When the api completes, e.Result will contain a WordDefnition object. This class is also generated in the background while adding the service reference. We check the word definitions within this class to see if any results were returned, if not, we display a message to the user in the textblock. If a definition was found the text on the textblock is set to display the definition of the word. Adding final touches, we now need to save the current dictionary when the application exits. A small but useful thing is selecting the entire word in the input textbox when the user selects it. This makes sure that if the user has looked up a definition for a really long word, he doesn’t have to press ‘clear’ too many times to enter the next word, protected override void OnNavigatingFrom(System.Windows.Navigation.NavigatingCancelEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string;     settings.Save();     base.OnNavigatingFrom(e); } private void OnTextboxInputWordGotFocus(object sender, RoutedEventArgs e) {     TextBox txtbox = sender as TextBox;     if (txtbox.Text.Trim().Length > 0)     {         txtbox.SelectionStart = 0;         txtbox.SelectionLength = txtbox.Text.Length;     } } OnNavigatingFrom() is called whenever you navigate away from the MainPage, since our application contains only one page that would mean that it is exiting. I leave you with a short video of the application in action, but before that if you have any suggestions on how to make the code better and improve it please do leave a comment. Until next time…

    Read the article

  • Applications: How to create a custom dialog box for Windows Mobile 6 (native)

    - by TechTwaddle
    Ashraf, on the MSDN forum, asks, “Is there a way to make a default choice for the messagebox that happens after a period of time if the user doesn't choose (Clicked ) Yes or No buttons.” To elaborate, the requirement is to show a message box to the user with certain options to select, and if the user does not respond within a predefined time limit (say 8 seconds) then the message box must dismiss itself and select a default option. Now such a functionality is not available with the MessageBox() api, you will have to write your own custom dialog box. Surely, creating a dialog box is quite a simple task using the DialogBox() api, and we have been creating full screen dialog boxes all the while. So how will this custom message box be any different? It’s not much different from a regular dialog box except for a few changes in its properties. First, it has a title bar but no buttons on the title bar (no ‘x’ or ‘ok’ button on the title bar), it doesn’t occupy full screen and it contains the controls that you put into it, thus justifying the title ‘custom’. So in this post we create a custom dialog box with two buttons, ‘Black’ and ‘White’. The user is given 8 seconds to select one of those colours, if the user doesn’t make a selection in 8 seconds, the default option ‘Black’ is selected. Before going into the implementation here is a video of how the dialog box works; Custom dialog box To start off, add a new dialog resource into your application, size it appropriately and add whatever controls you need to the dialog. In my case, I added two static text labels and two buttons, as below; Now we need to write up the window procedure for this dialog, here is the complete function; BOOL CALLBACK CustomDialogProc(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam) {     int wmID, wmEvent;     PAINTSTRUCT ps;     HDC hdc;     static int timeCount = 0;     switch(uMessage)     {         case WM_INITDIALOG:             {                 SHINITDLGINFO shidi;                 memset(&shidi, 0, sizeof(shidi));                 shidi.dwMask = SHIDIM_FLAGS;                 //shidi.dwFlags = SHIDIF_DONEBUTTON | SHIDIF_SIPDOWN | SHIDIF_SIZEDLGFULLSCREEN | SHIDIF_EMPTYMENU;                 shidi.dwFlags = SHIDIF_SIPDOWN | SHIDIF_EMPTYMENU;                 shidi.hDlg = hDlg;                 SHInitDialog(&shidi);                 SHDoneButton(hDlg, SHDB_HIDE);                 timeCount = 0;                 SetWindowText(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING), L"Time remaining: 8 second(s)");                 SetTimer(hDlg, MY_TIMER, 1000, NULL);             }             return TRUE;         case WM_COMMAND:             {                 wmID = LOWORD(wParam);                 wmEvent = HIWORD(wParam);                 switch(wmID)                 {                     case IDC_BUTTON_BLACK:                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_BLACK);                         break;                     case IDC_BUTTON_WHITE:                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_WHITE);                         break;                 }             }             break;         case WM_TIMER:             {                 if (wParam == MY_TIMER)                 {                     WCHAR wszText[128];                     memset(&wszText, 0, sizeof(wszText));                     timeCount++;                     //8 seconds are over, dismiss the dialog, select def value                     if (timeCount >= 8)                     {                         KillTimer(hDlg, MY_TIMER);                         EndDialog(hDlg, IDC_BUTTON_BLACK_DEF);                     }                     wsprintf(wszText, L"Time remaining: %d second(s)", 8-timeCount);                     SetWindowText(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING), wszText);                     UpdateWindow(GetDlgItem(hDlg, IDC_STATIC_TIME_REMAINING));                 }             }             break;         case WM_PAINT:             {                 hdc = BeginPaint(hDlg, &ps);                 EndPaint(hDlg, &ps);             }             break;     }     return FALSE; } The MSDN documentation mentions that you need to specify the flag WS_NONAVDONEBUTTON, but I got an error saying that the value could not be found, so we can ignore this for now. Next up, while calling SHInitDialog() for your custom dialog, make sure that you don’t specify SHDIF_DONEBUTTON in the dwFlags member of the SHINITDIALOG structure, this member makes the ‘ok’ button appear on the dialog title bar. Finally, we need to call SHDoneButton() with SHDB_HIDE flag to, well, hide the Done button. The ‘Done’ button is the same as the ‘ok’ button, so this step might seem redundant, and the dialog works fine without calling SHDoneButton() too, but it’s better to stick with the documentation (; So you can see that we have followed all these steps above, under WM_INITDIALOG. We also setup a few things like a variable to keep track of the time, and setting off a one second timer. Every time the timer fires, we receive a WM_TIMER message. We then update the static label displaying the amount of time left to the user. If 8 seconds go by without the user selecting any option, we kill the timer and end the dialog with IDC_BUTTON_BLACK_DEF. This is just a #define’d integer value, make sure it’s unique. You’ll see why this is important. If the user makes a selection, either Black or White, we kill the timer and end the dialog with corresponding selection the user made, that is, either IDC_BUTTON_BLACK or IDC_BUTTON_WHITE. Ok, so now our custom dialog is ready to be used. I invoke the custom dialog from a menu entry in the main windows as below, case IDM_MENU_CUSTOMDLG:     {         int ret = DialogBox(g_hInst, MAKEINTRESOURCE(IDD_CUSTOM_DIALOG), hWnd, CustomDialogProc);         switch(ret)         {             case IDC_BUTTON_BLACK_DEF:                 SetWindowText(g_hStaticSelection, L"You Selected: Black (default)");                 break;             case IDC_BUTTON_BLACK:                 SetWindowText(g_hStaticSelection, L"You Selected: Black");                 break;             case IDC_BUTTON_WHITE:                 SetWindowText(g_hStaticSelection, L"You Selected: White");                 break;         }         UpdateWindow(g_hStaticSelection);     }     break; So you see why ending the dialog with the corresponding value was important, that’s what the DialogBox() api returns with. And in the main window I update a static text label to show which option was selected. I cranked this out in about an hour, and unfortunately don’t have time for a managed C# version. That will have to be another post, if I manage to get it working that is (;

    Read the article

  • How Microsoft Lost the API War - by Joel Spolsky

    - by TechTwaddle
    Came across another gem of an article by Joel Spolsky. It's a pretty old article written in June of 2004, has lot of tidbits and I really enjoyed reading it, so much in fact that I read it twice! So hit the link below and give it a read if you haven't already, How Microsoft Lost the API War - Joel Spolsky excerpt, "I first heard about this from one of the developers of the hit game SimCity, who told me that there was a critical bug in his application: it used memory right after freeing it, a major no-no that happened to work OK on DOS but would not work under Windows where memory that is freed is likely to be snatched up by another running application right away. The testers on the Windows team were going through various popular applications, testing them to make sure they worked OK, but SimCity kept crashing. They reported this to the Windows developers, who disassembled SimCity, stepped through it in a debugger, found the bug, and added special code that checked if SimCity was running, and if it did, ran the memory allocator in a special mode in which you could still use memory after freeing it."

    Read the article

  • Windows Phone 7 Series - Tools and Resources

    - by TechTwaddle
    Unless you've been living in the caves of Lascaux for the past couple of days, you probably know what's happening in the world of Windows Phone. Microsoft unveiled the developer tools required to develop applications and games for Windows Phone 7 at MIX10 a couple of days back. Silverlight and XNA being the major frameworks, no big surprise there. And the best news of all is that all the development tools are free! So if you are planning to develop apps for Windows Phone 7, read on. The first place, or more appropriately hub, for you is the Windows Phone Developer Portal. It has most of the information you need to get you started. Now there is a ton of information available at other places too. In this post, I take time to put all the information that I found useful at one place, and I'll keep updating this as and when I find new stuff.   Setting up the development environment 1. Install Windows Phone Developer Tools CTP (Community Technology Preview) This will install Visual Studio 2010 Express, Silverlight, XNA framework and emulator for Windows Phone 7. It also installs a few support tools. 2. Expression Blend 4 for Windows Phone:     - Install Expression Blend 4 beta     - Install Expression Blend Add-in Preview for Windows Phone     - Install Expression Blend SDK Preview for Windows Phone Installing the above tools should set your machine up for development. I installed the tools on my Windows Vista SP1 machine and the process went smoothly without running into any major hitch. Note that the tools won't install on Windows XP, read the release notes of the CTP. Resources and Documentation 1. Microsoft Windows Phone 7 Series Developer Training Kit 2. Programming Windows Phone 7 Series by Charles Petzold. Contains few chapters only. Gives a good preview. 3. MSDN documentation for Windows Phone 7 Development 4. A sample chapter from Learning Windows Phone Programming [PDF] by Yochay Kiriaty and Jaime Rodriguez. Complete book will be available at a later time. 5. Windows Phone 7 Developer Forum - where you can ask questions and problems you run into and the experts are there to help you. 6. For Silverlight visit silverlight.net and for XNA game development, the XNA Creators Club is the place to go, also make sure you follow Michael Klutcher's and Shawn Hargreaves' blog. 7. And finally the MIX'10 website. Most of the sessions will be available for download later (some are already available). Click on the Windows Phone tag to get all the session details and downloads.   If you are completely new to Silverlight and XNA (like me), and C# makes some sense to you then I suggest you go through the Developer Training Kit. It gives a good start and ramps you up pretty quickly.

    Read the article

  • Applications: Colliding Marbles in C Sharp

    - by TechTwaddle
    If you follow this blog, you know how much I love marbles. I was staying up for Microsoft's "It's Time To Share" event and I thought I'll write up a C# version of Colliding Marbles. It's a pretty straight forward port from the native version, the only major difference being in the drawing primitives. Video follows. The solution was created using Visual Studio 2008 and the source code is shared below. Source Code: CollidingMarbles.zip [Shared on SkyDrive] Video,

    Read the article

  • How to: Show wait cursor in managed and native code

    - by TechTwaddle
    Someone on the MSDN forum asked about how to show a wait cursor, like when your application is loading or performing some (background) task. It’s pretty simple to show the wait cursor in both managed and native code, and in this post we will see just how. Managed Code (C#) Set Cursor.Current to Cursors.WaitCursor, and call Cursor.Show(). And to come back to normal cursor, set Cursor.Current to Cursors.Default and call Show() again. Below is a button handler for a sample app that I made, (watch the video below) private void button1_Click(object sender, EventArgs e) {     lblProgress.Text = "Downloading ether...";     lblProgress.Update();     Cursor.Current = Cursors.WaitCursor;     Cursor.Show();     //do some processing     for (int i = 0; i < 50; i++)     {         progressBar1.Value = 2 * (i + 1);         Thread.Sleep(100);     }     Cursor.Current = Cursors.Default;     Cursor.Show();     lblProgress.Text = "Download complete.";     lblProgress.Update(); }   Native Code In native code, call SetCursor(LoadCursor(NULL, IDC_WAIT)); to show the wait cursor; and SetCursor(LoadCursor(NULL, IDC_ARROW)); to come back to normal. The same button handler for native version of the app is below, case IDC_BUTTON_DOWNLOAD:     {         HWND temp;         temp = GetDlgItem(hDlg, IDC_STATIC_PROGRESS);         SetWindowText(temp, L"Downloading ether...");         UpdateWindow(temp);         SetCursor(LoadCursor(NULL, IDC_WAIT));         temp = GetDlgItem(hDlg, IDC_PROGRESSBAR);         for (int i=0; i<50; i++)         {             SendMessage(temp, PBM_SETPOS, (i+1)*2, 0);             Sleep(100);         }         SetCursor(LoadCursor(NULL, IDC_ARROW));         temp = GetDlgItem(hDlg, IDC_STATIC_PROGRESS);         SetWindowText(temp, L"Download Complete.");         UpdateWindow(temp);     }     break; Here is a video of the sample app running. First the managed version is deployed and the native version next,

    Read the article

  • Applications: The mathematics of movement, Part 1

    - by TechTwaddle
    Before you continue reading this post, a suggestion; if you haven’t read “Programming Windows Phone 7 Series” by Charles Petzold, go read it. Now. If you find 150+ pages a little too long, at least go through Chapter 5, Principles of Movement, especially the section “A Brief Review of Vectors”. This post is largely inspired from this chapter. At this point I assume you know what vectors are, how they are represented using the pair (x, y), what a unit vector is, and given a vector how you would normalize the vector to get a unit vector. Our task in this post is simple, a marble is drawn at a point on the screen, the user clicks at a random point on the device, say (destX, destY), and our program makes the marble move towards that point and stop when it is reached. The tricky part of this task is the word “towards”, it adds a direction to our problem. Making a marble bounce around the screen is simple, all you have to do is keep incrementing the X and Y co-ordinates by a certain amount and handle the boundary conditions. Here, however, we need to find out exactly how to increment the X and Y values, so that the marble appears to move towards the point where the user clicked. And this is where vectors can be so helpful. The code I’ll show you here is not ideal, we’ll be working with C# on Windows Mobile 6.x, so there is no built-in vector class that I can use, though I could have written one and done all the math inside the class. I think it is trivial to the actual problem that we are trying to solve and can be done pretty easily once you know what’s going on behind the scenes. In other words, this is an excuse for me being lazy. The first approach, uses the function Atan2() to solve the “towards” part of the problem. Atan2() takes a point (x, y) as input, Atan2(y, x), note that y goes first, and then it returns an angle in radians. What angle you ask. Imagine a line from the origin (0, 0), to the point (x, y). The angle which Atan2 returns is the angle the positive X-axis makes with that line, measured clockwise. The figure below makes it clear, wiki has good details about Atan2(), give it a read. The pair (x, y) also denotes a vector. A vector whose magnitude is the length of that line, which is Sqrt(x*x + y*y), and a direction ?, as measured from positive X axis clockwise. If you’ve read that chapter from Charles Petzold’s book, this much should be clear. Now Sine and Cosine of the angle ? are special. Cosine(?) divides x by the vectors length (adjacent by hypotenuse), thus giving us a unit vector along the X direction. And Sine(?) divides y by the vectors length (opposite by hypotenuse), thus giving us a unit vector along the Y direction. Therefore the vector represented by the pair (cos(?), sin(?)), is the unit vector (or normalization) of the vector (x, y). This unit vector has a length of 1 (remember sin2(?) + cos2(?) = 1 ?), and a direction which is the same as vector (x, y). Now if I multiply this unit vector by some amount, then I will always get a point which is a certain distance away from the origin, but, more importantly, the point will always be on that line. For example, if I multiply the unit vector with the length of the line, I get the point (x, y). Thus, all we have to do to move the marble towards our destination point, is to multiply the unit vector by a certain amount each time and draw the marble, and the marble will magically move towards the click point. Now time for some code. The application, uses a timer based frame draw method to draw the marble on the screen. The timer is disabled initially and whenever the user clicks on the screen, the timer is enabled. The callback function for the timer follows the standard Update and Draw cycle. private double totLenToTravelSqrd = 0; private double startPosX = 0, startPosY = 0; private double destX = 0, destY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     destX = e.X;     destY = e.Y;     double x = marble1.x - destX;     double y = marble1.y - destY;     //calculate the total length to be travelled     totLenToTravelSqrd = x * x + y * y;     //store the start position of the marble     startPosX = marble1.x;     startPosY = marble1.y;     timer1.Enabled = true; } private void timer1_Tick(object sender, EventArgs e) {     UpdatePosition();     DrawMarble(); } Form1_MouseUp() method is called when ever the user touches and releases the screen. In this function we save the click point in destX and destY, this is the destination point for the marble and we also enable the timer. We store a few more values which we will use in the UpdatePosition() method to detect when the marble has reached the destination and stop the timer. So we store the start position of the marble and the square of the total length to be travelled. I’ll leave out the term ‘sqrd’ when speaking of lengths from now on. The time out interval of the timer is set to 40ms, thus giving us a frame rate of about ~25fps. In the timer callback, we update the marble position and draw the marble. We know what DrawMarble() does, so here, we’ll only look at how UpdatePosition() is implemented; private void UpdatePosition() {     //the vector (x, y)     double x = destX - marble1.x;     double y = destY - marble1.y;     double incrX=0, incrY=0;     double distanceSqrd=0;     double speed = 6;     //distance between destination and current position, before updating marble position     distanceSqrd = x * x + y * y;     double angle = Math.Atan2(y, x);     //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction     incrX = speed * Math.Cos(angle);     incrY = speed * Math.Sin(angle);     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and current point, after updating marble position     x = destX - marble1.x;     y = destY - marble1.y;     double newDistanceSqrd = x * x + y * y;     //length from start point to current marble position     x = startPosX - (marble1.x);     y = startPosY - (marble1.y);     double lenTraveledSqrd = x * x + y * y;     //check for end conditions     if ((int)lenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because destination reached");         timer1.Enabled = false;     }     else if (Math.Abs((int)distanceSqrd - (int)newDistanceSqrd) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New position");         timer1.Enabled = false;     } } Ok, so in this function, first we subtract the current marble position from the destination point to give us a vector. The first three lines of the function construct this vector (x, y). The vector (x, y) has the same length as the line from (marble1.x, marble1.y) to (destX, destY) and is in the direction pointing from (marble1.x, marble1.y) to (destX, destY). Note that marble1.x and marble1.y denote the center point of the marble. Then we use Atan2() to get the angle which this vector makes with the positive X axis and use Cosine() and Sine() of that angle to get the unit vector along that same direction. We multiply this unit vector with 6, to get the values which the position of the marble should be incremented by. This variable, speed, can be experimented with and determines how fast the marble moves towards the destination. After this, we check for bounds to make sure that the marble stays within the screen limits and finally we check for the end condition and stop the timer. The end condition has two parts to it. The first case is the normal case, where the user clicks well inside the screen. Here, we stop when the total length travelled by the marble is greater than or equal to the total length to be travelled. Simple enough. The second case is when the user clicks on the very corners of the screen. Like I said before, the values marble1.x and marble1.y denote the center point of the marble. When the user clicks on the corner, the marble moves towards the point, and after some time tries to go outside of the screen, this is when the bounds checking comes into play and corrects the marble position so that the marble stays inside the screen. In this case the marble will never travel a distance of totLenToTravelSqrd, because of the correction is its position. So here we detect the end condition when there is not much change in marbles position. I use the value 4 in the second condition above. After experimenting with a few values, 4 seemed to work okay. There is a small thing missing in the code above. In the normal case, case 1, when the update method runs for the last time, marble position over shoots the destination point. This happens because the position is incremented in steps (which are not small enough), so in this case too, we should have corrected the marble position, so that the center point of the marble sits exactly on top of the destination point. I’ll add this later and update the post. This has been a pretty long post already, so I’ll leave you with a video of how this program looks while running. Notice in the video that the marble moves like a bot, without any grace what so ever. And that is because the speed of the marble is fixed at 6. In the next post we will see how to make the marble move a little more elegantly. And also, if Atan2(), Sine() and Cosine() are a little too much to digest, we’ll see how to achieve the same effect without using them, in the next to next post maybe. Ciao!

    Read the article

  • Applications: The Mathematics of Movement, Part 2

    - by TechTwaddle
    In part 1 of this series we saw how we can make the marble move towards the click point, with a fixed speed. In this post we’ll see, first, how to get rid of Atan2(), sine() and cosine() in our calculations, and, second, reducing the speed of the marble as it approaches the destination, so it looks like the marble is easing into it’s final position. As I mentioned in one of the previous posts, this is achieved by making the speed of the marble a function of the distance between the marble and the destination point. Getting rid of Atan2(), sine() and cosine() Ok, to be fair we are not exactly getting rid of these trigonometric functions, rather, replacing one form with another. So instead of writing sin(?), we write y/length. You see the point. So instead of using the trig functions as below, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and current position, before updating marble position distanceSqrd = x * x + y * y; double angle = Math.Atan2(y, x); //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction incrX = speed * Math.Cos(angle); incrY = speed * Math.Sin(angle); marble1.x += incrX; marble1.y += incrY; we use the following, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and marble (before updating marble position) lengthSqrd = x * x + y * y; length = Math.Sqrt(lengthSqrd); //unit vector along the same direction as vector(x, y) unitX = x / length; unitY = y / length; //update marble position incrX = speed * unitX; incrY = speed * unitY; marble1.x += incrX; marble1.y += incrY; so we replaced cos(?) with x/length and sin(?) with y/length. The result is the same.   Adding oomph to the way it moves In the last post we had the speed of the marble fixed at 6, double speed = 6; to make the marble decelerate as it moves, we have to keep updating the speed of the marble in every frame such that the speed is calculated as a function of the length. So we may have, speed = length/12; ‘length’ keeps decreasing as the marble moves and so does speed. The Form1_MouseUp() function remains the same as before, here is the UpdatePosition() method, private void UpdatePosition() {     double incrX = 0, incrY = 0;     double lengthSqrd = 0, length = 0, lengthSqrdNew = 0;     double unitX = 0, unitY = 0;     double speed = 0;     double x = destX - marble1.x;     double y = destY - marble1.y;     //distance between destination and marble (before updating marble position)     lengthSqrd = x * x + y * y;     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     //speed as a function of length     speed = length / 12;     //update marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and marble (after updating marble position)     x = destX - (marble1.x);     y = destY - (marble1.y);     lengthSqrdNew = x * x + y * y;     /*      * End Condition:      * 1. If there is not much difference between lengthSqrd and lengthSqrdNew      * 2. If the marble has moved more than or equal to a distance of totLenToTravel (see Form1_MouseUp)      */     x = startPosX - marble1.x;     y = startPosY - marble1.y;     double totLenTraveledSqrd = x * x + y * y;     if ((int)totLenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because Total Len has been traveled");         timer1.Enabled = false;     }     else if (Math.Abs((int)lengthSqrd - (int)lengthSqrdNew) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New");         timer1.Enabled = false;     } } A point to note here is that, in this implementation, the marble never stops because it travelled a distance of totLenToTravelSqrd (first if condition). This happens because speed is a function of the length. During the final few frames length becomes very small and so does speed; and so the amount by which the marble shifts is quite small, and the second if condition always hits true first. I’ll end this series with a third post. In part 3 we will cover two things, one, when the user clicks, the marble keeps moving in that direction, rebounding off the screen edges and keeps moving forever. Two, when the user clicks on the screen, the marble moves towards it, with it’s speed reducing by every frame. It doesn’t come to a halt when the destination point is reached, instead, it continues to move, rebounds off the screen edges and slowly comes to halt. The amount of time that the marble keeps moving depends on how far the user clicks from the marble. I had mentioned this second situation here. Finally, here’s a video of this program running,

    Read the article

  • Applications: The Mathematics of Movement, Part 3

    - by TechTwaddle
    Previously: Part 1, Part 2 As promised in the previous post, this post will cover two variations of the marble move program. The first one, Infinite Move, keeps the marble moving towards the click point, rebounding it off the screen edges and changing its direction when the user clicks again. The second version, Finite Move, is the same as first except that the marble does not move forever. It moves towards the click point, rebounds off the screen edges and slowly comes to rest. The amount of time that it moves depends on the distance between the click point and marble. Infinite Move This case is simple (actually both cases are simple). In this case all we need is the direction information which is exactly what the unit vector stores. So when the user clicks, you calculate the unit vector towards the click point and then keep updating the marbles position like crazy. And, of course, there is no stop condition. There’s a little more additional code in the bounds checking conditions. Whenever the marble goes off the screen boundaries, we need to reverse its direction.  Here is the code for mouse up event and UpdatePosition() method, //stores the unit vector double unitX = 0, unitY = 0; double speed = 6; //speed times the unit vector double incrX = 0, incrY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = e.X - marble1.x;     double y = e.Y - marble1.y;     //calculate distance between click point and current marble position     double lenSqrd = x * x + y * y;     double len = Math.Sqrt(lenSqrd);     //unit vector along the same direction (from marble towards click point)     unitX = x / len;     unitY = y / len;     timer1.Enabled = true; } private void UpdatePosition() {     //amount by which to increment marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     } } So whenever the user clicks we calculate the unit vector along that direction and also the amount by which the marble position needs to be incremented. The speed in this case is fixed at 6. You can experiment with different values. And under bounds checking, whenever the marble position goes out of bounds along the x or y direction we reverse the direction of the unit vector along that direction. Here’s a video of it running;   Finite Move The code for finite move is almost exactly same as that of Infinite Move, except for the difference that the speed is not fixed and there is an end condition, so the marble comes to rest after a while. Code follows, //unit vector along the direction of click point double unitX = 0, unitY = 0; //speed of the marble double speed = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = 0, y = 0;     double lengthSqrd = 0, length = 0;     x = e.X - marble1.x;     y = e.Y - marble1.y;     lengthSqrd = x * x + y * y;     //length in pixels (between click point and current marble pos)     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     speed = length / 12;     timer1.Enabled = true; } private void UpdatePosition() {     marble1.x += speed * unitX;     marble1.y += speed * unitY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     }     //reduce speed by 3% in every loop     speed = speed * 0.97f;     if ((int)speed <= 0)     {         timer1.Enabled = false;     } } So the only difference is that the speed is calculated as a function of length when the mouse up event occurs. Again, this can be experimented with. Bounds checking is same as before. In the update and draw cycle, we reduce the speed by 3% in every cycle. Since speed is calculated as a function of length, speed = length/12, the amount of time it takes speed to reach zero is directly proportional to length. Note that the speed is in ‘pixels per 40ms’ because the timeout value of the timer is 40ms.  The readability can be improved by representing speed in ‘pixels per second’. This would require you to add some more calculations to the code, which I leave out as an exercise. Here’s a video of this second version,

    Read the article

  • Applications: Some more marble fun!

    - by TechTwaddle
    Well, yesterday night I was watching a tutorial on XNA when I came across this neat little trick. It was a simple XNA application with a Windows Phone logo in it and whenever the user clicked on the device the logo would move towards the click point, and I couldn't resist experimenting with the marble (; The code is written in C# using CF3.5. Here is a video of the demo,   You probably noticed that the motion of the marble towards the click point (destination) is not linear. The marble starts off with a high velocity and slows down as it reaches its destination. This is achieved by making the speed of the marble a function of the distance between marble's current position and the destination, so as the marble approaches the destination point, the distance between them reduces and so does the speed, until it becomes zero. More on the code and the logic behind it in the next post. What I'd like to do next is, instead of making the marble stop at the click point, it should continue to move beyond it, bounce around the screen a few times and eventually come to a stop after a while. Let's see how that goes.

    Read the article

  • Windows Phone 7 : Dragging and flicking UI controls

    - by TechTwaddle
    Who would want to flick and drag UI controls!? There might not be many use cases but I think some concepts here are worthy of a post. So we will create a simple silverlight application for windows phone 7, containing a canvas element on which we’ll place a button control and an image and then, as the title says, drag and flick the controls. Here’s Mainpage.xaml, <Grid x:Name="LayoutRoot" Background="Transparent">   <Grid.RowDefinitions>     <RowDefinition Height="Auto"/>     <RowDefinition Height="*"/>   </Grid.RowDefinitions>     <!--TitlePanel contains the name of the application and page title-->   <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">     <TextBlock x:Name="ApplicationTitle" Text="KINETICS" Style="{StaticResource PhoneTextNormalStyle}"/>     <TextBlock x:Name="PageTitle" Text="drag and flick" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>   </StackPanel>     <!--ContentPanel - place additional content here-->   <Grid x:Name="ContentPanel" Grid.Row="1" >     <Canvas x:Name="MainCanvas" HorizontalAlignment="Stretch" VerticalAlignment="Stretch">       <Canvas.Background>         <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">           <GradientStop Offset="0" Color="Black"/>           <GradientStop Offset="1.5" Color="BlanchedAlmond"/>         </LinearGradientBrush>       </Canvas.Background>     </Canvas>   </Grid> </Grid> the second row in the main grid contains a canvas element, MainCanvas, with its horizontal and vertical alignment set to stretch so that it occupies the entire grid. The canvas background is a linear gradient brush starting with Black and ending with BlanchedAlmond. We’ll add the button and image control to this canvas at run time. Moving to Mainpage.xaml.cs the Mainpage class contains the following members, public partial class MainPage : PhoneApplicationPage {     Button FlickButton;     Image FlickImage;       FrameworkElement ElemToMove = null;     double ElemVelX, ElemVelY;       const double SPEED_FACTOR = 60;       DispatcherTimer timer; FlickButton and FlickImage are the controls that we’ll add to the canvas. ElemToMove, ElemVelX and ElemVelY will be used by the timer callback to move the ui control. SPEED_FACTOR is used to scale the velocities of ui controls. Here’s the Mainpage constructor, // Constructor public MainPage() {     InitializeComponent();       AddButtonToCanvas();       AddImageToCanvas();       timer = new DispatcherTimer();     timer.Interval = TimeSpan.FromMilliseconds(35);     timer.Tick += new EventHandler(OnTimerTick); } We’ll look at those AddButton and AddImage functions in a moment. The constructor initializes a timer which fires every 35 milliseconds, this timer will be started after the flick gesture completes with some inertia. Back to AddButton and AddImage functions, void AddButtonToCanvas() {     LinearGradientBrush brush;     GradientStop stop1, stop2;       Random rand = new Random(DateTime.Now.Millisecond);       FlickButton = new Button();     FlickButton.Content = "";     FlickButton.Width = 100;     FlickButton.Height = 100;       brush = new LinearGradientBrush();     brush.StartPoint = new Point(0, 0);     brush.EndPoint = new Point(0, 1);       stop1 = new GradientStop();     stop1.Offset = 0;     stop1.Color = Colors.White;       stop2 = new GradientStop();     stop2.Offset = 1;     stop2.Color = (Application.Current.Resources["PhoneAccentBrush"] as SolidColorBrush).Color;       brush.GradientStops.Add(stop1);     brush.GradientStops.Add(stop2);       FlickButton.Background = brush;       Canvas.SetTop(FlickButton, rand.Next(0, 400));     Canvas.SetLeft(FlickButton, rand.Next(0, 200));       MainCanvas.Children.Add(FlickButton);       //subscribe to events     FlickButton.ManipulationDelta += new EventHandler<ManipulationDeltaEventArgs>(OnManipulationDelta);     FlickButton.ManipulationCompleted += new EventHandler<ManipulationCompletedEventArgs>(OnManipulationCompleted); } this function is basically glorifying a simple task. After creating the button and setting its height and width, its background is set to a linear gradient brush. The direction of the gradient is from top towards bottom and notice that the second stop color is the PhoneAccentColor, which changes along with the theme of the device. The line,     stop2.Color = (Application.Current.Resources["PhoneAccentBrush"] as SolidColorBrush).Color; does the magic of extracting the PhoneAccentBrush from application’s resources, getting its color and assigning it to the gradient stop. AddImage function is straight forward in comparison, void AddImageToCanvas() {     Random rand = new Random(DateTime.Now.Millisecond);       FlickImage = new Image();     FlickImage.Source = new BitmapImage(new Uri("/images/Marble.png", UriKind.Relative));       Canvas.SetTop(FlickImage, rand.Next(0, 400));     Canvas.SetLeft(FlickImage, rand.Next(0, 200));       MainCanvas.Children.Add(FlickImage);       //subscribe to events     FlickImage.ManipulationDelta += new EventHandler<ManipulationDeltaEventArgs>(OnManipulationDelta);     FlickImage.ManipulationCompleted += new EventHandler<ManipulationCompletedEventArgs>(OnManipulationCompleted); } The ManipulationDelta and ManipulationCompleted handlers are same for both the button and the image. OnManipulationDelta() should look familiar, a similar implementation was used in the previous post, void OnManipulationDelta(object sender, ManipulationDeltaEventArgs args) {     FrameworkElement Elem = sender as FrameworkElement;       double Left = Canvas.GetLeft(Elem);     double Top = Canvas.GetTop(Elem);       Left += args.DeltaManipulation.Translation.X;     Top += args.DeltaManipulation.Translation.Y;       //check for bounds     if (Left < 0)     {         Left = 0;     }     else if (Left > (MainCanvas.ActualWidth - Elem.ActualWidth))     {         Left = MainCanvas.ActualWidth - Elem.ActualWidth;     }       if (Top < 0)     {         Top = 0;     }     else if (Top > (MainCanvas.ActualHeight - Elem.ActualHeight))     {         Top = MainCanvas.ActualHeight - Elem.ActualHeight;     }       Canvas.SetLeft(Elem, Left);     Canvas.SetTop(Elem, Top); } all it does is calculate the control’s position, check for bounds and then set the top and left of the control. OnManipulationCompleted() is more interesting because here we need to check if the gesture completed with any inertia and if it did, start the timer and continue to move the ui control until it comes to a halt slowly, void OnManipulationCompleted(object sender, ManipulationCompletedEventArgs args) {     FrameworkElement Elem = sender as FrameworkElement;       if (args.IsInertial)     {         ElemToMove = Elem;           Debug.WriteLine("Linear VelX:{0:0.00}  VelY:{1:0.00}", args.FinalVelocities.LinearVelocity.X,             args.FinalVelocities.LinearVelocity.Y);           ElemVelX = args.FinalVelocities.LinearVelocity.X / SPEED_FACTOR;         ElemVelY = args.FinalVelocities.LinearVelocity.Y / SPEED_FACTOR;           timer.Start();     } } ManipulationCompletedEventArgs contains a member, IsInertial, which is set to true if the manipulation was completed with some inertia. args.FinalVelocities.LinearVelocity.X and .Y will contain the velocities along the X and Y axis. We need to scale down these values so they can be used to increment the ui control’s position sensibly. A reference to the ui control is stored in ElemToMove and the velocities are stored as well, these will be used in the timer callback to access the ui control. And finally, we start the timer. The timer callback function is as follows, void OnTimerTick(object sender, EventArgs e) {     if (null != ElemToMove)     {         double Left, Top;         Left = Canvas.GetLeft(ElemToMove);         Top = Canvas.GetTop(ElemToMove);           Left += ElemVelX;         Top += ElemVelY;           //check for bounds         if (Left < 0)         {             Left = 0;             ElemVelX *= -1;         }         else if (Left > (MainCanvas.ActualWidth - ElemToMove.ActualWidth))         {             Left = MainCanvas.ActualWidth - ElemToMove.ActualWidth;             ElemVelX *= -1;         }           if (Top < 0)         {             Top = 0;             ElemVelY *= -1;         }         else if (Top > (MainCanvas.ActualHeight - ElemToMove.ActualHeight))         {             Top = MainCanvas.ActualHeight - ElemToMove.ActualHeight;             ElemVelY *= -1;         }           Canvas.SetLeft(ElemToMove, Left);         Canvas.SetTop(ElemToMove, Top);           //reduce x,y velocities gradually         ElemVelX *= 0.9;         ElemVelY *= 0.9;           //when velocities become too low, break         if (Math.Abs(ElemVelX) < 1.0 && Math.Abs(ElemVelY) < 1.0)         {             timer.Stop();             ElemToMove = null;         }     } } if ElemToMove is not null, we get the top and left values of the control and increment the values with their X and Y velocities. Check for bounds, and if the control goes out of bounds we reverse its velocity. Towards the end, the velocities are reduced by 10% every time the timer callback is called, and if the velocities reach too low values the timer is stopped and ElemToMove is made null. Here’s a short video of the program, the video is a little dodgy because my display driver refuses to run the animations smoothly. The flicks aren’t always recognised but the program should run well on an actual device (or a pc with better configuration), You can download the source code from here: ButtonDragAndFlick.zip

    Read the article

  • Having trouble with font on this blog?

    - by TechTwaddle
    Sometimes when I open this site on other PC’s the font of the posts turns out be very small and it can be a pain to read the text. Not sure if you’ve noticed the ‘Customize’ bar on top of the page, so I thought I’ll let know. This bar helps you customize the way you want the page to look and saves the settings for you so you don’t have to change it every time. You can change the font size and the main page positioning. The white arrow marks in the image above shows the settings I find convenient.

    Read the article

  • My shiny new gadget

    - by TechTwaddle
    About 3 months ago when I had tweeted (or twit?) that the HD7 could be my next phone I wasn’t a 100 percent sure, and when the HTC Mozart came out it was switch at first sight. I wanted to buy the Mozart mainly for three reasons; its unibody construction, smaller screen and the SLCD display. But now, holding a HD7 in my hand, I reminisce and think about how fate had its own plan. Too dramatic for a piece of gadget? Well, sort of, but seriously, this has been most exciting. So in short, I bought myself a HTC HD7 and am really loving it so far. Here are some pics (taken from my HD2 which now lies in a corner, crying),     Most of my day was spent setting up the device. Email accounts, Facebook, Marketplace etc. Since marketplace isn’t officially launched in India yet, my primary live id did not work. Whenever I tried launching marketplace it would say ‘marketplace is not currently supported in your country’. Searching the forums I found an easy work around. Just create a dummy live id with the country set to UK or US and log in to the device using this id. I was worried if the contacts and feeds from my primary live account would not be updated but that was not a problem. Adding another live account into the device does import your contacts, calendar and feeds from it. And that’s it, marketplace now works perfectly. I installed a few trial and free applications; haven’t checked if I can purchase apps though, will check that later and update this post. There is one issue I am still facing with the device, I can’t access the internet over GPRS. Windows Phone 7 only gives you the option to add an ‘APN’ and nothing else. Checking the connection settings on my HD2, I found out that there is also a proxy server I need to add to access GPRS, but so far I haven’t found a way to do that on WP7. Ideally HTC should have taken care of this, detect the operator and apply that operators settings on the device, but looks like that’s not happening. I also tried the ‘Connection Settings’ application that HTC bundled with the device, but it did nothing magical. If you’re reading this and know how to fix this problem please leave a comment. The next thing I did is install apps, a lot of apps. Read Engadget’s guide to essential apps for WP7. The apps and games I installed so far include Beezz (twitter app with push notifications), twitter (the official twitter app), Facebook, Youtube, NFS Undercover, Rocket Riot, Krashlander, Unite and the list goes on. All the apps run super smooth. The display looks fine indoors but I know it’s going to suck in bright sunlight. Anyhow, I am really impressed with what I’ve seen so far. I leave you with a few more photos. Have a great year ahead. Ciao!

    Read the article

1