Search Results

Search found 7 results on 1 pages for 'templatetypedef'.

Page 1/1 | 1 

  • Data structure for Settlers of Catan map?

    - by templatetypedef
    Hello all- A while back someone asked me if I knew of a nice way to encode the information for the game Settlers of Catan. This would require storing a hexagonal grid in a way where each hex can have data associated with it. More importantly, though, I would need some way of efficiently looking up vertices and edges on the sides of these hexagons, since that's where all the action is. My question is this: is there a good, simple data structure for storing a hexagonal grid while allowing for fast lookup of hexagons, edges between hexagons, and vertices at the intersections of hexagons? I know that general structures like a winged-edge or quad-edge could do this, but that seems like massive overkill. Thanks!

    Read the article

  • Why does C++ mandate that complex only be instantiated for float, double, or long double?

    - by templatetypedef
    According to the C++ ISO spec, §26.2/2: The effect of instantiating the template complex for any type other than float, double or long double is unspecified. Why would the standard authors explicitly add this restriction? This makes it unspecified, for example, what happens if you make complex<int> or a complex<MyCustomFixedPointType> and seems like an artificial restriction. Is there a reason for this limitation? Is there a workaround if you want to instantiate complex with your own custom type? I'm primarily asking this question because of this earlier question, in which the OP was confused as to why abs was giving bizarre outputs for complex<int>. That said, this still doesn't quite make sense given that we also might want to make complex numbers out of fixed-points types, higher-precision real numbers, etc. Thanks!

    Read the article

  • Simplifying const Overloading?

    - by templatetypedef
    Hello all- I've been teaching a C++ programming class for many years now and one of the trickiest things to explain to students is const overloading. I commonly use the example of a vector-like class and its operator[] function: template <typename T> class Vector { public: T& operator[] (size_t index); const T& operator[] (size_t index) const; }; I have little to no trouble explaining why it is that two versions of the operator[] function are needed, but in trying to explain how to unify the two implementations together I often find myself wasting a lot of time with language arcana. The problem is that the only good, reliable way that I know how to implement one of these functions in terms of the other is with the const_cast/static_cast trick: template <typename T> const T& Vector<T>::operator[] (size_t index) const { /* ... your implementation here ... */ } template <typename T> T& Vector<T>::operator[] (size_t index) { return const_cast<T&>(static_cast<const Vector&>(*this)[index]); } The problem with this setup is that it's extremely tricky to explain and not at all intuitively obvious. When you explain it as "cast to const, then call the const version, then strip off constness" it's a little easier to understand, but the actual syntax is frightening,. Explaining what const_cast is, why it's appropriate here, and why it's almost universally inappropriate elsewhere usually takes me five to ten minutes of lecture time, and making sense of this whole expression often requires more effort than the difference between const T* and T* const. I feel that students need to know about const-overloading and how to do it without needlessly duplicating the code in the two functions, but this trick seems a bit excessive in an introductory C++ programming course. My question is this - is there a simpler way to implement const-overloaded functions in terms of one another? Or is there a simpler way of explaining this existing trick to students? Thanks so much!

    Read the article

  • Optimality of Binary Search

    - by templatetypedef
    Hello all- This may be a silly question, but does anyone know of a proof that binary search is asymptotically optimal? That is, if we are given a sorted list of elements where the only permitted operation on those objects is a comparison, how do you prove that the search can't be done in o(lg n)? (That's little-o of lg n, by the way.) Note that I'm restricting this to elements where the only operation permitted operation is a comparison, since there are well-known algorithms that can beat O(lg n) on expectation if you're allowed to do more complex operations on the data (see, for example, interpolation search). Thanks so much! This has really been bugging me since it seems like it should be simple but has managed to resist all my best efforts. :-)

    Read the article

  • SetWindowLongPtr with DialogBoxParam?

    - by templatetypedef
    Hey all- A while back I was writing a C++ program with the Win32 API that would display a dialog box and then listen to the messages it generated. At one point, I was interested in associating a piece of data with the dialog window. Were I manually creating the window and attaching a window proc, I'd just use SetWindowLongPtr to set the GWLP_USERDATA field to a pointer to the data to associate. However, in this case I was creating and displaying the window with DialogBoxParam, and it wasn't clear whether this function was associating that data with its own internal state. Since the MSDN didn't have a description of what would happen in this case, I ended up using some other approach to solve the problem. My question is this - is it safe to use SetWindowLongPtr to overwrite the GWLP_USERDATA value in a window created by DialogBoxParam? Thanks!

    Read the article

  • Determining where a function is defined in C#?

    - by templatetypedef
    Hey all - I am a complete novice at C# (I've never used it before) and recently needed to look over some code written in it. I spent the longest time trying to track down a nonexistent method in a class that didn't seem to be defined anywhere in the class that was using it. I later found out it was an "extension method," which I gather is a method grafted onto another class by some source. I completely understand the rationale behind this language feature and actually think it's quite nice. However, as someone without much experience in the language, it makes it harder to look up unfamiliar methods, since the method in question could be defined anywhere. My question is this: given an unfamiliar method call in C#, what's the best way for me to look up more info on it, given that it could be an extension method defined in an entirely separate class? Thanks!

    Read the article

  • How to make negate_unary work with any type?

    - by Chan
    Hi, Following this question: How to negate a predicate function using operator ! in C++? I want to create an operator ! can work with any functor that inherited from unary_function. I tried: template<typename T> inline std::unary_negate<T> operator !( const T& pred ) { return std::not1( pred ); } The compiler complained: Error 5 error C2955: 'std::unary_function' : use of class template requires template argument list c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 223 1 Graphic Error 7 error C2451: conditional expression of type 'std::unary_negate<_Fn1>' is illegal c:\program files\microsoft visual studio 10.0\vc\include\ostream 529 1 Graphic Error 3 error C2146: syntax error : missing ',' before identifier 'argument_type' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 4 error C2065: 'argument_type' : undeclared identifier c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 2 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 6 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 230 1 Graphic Any idea? Update Follow "templatetypedef" solution, I got new error: Error 3 error C2831: 'operator !' cannot have default parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 2 error C2808: unary 'operator !' has too many formal parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 4 error C2675: unary '!' : 'is_prime' does not define this operator or a conversion to a type acceptable to the predefined operator c:\visual studio 2010 projects\graphic\graphic\main.cpp 52 1 Graphic Update 1 Complete code: #include <iostream> #include <functional> #include <utility> #include <cmath> #include <algorithm> #include <iterator> #include <string> #include <boost/assign.hpp> #include <boost/assign/std/vector.hpp> #include <boost/assign/std/map.hpp> #include <boost/assign/std/set.hpp> #include <boost/assign/std/list.hpp> #include <boost/assign/std/stack.hpp> #include <boost/assign/std/deque.hpp> struct is_prime : std::unary_function<int, bool> { bool operator()( int n ) const { if( n < 2 ) return 0; if( n == 2 || n == 3 ) return 1; if( n % 2 == 0 || n % 3 == 0 ) return 0; int upper_bound = std::sqrt( static_cast<double>( n ) ); for( int pf = 5, step = 2; pf <= upper_bound; ) { if( n % pf == 0 ) return 0; pf += step; step = 6 - step; } return 1; } }; /* template<typename T> inline std::unary_negate<T> operator !( const T& pred, typename T::argument_type* dummy = 0 ) { return std::not1<T>( pred ); } */ inline std::unary_negate<is_prime> operator !( const is_prime& pred ) { return std::not1( pred ); } template<typename T> inline void print_con( const T& con, const std::string& ms = "", const std::string& sep = ", " ) { std::cout << ms << '\n'; std::copy( con.begin(), con.end(), std::ostream_iterator<typename T::value_type>( std::cout, sep.c_str() ) ); std::cout << "\n\n"; } int main() { using namespace boost::assign; std::vector<int> nums; nums += 1, 3, 5, 7, 9; nums.erase( remove_if( nums.begin(), nums.end(), !is_prime() ), nums.end() ); print_con( nums, "After remove all primes" ); } Thanks, Chan Nguyen

    Read the article

1