Search Results

Search found 384 results on 16 pages for 'composition'.

Page 1/16 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Inheritance vs composition in this example

    - by Gerenuk
    I'm wondering about the differences between inheritance and composition examined with concrete code relevant arguments. In particular my example was Inheritance: class Do: def do(self): self.doA() self.doB() def doA(self): pass def doB(self): pass class MyDo(Do): def doA(self): print("A") def doB(self): print("B") x=MyDo() vs Composition: class Do: def __init__(self, a, b): self.a=a self.b=b def do(self): self.a.do() self.b.do() x=Do(DoA(), DoB()) (Note for composition I'm missing code so it's not actually shorter) Can you name particular advantages of one or the other? I'm think of: composition is useful if you plan to reuse DoA() in another context inheritance seems easier; no additional references/variables/initialization method doA can access internal variable (be it a good or bad thing :) ) inheritance groups logic A and B together; even though you could equally introduce a grouped delegate object inheritance provides a preset class for the users; with composition you'd have to encapsule the initialization in a factory so that the user does have to assemble the logic and the skeleton ... Basically I'd like to examine the implications of inheritance vs composition. I heard often composition is prefered, but I'd like to understand that by example. Of course I can always start with one and refactor later to the other.

    Read the article

  • Understanding UML composition better

    - by Prog
    The technical difference between Composition and Aggregation in UML (and sometimes in programming too) is that with Composition, the lifetime of the objects composing the composite (e.g. an engine and a steering wheel in a car) is dependent on the composite object. While with Aggregation, the lifetime of the objects making up the composite is independent of the composite. However I'm not sure about something related to composition in UML. Say ClassA is composed of an object of ClassB: class ClassA{ ClassB bInstance; public ClassA(){ bInstance = new ClassB(); } } This is an example of composition, because bInstance is dependent on the lifetime of it's enclosing object. However, regarding UML notation - I'm not sure if I would notate the relationship between ClassA and ClassB with a filled diamond (composition) or a white diamond (aggregation). This is because while the lifetime of some ClassB instances is dependent of ClassA instances - there could be ClassB instances anywhere else in the program - not only within ClassA instances. The question is: if ClassA objects are composed of ClassB objects - but other ClassB objects are free to be used anywhere else in the program: Should the relationship between ClassA and ClassB be notated as aggregation or as composition?

    Read the article

  • what does composition example vs aggregation

    - by meWantToLearn
    Composition and aggregation both are confusion to me. Does my code sample below indicate composition or aggregation? class A { public static function getData($id) { //something } public static function checkUrl($url) { // something } class B { public function executePatch() { $data = A::getData(12); } public function readUrl() { $url = A::checkUrl('http/erere.com'); } public function storeData() { //something not related to class A at all } } } Is class B a composition of class A or is it aggregation of class A? Does composition purely mean that if class A gets deleted class B does not works at all and aggregation if class A gets deleted methods in class B that do not use class A will work?

    Read the article

  • Looking for a real-world example illustrating that composition can be superior to inheritance

    - by Job
    I watched a bunch of lectures on Clojure and functional programming by Rich Hickey as well as some of the SICP lectures, and I am sold on many concepts of functional programming. I incorporated some of them into my C# code at a previous job, and luckily it was easy to write C# code in a more functional style. At my new job we use Python and multiple inheritance is all the rage. My co-workers are very smart but they have to produce code fast given the nature of the company. I am learning both the tools and the codebase, but the architecture itself slows me down as well. I have not written the existing class hierarchy (neither would I be able to remember everything about it), and so, when I started adding a fairly small feature, I realized that I had to read a lot of code in the process. At the surface the code is neatly organized and split into small functions/methods and not copy-paste-repetitive, but the flip side of being not repetitive is that there is some magic functionality hidden somewhere in the hierarchy chain that magically glues things together and does work on my behalf, but it is very hard to find and follow. I had to fire up a profiler and run it through several examples and plot the execution graph as well as step through a debugger a few times, search the code for some substring and just read pages at the time. I am pretty sure that once I am done, my resulting code will be short and neatly organized, and yet not very readable. What I write feels declarative, as if I was writing an XML file that drives some other magic engine, except that there is no clear documentation on what the XML should look like and what the engine does except for the existing examples that I can read as well as the source code for the 'engine'. There has got to be a better way. IMO using composition over inheritance can help quite a bit. That way the computation will be linear rather than jumping all over the hierarchy tree. Whenever the functionality does not quite fit into an inheritance model, it will need to be mangled to fit in, or the entire inheritance hierarchy will need to be refactored/rebalanced, sort of like an unbalanced binary tree needs reshuffling from time to time in order to improve the average seek time. As I mentioned before, my co-workers are very smart; they just have been doing things a certain way and probably have an ability to hold a lot of unrelated crap in their head at once. I want to convince them to give composition and functional as opposed to OOP approach a try. To do that, I need to find some very good material. I do not think that a SCIP lecture or one by Rich Hickey will do - I am afraid it will be flagged down as too academic. Then, simple examples of Dog and Frog and AddressBook classes do not really connivence one way or the other - they show how inheritance can be converted to composition but not why it is truly and objectively better. What I am looking for is some real-world example of code that has been written with a lot of inheritance, then hit a wall and re-written in a different style that uses composition. Perhaps there is a blog or a chapter. I am looking for something that can summarize and illustrate the sort of pain that I am going through. I already have been throwing the phrase "composition over inheritance" around, but it was not received as enthusiastically as I had hoped. I do not want to be perceived as a new guy who likes to complain and bash existing code while looking for a perfect approach while not contributing fast enough. At the same time, my gut is convinced that inheritance is often the instrument of evil and I want to show a better way in a near future. Have you stumbled upon any great resources that can help me?

    Read the article

  • OOP - Composition, Components and Composites Example?

    - by coder3
    I've been reading a bit about OOP in relation to Composition, Components and Composites. I believe I understand the fundamental principle (not sure). Can some one please provide a code example of a person or car (both have many properties) using Composition, Components and Composites. I think seeing it in code would clear up the confusion I have regarding this pattern. Preferably in Java or PHP - many thanks!

    Read the article

  • Inheritance versus Composition in a business application

    - by ProfK
    I have a training management and tracking system, with a high level structure as follows: We have a Role1, e.g. Manager, Shift-boss, miner, etc. and a Candidate, training for that Role. The role has a list of courses and their subjects the candidate needs to complete to qualify for the role. Candidate has a TrainingHistory attribute, containing the courses and subjects they have completed, their results, and the date completed. Now I see it as a TrainingHistoryCourse is-a Course, extended to add DateCompleted etc. but something is nagging at me to rather use something like a TrainingHistoryRecord that has-a Course. How can I further analyse this to determine which pattern to use? Then, a Role has a list of RoleTask definitions that the Candidate must be observed practising, and a Candidate has a history of RoleTaskObservation objects recording their performance at these tasks. This is very similar to the course/subject requirement and history pattern for the candidate, except for one less hierarchical level, but, a RoleTaskObservation clearly does not have an is-a relationship with RoleTask, unless I block my nose and rather use ObservedRoleTask. I would prefer to use the same pattern for both subject/course and task/observation structures, but I think that would force me to adopt a composition pattern for TrainingHistoryCourse. What is the wisdom here? Always inherit where possible and validated by a solid is-a association, or always favour composition wherever possible? 1 Client specified this to be called JobTitle, but he isn't writing the app, and a JobTitle is only one attribute of a Role. Authorization roles are handled by the DevExpress framework and its customization hooks, so there would be very little little confusion between a business Role in my domain objects and an authorization role in lower level, framework code.

    Read the article

  • Architectural Composition Languages

    - by C. Lawrence Wenham
    Recently stumbled upon this paper (PDF) talking about ACLs, or Architectural Composition Languages. They're a fusion of two earlier lines of research: Architectural Definition Languages (such as UML) and Object Composition Languages (such as XAML, WWF, or scripting languages). The goal of an ACL is to have a high-level description of a program's architecture which can also be compiled into a runnable program. The high-level description assists automated analysis, while the 'executability' means changes can be tested immediately. You would still author the components of the program in a conventional programming language (C, Java, Python, etc), but they would be composed into a complete program by the ACL. One of the expected benefits is that a program can be ported to a different platform by swapping in "similar but different" components. I've been hankering for something like this for a long time (see this answer I gave on a StackOverflow question a few years ago). The paper mentions that the researchers were working on a language called ACL/1 that initially targeted Java, but would be ported to support .Net as well. However, I can't find any more mention of ACL/1 anywhere. Has there been any more work done on this? Are there any other implementations of the ACL concept that are available for use or experimentation?

    Read the article

  • Is this Hybrid of Interface / Composition kosher?

    - by paul
    I'm working on a project in which I'm considering using a hybrid of interfaces and composition as a single thing. What I mean by this is having a contain*ee* class be used as a front for functionality implemented in a contain*er* class, where the container exposes the containee as a public property. Example (pseudocode): class Visibility(lambda doShow, lambda doHide, lambda isVisible) public method Show() {...} public method Hide() {...} public property IsVisible public event Shown public event Hidden class SomeClassWithVisibility private member visibility = new Visibility(doShow, doHide, isVisible) public property Visibility with get() = visibility private method doShow() {...} private method doHide() {...} private method isVisible() {...} There are three reasons I'm considering this: The language in which I'm working (F#) has some annoyances w.r.t. implementing interfaces the way I need to (unless I'm missing something) and this will help avoid a lot of boilerplate code. The containee classes could really be considered properties of the container class(es); i.e. there seems to be a fairly strong has-a relationship. The containee classes will likely implement code which would have been pretty much the same when implemented in all the container classes, so why not do it once in one place? In the above example, this would include managing and emitting the Shown/Hidden events. Does anyone see any isseus with this Composiface/Intersition method, or know of a better way? EDIT 2012.07.26 - It seems a little background information is warranted: Where I work, we have a bunch of application front-ends that have limited access to system resources -- they need access to these resources to fully function. To remedy this we have a back-end application that can access the needed resources, with which the front-ends can communicate. (There is an API written for the front-ends for accessing back-end functionality as though it were part of the front-end.) The back-end program is out of date and its functionality is incomplete. It has made the transition from company to company a couple of times and we can't even compile it anymore. So I'm trying to rewrite it in my spare time. I'm trying to update things to make a nice(r) interface/API for the front-ends (while allowing for backwards compatibility with older front-ends), hopefully something full of OOPy goodness. The thing is, I don't want to write the front-end API after I've written pretty much the same code in F# for implementing the back-end; so, what I'm planning on doing is applying attributes to classes/methods/properties that I would like to have code for in the API then generate this code from the F# assembly using reflection. The method outlined in this question is a possible alternative I'm considering instead of implementing straight interfaces on the classes in F# because they're kind of a bear: In order to access something of an interface that has been implemented in a class, you have to explicitly cast an instance of that class to the interface type. This would make things painful when getting calls from the front-ends. If you don't want to have to do this, you have to call out all of the interface's methods/properties again in the class, outside of the interface implementation (which is separate from regular class members), and call the implementation's members. This is basically repeating the same code, which is what I'm trying to avoid!

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • How do we know to favour composition over generalisation is always the right choice?

    - by Carnotaurus
    Whether an object physically exists or not, we can choose to model it in different ways. We could arbitarily use generalisation or composition in many cases. However, the GoF principle of "favour composition over generalisation [sic]" guides us to use composition. So, when we model, for example, a line then we create a class that contains two members PointA and PointB of the type Point (composition) instead of extending Point (generalisation). This is just a simplified example of how we can arbitarily choose composition or inheritance to model, despite that objects are usually much more complex. How do we know that this is the right choice? It matters at least because there could be a ton of refactoring to do if it is wrong?

    Read the article

  • Where does this concept of "favor composition over inheritance" come from?

    - by Mason Wheeler
    In the last few months, the mantra "favor composition over inheritance" seems to have sprung up out of nowhere and become almost some sort of meme within the programming community. And every time I see it, I'm a little bit mystified. It's like someone said "favor drills over hammers." In my experience, composition and inheritance are two different tools with different use cases, and treating them as if they were interchangeable and one was inherently superior to the other makes no sense. Also, I never see a real explanation for why inheritance is bad and composition is good, which just makes me more suspicious. Is it supposed to just be accepted on faith? Liskov substitution and polymorphism have well-known, clear-cut benefits, and IMO comprise the entire point of using object-oriented programming, and no one ever explains why they should be discarded in favor of composition. Does anyone know where this concept comes from, and what the rationale behind it is?

    Read the article

  • howto distinguish composition and self-typing use-cases

    - by ayvango
    Scala has two instruments for expressing object composition: original self-type concept and well known trivial composition. I'm curios what situations I should use which in. There are obvious differences in their applicability. Self-type requires you to use traits. Object composition allows you to change extensions on run-time with var declaration. Leaving technical details behind I can figure two indicators to help with classification of use cases. If some object used as combinator for a complex structure such as tree or just have several similar typed parts (1 car to 4 wheels relation) than it should use composition. There is extreme opposite use case. Lets assume one trait become too big to clearly observe it and it got split. It is quite natural that you should use self-types for this case. That rules are not absolute. You may do extra work to convert code between this techniques. e.g. you may replace 4 wheels composition with self-typing over Product4. You may use Cake[T <: MyType] {part : MyType} instead of Cake { this : MyType => } for cake pattern dependencies. But both cases seem counterintuitive and give you extra work. There are plenty of boundary use cases although. One-to-one relations is very hard to decide with. Is there any simple rule to decide what kind of technique is preferable? self-type makes you classes abstract, composition makes your code verbose. self-type gives your problems with blending namespaces and also gives you extra typing for free (you got not just a cocktail of two elements but gasoline-motor oil cocktail known as a petrol bomb). How can I choose between them? What hints are there? Update: Let us discuss the following example: Adapter pattern. What benefits it has with both selt-typing and composition approaches?

    Read the article

  • Working with EO composition associations via ADF BC SDO web services

    - by Chris Muir
    ADF Business Components support the ability to publish the underlying Application Modules (AMs) and View Objects (VOs) as web services through Service Data Objects (SDOs).  This blog post looks at a minor challenge to overcome when using SDOs and Entity Objects (EOs) that use a composition association. Using the default ADF BC EO association behaviour ADF BC components allow you to work with VOs that are based on EOs that are a part of a parent-child composition association.  A composition association enforces that you cannot create records for the child outside the context of the parent.  As example when creating invoice-lines you want to enforce the individual lines have a relating parent invoice record, it just simply doesn't make sense to save invoice-lines without their parent invoice record. In the following screenshot using the ADF BC Tester it demonstrates the correct way to create a child Employees record as part of a composition association with Departments: And the following screenshot shows you the wrong way to create an Employee record: Note the error which is enforced by the composition association: (oracle.jbo.InvalidOwnerException) JBO-25030: Detail entity Employees with row key null cannot find or invalidate its owning entity.  Working with composition associations via the SDO web services  Shay Shmeltzer recently recorded a good video which demonstrates how to expose your ADF Business Components through the SDO interface. On exposing the VOs you get a choice of operation to publish including create, update, delete and more: For example through the SDO test interface we can see that the create operation will request the attributes for the VO exposed, in this case EmployeesView1: In this specific case though, just like the ADF BC Tester, an attempt to create this record will fail with JBO-25030, the composition association is still enforced: The correct way to to do this is through the create operation on the DepartmentsView1 which also lets you create employees record in context of the parent, thus satisfying the composition association rule: Yet at issue here is the create operation will always create both the parent Departments and Employees records.  What do we do if we've already previously created the parent Departments records, and we just want to create additional Employees records for that Department?  The create method of the EmployeeView1 as we saw previously doesn't allow us to do that, the JBO-3050 error will be raised. The solution is the "merge" operation on the parent Departments record: In this case for the Departments record you just need to supply the DepartmentId of the Department you want the Employees record to be associated with, as well as the new Employees record.  When invoked only the Employees record is created, and the supply of the DepartmentId of the Departments record satisfies the composition association without actually creating or updating the associated Department record that already exists in the database. Be warned however if you supply any more attributes for the Department record, it will result in a merge (update) of the associated Departments record too. 

    Read the article

  • What are the alternatives to "overriding a method" when using composition instead of inheritance?

    - by Sebastien Diot
    If we should favor composition over inheritance, the data part of it is clear, at least for me. What I don't have a clear solution to is how overwriting methods, or simply implementing them if they are defined in a pure virtual form, should be implemented. An obvious way is to wrap the instance representing the base-class into the instance representing the sub-class. But the major downsides of this are that if you have say 10 methods, and you want to override a single one, you still have to delegate every other methods anyway. And if there were several layers of inheritance, you have now several layers of wrapping, which becomes less and less efficient. Also, this only solve the problem of the object "client"; when another object calls the top wrapper, things happen like in inheritance. But when a method of the deepest instance, the base class, calls it's own methods that have been wrapped and modified, the wrapping has no effect: the call is performed by it's own method, instead of by the highest wrapper. One extreme alternative that would solve those problems would be to have one instance per method. You only wrap methods that you want to overwrite, so there is no pointless delegation. But now you end up with an incredible amount of classes and object instance, which will have a negative effect on memory usage, and this will require a lot more coding too. So, are there alternatives (preferably alternatives that can be used in Java), that: Do not result in many levels of pointless delegation without any changes. Make sure that not only the client of an object, but also all the code of the object itself, is aware of which implementation of method should be called. Does not result in an explosion of classes and instances. Ideally puts the extra memory overhead that is required at the "class"/"particular composition" level (static if you will), rather than having every object pay the memory overhead of composition. My feeling tells me that the instance representing the base class should be at the "top" of the stack/layers so it receives calls directly, and can process them directly too if they are not overwritten. But I don't know how to do it that way.

    Read the article

  • Liskov Substition and Composition

    - by FlySwat
    Let say I have a class like this: public sealed class Foo { public void Bar { // Do Bar Stuff } } And I want to extend it to add something beyond what an extension method could do....My only option is composition: public class SuperFoo { private Foo _internalFoo; public SuperFoo() { _internalFoo = new Foo(); } public void Bar() { _internalFoo.Bar(); } public void Baz() { // Do Baz Stuff } } While this works, it is a lot of work...however I still run into a problem: public void AcceptsAFoo(Foo a) I can pass in a Foo here, but not a super Foo, because C# has no idea that SuperFoo truly does qualify in the Liskov Substitution sense...This means that my extended class via composition is of very limited use. So, the only way to fix it is to hope that the original API designers left an interface laying around: public interface IFoo { public Bar(); } public sealed class Foo : IFoo { // etc } Now, I can implement IFoo on SuperFoo (Which since SuperFoo already implements Foo, is just a matter of changing the signature). public class SuperFoo : IFoo And in the perfect world, the methods that consume Foo would consume IFoo's: public void AcceptsAFoo(IFoo a) Now, C# understands the relationship between SuperFoo and Foo due to the common interface and all is well. The big problem is that .NET seals lots of classes that would occasionally be nice to extend, and they don't usually implement a common interface, so API methods that take a Foo would not accept a SuperFoo and you can't add an overload. So, for all the composition fans out there....How do you get around this limitation? The only thing I can think of is to expose the internal Foo publicly, so that you can pass it on occasion, but that seems messy.

    Read the article

  • Alternative to "inheritance versus composition?" [closed]

    - by Frank
    Possible Duplicate: Where does this concept of “favor composition over inheritance” come from? I have colleagues at work who claim that "Inheritance is an anti-pattern" and want to use composition systematically instead, except in (rare, according to them) cases where inheritance is really the best way to go. I want to suggest an alternative where we continue using inheritance, but it is strictly forbidden (enforced by code reviews) to use anything but public members of base classes in derived classes. For a case where we don't need to swap components of a class at runtime (static inheritance), would that be equivalent enough to composition? Or am I forgetting some other important aspect of composition?

    Read the article

  • class composition instead of object composition?

    - by fayer
    I want a class property to be reference to another class, not its object and then use this property to call the class's static methods. class Database { private static $log; public static function addLog($LogClass) { self::$log = $LogClass; } public static function log() { self::$log::write(); // seems not possible to write it like this } } any suggestions how i can accomplish this? cause i have no reason making them objects, i want to use the classes for it.

    Read the article

  • How closely related is music composition to coding?

    - by ehsanul
    It seems to me as if there are a higher proportion of musicians in the programming field than in the general public. Maybe it's just an illusion caused by the fact that I'm an amateur guitarist myself, so I tend to notice coding musicians (or musical coders?) more. But I wonder if there really is some connection. Perhaps a shared set of skills or an innate quality that makes it more likely for someone who enjoys programming to also enjoy playing and composing music. How closely related is music composition to coding? I'd especially like to hear from the musicians around here.

    Read the article

  • Acceptable placement of the composition root using dependency injection and inversion of control containers

    - by Lumirris
    I've read in several sources including Mark Seemann's 'Ploeh' blog about how the appropriate placement of the composition root of an IoC container is as close as possible to the entry point of an application. In the .NET world, these applications seem to be commonly thought of as Web projects, WPF projects, console applications, things with a typical UI (read: not library projects). Is it really going against this sage advice to place the composition root at the entry point of a library project, when it represents the logical entry point of a group of library projects, and the client of a project group such as this is someone else's work, whose author can't or won't add the composition root to their project (a UI project or yet another library project, even)? I'm familiar with Ninject as an IoC container implementation, but I imagine many others work the same way in that they can scan for a module containing all the necessary binding configurations. This means I could put a binding module in its own library project to compile with my main library project's output, and if the client wanted to change the configuration (an unlikely scenario in my case), they could drop in a replacement dll to replace the library with the binding module. This seems to avoid the most common clients having to deal with dependency injection and composition roots at all, and would make for the cleanest API for the library project group. Yet this seems to fly in the face of conventional wisdom on the issue. Is it just that most of the advice out there makes the assumption that the developer has some coordination with the development of the UI project(s) as well, rather than my case, in which I'm just developing libraries for others to use?

    Read the article

  • Alternative to "inheritance v composition??"

    - by Frank
    I have colleagues at work who claim that "Inheritance is an anti-pattern" and want to use composition systematically instead, except in (rare, according to them) cases where inheritance is really the best way to go. I want to suggest an alternative where we continue using inheritance, but it is strictly forbidden (enforced by code reviews) to use anything but public members of base classes in derived classes. For a case where we don't need to swap components of a class at runtime (static inheritance), would that be equivalent enough to composition? Or am I forgetting some other important aspect of composition?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >