Search Results

Search found 3327 results on 134 pages for 'thrift protocol'.

Page 1/134 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Apache thrift, struct contain itself

    - by mamu
    I am looking into thrift for serialization of data. But Document says cyclic structs - Structs can only contain structs that have been declared before it. A struct also cannot contain itself One of our requirement is Struct A List of Child items Items(Items are Struct A ) So reading requirement i can't have Struct within itself at any level? can i have it in cyclic model as i have it above. Struct is not member of Struct directly but it has some other member and it contains struct. Their document is not so well descriptive. Is it possible in Thrift? Does protobuf supports it?

    Read the article

  • PPTP connection disconnect

    - by Vladimir Franciz S. Blando
    My pptp connection wont stay connected, it will disconnect in less than a minute here are some relevant log entries May 31 13:32:31 localhost NetworkManager[931]: <info> Starting VPN service 'pptp'... May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' started (org.freedesktop.NetworkManager.pptp), PID 15216 May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' appeared; activating connections May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: init (1) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: starting (3) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (Connect) reply received. May 31 13:32:31 localhost pppd[15221]: Plugin /usr/lib/pppd/2.4.5/nm-pptp-pppd-plugin.so loaded. May 31 13:32:31 localhost pppd[15221]: pppd 2.4.5 started by root, uid 0 May 31 13:32:31 localhost pptp[15224]: nm-pptp-service-15216 log[main:pptp.c:314]: The synchronous pptp option is NOT activated May 31 13:32:31 localhost pppd[15221]: Using interface ppp0 May 31 13:32:31 localhost pppd[15221]: Connect: ppp0 <--> /dev/pts/5 May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/ppp0, iface: ppp0) May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: device added (path: /sys/devices/virtual/net/ppp0, iface: ppp0): no ifupdown configuration found. May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 1 'Start-Control-Connection-Request' May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:739]: Received Start Control Connection Reply May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:773]: Client connection established. May 31 13:32:33 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 7 'Outgoing-Call-Request' May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:858]: Received Outgoing Call Reply. May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:897]: Outgoing call established (call ID 0, peer's call ID 1536). May 31 13:32:37 localhost pppd[15221]: CHAP authentication succeeded May 31 13:32:37 localhost kernel: [54007.078553] PPP MPPE Compression module registered May 31 13:32:40 localhost pppd[15221]: MPPE 128-bit stateless compression enabled May 31 13:32:42 localhost pppd[15221]: local IP address 10.100.0.52 May 31 13:32:42 localhost pppd[15221]: remote IP address 10.100.0.1 May 31 13:32:42 localhost pppd[15221]: primary DNS address 4.2.2.1 May 31 13:32:42 localhost pppd[15221]: secondary DNS address 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) reply received. May 31 13:32:42 localhost NetworkManager[931]: <info> VPN Gateway: 103.28.219.2 May 31 13:32:42 localhost NetworkManager[931]: <info> Tunnel Device: ppp0 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Address: 10.100.0.52 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Prefix: 32 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Point-to-Point Address: 10.100.0.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Maximum Segment Size (MSS): 0 May 31 13:32:42 localhost NetworkManager[931]: <info> Forbid Default Route: no May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 4.2.2.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> DNS Domain: '(none)' May 31 13:32:43 localhost dnsmasq[2127]: exiting on receipt of SIGTERM May 31 13:32:43 localhost NetworkManager[931]: <info> DNS: starting dnsmasq... May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dnsmasq[15290]: error at line 2 of /var/run/nm-dns-dnsmasq.conf May 31 13:32:43 localhost dnsmasq[15290]: FAILED to start up May 31 13:32:43 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) complete. May 31 13:32:43 localhost NetworkManager[931]: <info> Policy set 'Dynalabs' (ppp0) as default for IPv4 routing and DNS. May 31 13:32:43 localhost NetworkManager[931]: <info> VPN plugin state changed: started (4) May 31 13:32:43 localhost NetworkManager[931]: <warn> dnsmasq exited with error: Configuration problem (1) May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dbus[872]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) May 31 13:32:43 localhost dbus[872]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' May 31 13:33:00 localhost ntpdate[15370]: step time server 91.189.94.4 offset -1.110301 sec May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd6d6 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x93aa May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xcc83 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2031 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x13d4 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x5b11 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x414b May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f5f May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe9ff May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8e20 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8f0 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf166 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x36e6 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xdd19 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xda26 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xac5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x53a5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x507e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1dc5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf87b May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f27 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd10c May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66ef May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa294 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb15 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x52a2 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd863 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8a96 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xde19 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9763 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb23 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x83ca May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x964e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe8ae May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf614 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9b1 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf086 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbff4 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66c5 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe42 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf295 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x86fe May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3bc1 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbaad May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x88b5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd7a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x30d5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2d8f May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3933 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8d42 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x4b4 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa205 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x7cc5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1b6a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf004 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x21b6 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x51eb

    Read the article

  • Thrift / Google Protocol Buffers on Windows

    - by S73417H
    Hi All, Looking at Thrift and Google Protocol Buffers to implement some quick RPC code. Thrift would be perfect if the generated C++ code compiled on windows (which is what I need). And of course, GPB creates RPC stubs, but no implementation. Is there a way to get Thrift Windows friendly? Or, even better, are there any RPC implementations available freely for generated C++ protobuf stubs (a Java counterpart would be nice too, but is not necessary). Thanks

    Read the article

  • Error setting up thrift modules for python

    - by MMRUser
    Hi, I'm trying to set up thrift in order to incorporate with Cassandra, so when I ran the setup.py it out puts this message in command line running build running build_py running build_ext building 'thrift.protocol.fastbinary' extension C:\MinGW\bin\gcc.exe -mno-cygwin -mdll -O -Wall -IC:\Python26\include -IC:\Pytho n26\PC -c src/protocol/fastbinary.c -o build\temp.win32-2.6\Release\src\protocol \fastbinary.o src/protocol/fastbinary.c:24:24: netinet/in.h: No such file or directory src/protocol/fastbinary.c:85:4: #error "Cannot determine endianness" src/protocol/fastbinary.c: In function `writeI16': src/protocol/fastbinary.c:295: warning: implicit declaration of function `htons' src/protocol/fastbinary.c: In function `writeI32': src/protocol/fastbinary.c:300: warning: implicit declaration of function `htonl' src/protocol/fastbinary.c: In function `readI16': src/protocol/fastbinary.c:688: warning: implicit declaration of function `ntohs' src/protocol/fastbinary.c: In function `readI32': src/protocol/fastbinary.c:696: warning: implicit declaration of function `ntohl' error: command 'gcc' failed with exit status 1 Need some helping on this issue.I have already install the MigW32 Thanks.

    Read the article

  • XStream <-> Alternative binary formats (e.g. protocol buffers)

    - by sehugg
    We currently use XStream for encoding our web service inputs/outputs in XML. However we are considering switching to a binary format with code generator for multiple languages (protobuf, Thrift, Hessian, etc) to make supporting new clients easier and less reliant on hand-coding (also to better support our message formats which include binary data). However most of our objects on the server are POJOs with XStream handling the serialization via reflection and annotations, and most of these libraries assume they will be generating the POJOs themselves. I can think of a few ways to interface an alternative library: Write an XStream marshaler for the target format. Write custom code to marshal the POJOs to/from the classes generated by the alternative library. Subclass the generated classes to implement the POJO logic. May require some rewriting. (Also did I mention we want to use Terracotta?) Use another library that supports both reflection (like XStream) and code generation. However I'm not sure which serialization library would be best suited to the above techniques.

    Read the article

  • Thrift,.NET,Cassandra - Is this is right combination?

    - by Vadi
    I've been evaluating technology stack for developing a social network based application. Below are the stack I think could well suitable for this application type of application: GUI -- ASP.NET MVC, Flash (Flex) Business Services -- Thrift based services One of the advantage of using Thrift is to solve scaling problems that will come in future when the user base increases rapidly. All the business logic can be exposed as a services using REST,JSON etc., This also allows us to go with C++ or Erlang based services when situation demands. Database -- mySQL, CasSandara mySQL can be used for storing the data which needs to be persisted. Cassandara will be used for storing global identifiers to the persisted data. Since Cassandara is also very good at scaling by introducing more nodes this will leverage Thrift based services as well. And also there is native support between Cassandara and Thrift Cache Server -- Memcached Any requests from Business Services will only talk to Memcached if any non-dirty data is required, otherwise there will be some background jobs that will invalidate the cache from database. The question is: Is the Thrift which is open-sourced one is production-ready? Is it the right stack for services layer to choose when the application (GUI) is primarily gets developed in ASP.NET and DB is mysql? Is there any other caveats that anyone here experienced? One of the main objective behind this stack is to easily scale up with more nodes and also this helps us to use Linux boxes, it will reduce our cost significantly Thoughts please ..

    Read the article

  • Callbacks in Thrift Asynchronous Functions?

    - by Roberto Aloi
    Hi all, In Thrift it is possible to use the oneway modifier to specify a call as asynchronous. Apparently, it's not possible to define a callback, though, to be executed when the execution of the function is completed. It seems that the only possibility I have is to give my Thrift client (PHP) some "server" capabilities, so that, when the heavy computation is completed on the server side, I can send a notification to it. This means that I should have a new .thrift file, with new definitions, new services and all the rest and that I should generate php-server side code with Thrift. Even if this is feasible, it looks like an overkill to me and I'm wondering if there's a more clever way to implement the callback. Looking forward for some feedback from you, guys.

    Read the article

  • Handling Apache Thrift list/map Return Types in C++

    - by initzero
    First off, I'll say I'm not the most competent C++ programmer, but I'm learning, and enjoying the power of Thrift. I've implemented a Thrift Service with some basic functions that return void, i32, and list. I'm using a Python client controlled by a Django web app to make RPC calls and it works pretty well. The generated code is pretty straight forward, except for list returns: namespace cpp Remote enum N_PROTO { N_TCP, N_UDP, N_ANY } service Rcon { i32 ping() i32 KillFlows() i32 RestartDispatch() i32 PrintActiveFlows() i32 PrintActiveListeners(1:i32 proto) list<string> ListAllFlows() } The generated signatures from Rcon.h: int32_t ping(); int32_t KillFlows(); int32_t RestartDispatch(); int32_t PrintActiveFlows(); int32_t PrintActiveListeners(const int32_t proto); int64_t ListenerBytesReceived(const int32_t id); void ListAllFlows(std::vector<std::string> & _return); As you see, the ListAllFlows() function generated takes a reference to a vector of strings. I guess I expect it to return a vector of strings as laid out in the .thrift description. I'm wondering if I am meant to provide the function a vector of strings to modify and then Thrift will handle returning it to my client despite the function returning void. I can find absolutely no resources or example usages of Thrift list< types in C++. Any guidance would be appreciated.

    Read the article

  • Using Thrift to connect to Cassandra from .NET

    - by vtortola
    Hi, I'm interested in Cassandra and I'd like to test it at home in my Windows XP computer. I've found instructions for install an run Cassandra in Windows, and it's already up and running; I've also found the thrift executable for Windows and generate the C# interfaces, but... when I try to compile that generated code in Visual Studio I got : "The type or namespace name 'Thrift' could not be found (are you missing a using directive or an assembly reference?)", so I'm missing something else, but I cannot find what... What is it? Is it a dll? I've looked in the thrift code and I cannot find anything related to .net , so what am I missing? Thanks in advance. Regards.

    Read the article

  • multiple Thrift services on one transport

    - by kert
    Just seeking confirmation here : apache Thrift protocol does not seem to support running multiple services on one transport endpoint ? ( a socket, file, whatever ) I cant seem to figure out how to do something like this in Thrift: service otherService { void dosomething() } service rootService { otherService getOtherService() } There does not seem to be any concept of passing in and out service handles, ultimately limited by the protocol. Looks like you can not run two services on one transport pipe. Correct ?

    Read the article

  • Any success using Apache Thrift on iPhone?

    - by jhs
    Has anybody done or seen a deployment of Apache Thrift in an iPhone app? I am wondering if is a reasonable solution for a high-volume, low(er)-latency network service for iPhones compared to HTTP. One noteworthy thing I found is a bug report about running Thrift on the iPhone, which seems to have been fixed. But that doesn't necessarily indicate that it's a done deal.

    Read the article

  • Book about tcp, http, named pipe, shared memory, wcf and other inter-process communication protocol

    - by Samuel
    Recently, I had to create a program to send messages between two winforms executable. I used a tool with simple built-in functionalities to prevent having to figure out all the ins and outs of this vast quantity of protocols that exist. But now, I'm ready to learn more about the internals difference between each of theses protocols. I googled a couple of them but it would be greatly appreciate to have a good reference book that gives me a clean idea of how each protocol works and what are the pros and cons in a couple of context. Here is a list of nice protocols that I found: Shared memory TCP List item Named Pipe File Mapping Mailslots MSMQ (Microsoft Queue Solution) WCF I know that all of these protocols are not specific to a language, it would be nice if example could be in .net. Thank you very much.

    Read the article

  • Choosing the correct network protocol for my type of game (its Wc3 Warlock style)

    - by Moritz
    I need to code a little game for a school project. The type of the game is like the Warcraft 3 map "Warlock", if anyone doesnt know it, here is a short description: up to ten players spawn into an arena filled with lava, the goal of each player is to push the other players into the lava with spells (basically variations of missiles, aoe nukes, moba spells etc) http://www.youtube.com/watch?v=c3PoO-gcJik&feature=related we need to provide multiplayer-support over the internet, for that reason I am looking for the best network protocol for this type of game (udp, tcp, lock step, client-server...) what the requirements are: - same/stable simulation on all clients - up to ten players - up to ~100 missiles on the field - very low latency since its reaction based (i dont know the method wc3 used, but it was playable with the old servers) what would be nice (if even possible, since the traffic might be too big): - support for soft bodies over the network (with bullet physics), but this is no real requirement I read several articles about the lock step method used for RTS games, this seems to be great, but does it fit for real-time action games too (ping-related)? If anyone has run into the same problems/questions like me, I would be very happy about any help

    Read the article

  • Thrift client-server multiple roles

    - by dexter
    Hi, this is my first question, so sorry if the form is wrong! I'm trying to make thrift server (python) and client (c++). However I need to exchange messages in both direction. Client should register (call server's function and wait), and server should listen on same port for N (N- 100k) incoming connections (clients). After some conditions are satisfied, server needs to call functions on each client and collect results and interpret them. I'm little confused, and first questions is "can this be done in Thrift"? Second question is related to mechanism that will allow me bidirectional communication. I guess that I will need two services. One with client's functions other with server's. But I'm confused with calling code. I understand one way communication (calling functions from server), but with calling functions from client side I have a problem. Any suggestions??? Thanks!

    Read the article

  • Thrift and .NET - Is this is right combination?

    - by Vadi
    I've been evaluating various technologies for a Social Networking project. The Thrift kind of interested me to evaluate. The advantage I see using Thrift is I can even come with C++ services when the computation in any such business is huge and may not fits with .NET etc., Please suggest your comments. My Questions: Is the open-sourced one is production-ready? Is it the right stack for services layer to choose when the application (GUI) is primarily gets developed in ASP.NET and DB is SQL Server? Is there any other caveats

    Read the article

  • Using thrift to mix development languages

    - by christopher-mccann
    I am currently developing an application which will require multiple different development languages. I want to use PHP as the final piece of the puzzle - the physical web page construction. This PHP web app will need to contact multiple web services which could be coded in anything from Java to Erlang to Python. Each of these web services will be implemented with an API. My plan is to use Thrift to allow this mix to work. Is this the correct approach or am I mixing up what the whole point of Thrift is?

    Read the article

  • Internet Protocol Suite: Transition Control Protocol (TCP) vs. User Datagram Protocol (UDP)

    How do we communicate over the Internet?  How is data transferred from one machine to another? These types of act ivies can only be done by using one of two Internet protocols currently. The collection of Internet Protocol consists of the Transition Control Protocol (TCP) and the User Datagram Protocol (UDP).  Both protocols are used to send data between two network end points, however they both have very distinct ways of transporting data from one endpoint to another. If transmission speed and reliability is the primary concern when trying to transfer data between two network endpoints then TCP is the proper choice. When a device attempts to send data to another endpoint using TCP it creates a direct connection between both devices until the transmission has completed. The direct connection between both devices ensures the reliability of the transmission due to the fact that no intermediate devices are needed to transfer the data. Due to the fact that both devices have to continuously poll the connection until transmission has completed increases the resources needed to perform the transmission. An example of this type of direct communication can be seen when a teacher tells a students to do their homework. The teacher is talking directly to the students in order to communicate that the homework needs to be done.  Students can then ask questions about the assignment to ensure that they have received the proper instructions for the assignment. UDP is a less resource intensive approach to sending data between to network endpoints. When a device uses UDP to send data across a network, the data is broken up and repackaged with the destination address. The sending device then releases the data packages to the network, but cannot ensure when or if the receiving device will actually get the data.  The sending device depends on other devices on the network to forward the data packages to the destination devices in order to complete the transmission. As you can tell this type of transmission is less resource intensive because not connection polling is needed,  but should not be used for transmitting data with speed or reliability requirements. This is due to the fact that the sending device can not ensure that the transmission is received.  An example of this type of communication can be seen when a teacher tells a student that they would like to speak with their parents. The teacher is relying on the student to complete the transmission to the parents, and the teacher has no guarantee that the student will actually inform the parents about the request. Both TCP and UPD are invaluable when attempting to send data across a network, but depending on the situation one protocol may be better than the other. Before deciding on which protocol to use an evaluation for transmission speed, reliability, latency, and overhead must be completed in order to define the best protocol for the situation.  

    Read the article

  • Using thrift with PHP and Java

    - by Christopher McCann
    I am getting myself a bit confused about how to go about this. My plan is to use PHP to perform the final page construction and this PHP web app will contact multiple services, which i will also to develop, for the data. Lets say one of those services was done in Java. I would define a Java interface which was implemented by a concrete class. This is where I get confused - how does Thrift link the PHP web app with the java service or am I getting totally mixed up?? Thanks

    Read the article

  • cassandra thrift: append data

    - by urssujith
    If I need to append data (not insert) into a particular super column, what should I do? For eg: Consider a existing record described below Kespace : test columFamily: testColum SuperColumn : testSuper column_name : email value : [email protected] Here if I want to add my phone number to the super column "testSuper". What should I do?

    Read the article

  • SSL / HTTP / No Response to Curl

    - by Alex McHale
    I am trying to send commands to a SOAP service, and getting nothing in reply. The SOAP service is at a completely separate site from either server I am testing with. I have written a dummy script with the SOAP XML embedded. When I run it at my local site, on any of three machines -- OSX, Ubuntu, or CentOS 5.3 -- it completes successfully with a good response. I then sent the script to our public host at Slicehost, where I fail to get the response back from the SOAP service. It accepts the TCP socket and proceeds with the SSL handshake. I do not however receive any valid HTTP response. This is the case whether I use my script or curl on the command line. I have rewritten the script using SOAP4R, Net::HTTP and Curb. All of which work at my local site, none of which work at the Slicehost site. I have tried to assemble the CentOS box as closely to match my Slicehost server as possible. I rebuilt the Slice to be a stock CentOS 5.3 and stock CentOS 5.4 with the same results. When I look at a tcpdump of the bad sessions on Slicehost, I see my script or curl send the XML to the remote server, and nothing comes back. When I look at the tcpdump at my local site, I see the response just fine. I have entirely disabled iptables on the Slice. Does anyone have any ideas what could be causing these results? Please let me know what additional information I can furnish. Thank you! Below is a wire trace of a sample session. The IP that starts with 173 is my server while the IP that starts with 12 is the SOAP server's. No. Time Source Destination Protocol Info 1 0.000000 173.45.x.x 12.36.x.x TCP 36872 > https [SYN] Seq=0 Win=5840 Len=0 MSS=1460 TSV=137633469 TSER=0 WS=6 Frame 1 (74 bytes on wire, 74 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 0, Len: 0 No. Time Source Destination Protocol Info 2 0.040000 12.36.x.x 173.45.x.x TCP https > 36872 [SYN, ACK] Seq=0 Ack=1 Win=8760 Len=0 MSS=1460 Frame 2 (62 bytes on wire, 62 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 0, Ack: 1, Len: 0 No. Time Source Destination Protocol Info 3 0.040000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=1 Ack=1 Win=5840 Len=0 Frame 3 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 1, Ack: 1, Len: 0 No. Time Source Destination Protocol Info 4 0.050000 173.45.x.x 12.36.x.x SSLv2 Client Hello Frame 4 (156 bytes on wire, 156 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 1, Ack: 1, Len: 102 Secure Socket Layer No. Time Source Destination Protocol Info 5 0.130000 12.36.x.x 173.45.x.x TCP [TCP segment of a reassembled PDU] Frame 5 (1434 bytes on wire, 1434 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 1, Ack: 103, Len: 1380 Secure Socket Layer No. Time Source Destination Protocol Info 6 0.130000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=103 Ack=1381 Win=8280 Len=0 Frame 6 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 1381, Len: 0 No. Time Source Destination Protocol Info 7 0.130000 12.36.x.x 173.45.x.x TLSv1 Server Hello, Certificate, Server Hello Done Frame 7 (1280 bytes on wire, 1280 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 1381, Ack: 103, Len: 1226 [Reassembled TCP Segments (2606 bytes): #5(1380), #7(1226)] Secure Socket Layer No. Time Source Destination Protocol Info 8 0.130000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=103 Ack=2607 Win=11040 Len=0 Frame 8 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 2607, Len: 0 No. Time Source Destination Protocol Info 9 0.130000 173.45.x.x 12.36.x.x TLSv1 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message Frame 9 (236 bytes on wire, 236 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 2607, Len: 182 Secure Socket Layer No. Time Source Destination Protocol Info 10 0.190000 12.36.x.x 173.45.x.x TLSv1 Change Cipher Spec, Encrypted Handshake Message Frame 10 (97 bytes on wire, 97 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2607, Ack: 285, Len: 43 Secure Socket Layer No. Time Source Destination Protocol Info 11 0.190000 173.45.x.x 12.36.x.x TLSv1 Application Data Frame 11 (347 bytes on wire, 347 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 285, Ack: 2650, Len: 293 Secure Socket Layer No. Time Source Destination Protocol Info 12 0.190000 173.45.x.x 12.36.x.x TCP [TCP segment of a reassembled PDU] Frame 12 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 13 0.450000 12.36.x.x 173.45.x.x TCP https > 36872 [ACK] Seq=2650 Ack=578 Win=64958 Len=0 Frame 13 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2650, Ack: 578, Len: 0 No. Time Source Destination Protocol Info 14 0.450000 173.45.x.x 12.36.x.x TCP [TCP segment of a reassembled PDU] Frame 14 (206 bytes on wire, 206 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 2038, Ack: 2650, Len: 152 No. Time Source Destination Protocol Info 15 0.510000 12.36.x.x 173.45.x.x TCP [TCP Dup ACK 13#1] https > 36872 [ACK] Seq=2650 Ack=578 Win=64958 Len=0 Frame 15 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2650, Ack: 578, Len: 0 No. Time Source Destination Protocol Info 16 0.850000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 16 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 17 1.650000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 17 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 18 3.250000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 18 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 19 6.450000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 19 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >