Search Results

Search found 32 results on 2 pages for 'contra'.

Page 1/2 | 1 2  | Next Page >

  • What You Said: Your Favorite Co-Op Games

    - by Jason Fitzpatrick
    While competitive gaming is fun, reader response to this week’s Ask the Readers question shows that good old beat-the-bad-guys-together cooperative gaming is as popular as ever. Read on to see what your fellow readers are playing. By far the most popular nomination for favorite co-op game was an outright classic: 1987′s smash hit Contra. Originally released as an arcade game, it was ported to the Nintendo Entertainment System in 1988. Contra was groundbreaking for the time as it featured simultaneous play for the two players–you and a friend could play side by side without waiting to take your turn. Clearly that kind of side-by-side play resonated with readers. RJ writes: When my fiance and I played and beat Contra on the NES. I knew she was the one and we got married and its been great. That’s no small feat; Contra was voted “Toughest Game to Beat” by IGN.com readers. Even readers who had moved on to newer games still recall Contra fondly; Jami writes: The Gears of War trilogy on 360 is my favorite co-op currently, although I do have fond memories of bonding with my brother playing some co-op Contra on the NES. HTG Explains: What is the Windows Page File and Should You Disable It? How To Get a Better Wireless Signal and Reduce Wireless Network Interference How To Troubleshoot Internet Connection Problems

    Read the article

  • Why is there no parameter contra-variance for overriding?

    - by Oak
    C++ and Java support return-type covariance when overriding methods. Neither, however, support contra-variance in parameter types - instead, it translates to overloading (Java) or hiding (C++). Why is that? It seems to me that there is no harm in allowing that. I can find one reason for it in Java - since it has the "choose-the-most-specific-version" mechanism for overloading anyway - but can't think of any reason for C++. Example (Java): class A { public void f(String s) {...} } class B extends A { public void f(Object o) {...} // Why doesn't this override A.f? }

    Read the article

  • Nginx with postfix not sending mail - from address appearing wrong

    - by Adripants
    I am using a php form to send email. The script reports success, but the mail never arrives. The tail of the mail log shows: Nov 22 01:24:25 contra postfix/pickup[1195]: 0CC1B119A53: uid=100 from=<nginx> Nov 22 01:24:25 contra postfix/cleanup[1320]: 0CC1B119A53: message-id=<[email protected]> Nov 22 01:24:25 contra postfix/qmgr[1196]: 0CC1B119A53: from=<[email protected]>, size=363, nrcpt=1 (queue active) Just wondering where this from address is coming from and if thats why mails aren't arriving.

    Read the article

  • jquery next siblings

    - by Contra
    Hi stackoverflow! (first post!) Ive been trying to get this problem solved, but I cant seem to figure it out without some serious workarounds. if I have the following html code: <ul> <li class="parent"> headertext </li> <li> text </li> <li> text </li> <li> text </li> <li class="parent"> headertext </li> <li> text </li> <li> text </li> </ul> Now, how do I now just select the li's following the first parent (or second, for that matter)? Basically selecting an li with class=parent and the following siblings until it reaches another li with the parent class. I could restructure the list with nested lists, but I dont want to do that. Any suggestions?

    Read the article

  • Managing large binary files with git

    - by pi
    Hi there. I am looking for opinions of how to handle large binary files on which my source code (web application) is dependent. We are currently discussing several alternatives: Copy the binary files by hand. Pro: Not sure. Contra: I am strongly against this, as it increases the likelihood of errors when setting up a new site/migrating the old one. Builds up another hurdle to take. Manage them all with git. Pro: Removes the possibility to 'forget' to copy a important file Contra: Bloats the repository and decreases flexibility to manage the code-base and checkouts/clones/etc will take quite a while. Separate repositories. Pro: Checking out/cloning the source code is fast as ever, and the images are properly archived in their own repository. Contra: Removes the simpleness of having the one and only git repository on the project. Surely introduces some other things I haven't thought about. What are your experiences/thoughts regarding this? Also: Does anybody have experience with multiple git repositories and managing them in one project? Update: The files are images for a program which generates PDFs with those files in it. The files will not change very often(as in years) but are very relevant to a program. The program will not work without the files. Update2: I found a really nice screencast on using git-submodule at GitCasts.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • What platform were old TV video games developed on?

    - by Mihir
    I am very eager to know how TV video games (which we all used to play in our childhood) were developed and on which platform. I know how games are developed for mobile devices, Windows PC's and Mac but I'm not getting how (in those days) Contra, Duck Hunt and all those games were developed. As they have high graphics and a large number of stages. So how did they manage to develop games in such a small size environment and with lower configuration platform?

    Read the article

  • C# 4.0 New Features

    New features on c# 4.0 1. Dynamic Typed Objects 2. Optional and Named Parameters 3. Improved COM Interoperability 4. Co- and Contra-Variance

    Read the article

  • Using OpenCl to jiggle the Pipe

    - by TOAOGG
    I've got the Idea to use OpenCL to program a simple Renderer. A clear contra is, that this approach won't benefit from the hardware as the functions on the device (I think). Would it be useful to do this in OpenCL..lets say we want to Cull as early as possible so we won't have many per vertex operations. Is it correct, that Culling is done after the Vertex-Shader? For static-vertecies who won't get effected by the shader it could be interesting to cull them before. Another idea would be an deferred renderer. So the main question is: Would it make sense to program a renderer in OpenCL (aside the effort)? The resulting picture would be drawn in OpenGL.

    Read the article

  • BizTalk: Internals: the Partner Direct Ports and the Orchestration Chains

    - by Leonid Ganeline
    Partner Direct Port is one of the BizTalk hidden gems. It opens simple ways to the several messaging patterns. This article based on the Kevin Lam’s blog article. The article is pretty detailed but it still leaves several unclear pieces. So I have created a sample and will show how it works from different perspectives. Requirements We should create an orchestration chain where the messages should be routed from the first stage to the second stage. The messages should not be modified. All messages has the same message type. Common artifacts Source code can be downloaded here. It is interesting but all orchestrations use only one port type. It is possible because all ports are one-way ports and use only one operation. I have added a B orchestration. It helps to test the sample, showing all test messages in channel. The Receive shape Filter is empty. A Receive Port (R_Shema1Direct) is a plain Direct Port. As you can see, a subscription expression of this direct port has only one part, the MessageType for our test schema: A Filer is empty but, as you know, a link from the Receive shape to the Port creates this MessageType expression. I use only one Physical Receive File port to send a message to all processes. Each orchestration outputs a Trace.WriteLine(“<Orchestration Name>”). Forward Binding This sample has three orchestrations: A_1, A_21 and A_22. A_1 is a sender, A_21 and A_22 are receivers. Here is a subscription of the A_1 orchestration: It has two parts A MessageType. The same was for the B orchestration. A ReceivePortID. There was no such parameter for the B orchestration. It was created because I have bound the orchestration port with Physical Receive File port. This binding means the PortID parameter is added to the subscription. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for the sending orchestration, A_1. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, receive orchestrations, A_21 or A_22, but it is A_1 orchestration and S_SentFromA_1 port. Now we have to choose a Partner Orchestration parameter for the received orchestrations, A_21 and A_22. Nothing strange is here except a parameter name. We choose the port of the sender, A_1 orchestration and S_SentFromA_1 port. As you can see the Partner Orchestration parameter for the sender and receiver orchestrations is the same. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B and by A_1 A_1 sent a message forward. A message was received by B, A_21, A_22 Let’s look at a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports.     Now let’s see a subscription of the A_21 and A_22 orchestrations. Now it makes sense. That’s why we have chosen such a strange value for the Partner Orchestration parameter of the sending orchestration. Inverse Binding This sample has three orchestrations: A_11, A_12 and A_2. A_11 and A_12 are senders, A_2 is receiver. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for a receiving orchestration, A_2. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, sent orchestrations, A_11 or A_12, but it is A_2 orchestration and R_SentToA_2 port. Now we have to choose a Partner Orchestration parameter for the sending orchestrations, A_11 and A_12. Nothing strange is here except a parameter name. We choose the port of the sender, A_2 orchestration and R_SentToA_2 port. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B, A_11 and by A_12 A_11 and A_12 sent two messages forward. The messages were received by B, A_2 Let’s see what was a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports. Here is a subscription of the A_2 orchestration. Models I had a hard time trying to explain the Partner Direct Ports in simple terms. I have finished with this model: Forward Binding Receivers know a Sender. Sender doesn’t know Receivers. Publishers know a Subscriber. Subscriber doesn’t know Publishers. 1 –> 1 1 –> M Inverse Binding Senders know a Receiver. Receiver doesn’t know Senders. Subscribers know a Publisher. Publisher doesn’t know Subscribers. 1 –> 1 M –> 1 Notes   Orchestration chain It’s worth to note, the Partner Direct Port Binding creates a chain opened from one side and closed from another. The Forward Binding: A new Receiver can be added at run-time. The Sender can not be changed without design-time changes in Receivers. The Inverse Binding: A new Sender can be added at run-time. The Receiver can not be changed without design-time changes in Senders.

    Read the article

  • I want to make my Application Open Source, but I'm unsure...

    - by Joern
    Hi! I have written a website, which is my big idea. Now I'm planning a version for intranets. The big question in my head is: "shall I make it open source?" and next are: What do I have to prepare What do I need for a good start What is the best way to find people with the same interests Who gives me the proof that I won't find a copy of my idea on another page, stolen from my open source code Please Discuss with me, give some good arguments pro and contra. Yours, Joern.

    Read the article

  • DevDays ‘00 The Netherlands day #2

    - by erwin21
    Day 2 of DevDays 2010 and again 5 interesting sessions at the World Forum in The Hague. The first session of the today in the big world forum theater was from Scott Hanselman, he gives a lap around .NET 4.0. In his way of presenting he talked about all kind of new features of .NET 4.0 like MEF, threading, parallel processing, changes and additions to the CLR and DLR, WPF and all new language features of .NET 4.0. After a small break it was ready for session 2 from Scott Allen about Tips, Tricks and Optimizations of LINQ. He talked about lazy and deferred executions, the difference between IQueryable and IEnumerable and the two flavors of LINQ syntax. The lunch was again very good prepared and delicious, but after that it was time for session 3 Web Vulnerabilities and Exploits from Alex Thissen. This was no normal session but more like a workshop, we decided what kind of subjects we discussed, the subjects where OWASP, XSS and other injections, validation, encoding. He gave some handy tips and tricks how to prevent such attacks. Session 4 was about the new features of C# 4.0 from Alex van Beek. He talked about Optional- en Named Parameters, Generic Co- en Contra Variance, Dynamic keyword and COM Interop features. He showed how to use them but also when not to use them. The last session of today and also the last session of DevDays 2010 was about WCF Best Practices from Gerben van Loon. He talked about 7 best practices that you must know when you are going to use WCF. With some quick demos he showed the problem and the solution for some common issues. It where two interesting days and next year i sure will be attending again.

    Read the article

  • handling various frame layouts in android

    - by vaibhav
    i'm new to game development and am trying create a Contra or the old tmnt game (but a simple one) like game for android. for the game i decided to divide my main screen in three parts - upper for stats,mid for the game and lower for controls. my main.xml is <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" android:orientation="vertical" > <FrameLayout android:id="@+id/upper_bar" android:layout_width="fill_parent" android:layout_height="fill_parent" android:layout_weight="1" > </FrameLayout> <FrameLayout android:id="@+id/fl" android:layout_width="fill_parent" android:layout_height="fill_parent" android:layout_weight="0.5" > </FrameLayout> <FrameLayout android:id="@+id/low_bar" android:layout_width="fill_parent" android:layout_height="fill_parent" android:layout_weight="0.85" > </FrameLayout> </LinearLayout> so i have created the gameview and gameloopthread classes for the mid surface(which is pretty standard). my problem is that how do i draw in the upper and lower frame layouts? should i make new classes for view and thread for each layout , should i do all this in the gameview class itself or is there any better way to implement this?

    Read the article

  • XNA C# Platformer - physics engine or tile based?

    - by Hugh
    I would like to get some opinions on whether i should develop my game using a physics engine (farseer physics seems to be the best option) or follow the traditional tile-based method. Quick background: - its a college project, my first game, but have 4 years academic programming experience - Just want a basic platformer with a few levels, nothing fancy - want a shooting mechanic, run and gun, just like contra or metal slug for example - possibly some simple puzzles I have made a basic prototype with farseer, the level is hardcoded with collisions and not really tiled, more like big full-screen sized tiles, with collision bodies drawn manually along the ground and walls etc. My main problem is i want a simple retro feel to the jumping and physics but because its a physics simulation engine its going to be realistic, whereas typical in air controllable physics for platformers arent realistic. I have to make a box with wheel body fixture under it to have this effect and its glitchy and doesnt feel right. I chose to use a physics engine because i tried the tile method initially and found it very hard to understand, the engine took care of alot things to save me time, mainly being able to do slopes easily was nice and the freedom to draw collision bounds wherever i liked, rather then restricted to a grid, which gave me more freedom for art design also. In conclusion i don't know which method to pick, i want to use a method which will be the most straight forward way to implement and wont give me a headache later on, preferably a method which has an abundance of tutorials and resources so i dont get "stuck" doing something which has been done a million times before! Let me know i haven't provided enough information for you to help me! Thanks in advance, Hugh.

    Read the article

  • What does SVN do better than git?

    - by doug
    No question that the majority of debates over programmer tools distill to either personal choice (by the user) or design emphasis, i.e., optimizing design according to particular uses cases (by the tool builder). Text Editors are probably the most prominent example--a coder who works on a Windows at work and codes in Haskell on the Mac at home, values cross-platform and compiler integration and so chooses Emacs over Textmate, etc. It's less common that a newly introduced technology is genuinely, demonstrably superior to the extant options. I wonder if this is in fact the case with version-control systems, in particular, centralized VCS (CVS, SVN) versus distributed VCS (git, hg)? I used SVN for about five years, and SVN is currently used where I work. A little less than three years ago, I switched to git (and gitHub) for all of my personal projects. I can think of a number of advantages of git over subversion (and which for the most part abstract to advantages of distributed over centralized VCS), but I cannot think of one contra example--some task (that's relevant and arises in a programmers usual workflow) that subversion does better than git. The only conclusion I have drawn from this is that I don't have any data--not that git is better, etc. My guess is that such counter-examples exist, hence this question.

    Read the article

  • Rendering 8 bit graphics

    - by Matjaz Muhic
    I have a strong programming background just not from game development. I only made some pong and snake in high school and I did some OpenGL in college. I want to make my own game engine. Nothing fancy just a simple 2D game engine. But because I'm kinda old school and feeling retro. I want graphics to look like old 8 bit games (megaman, contra, super mario, ...). So how were the old games made back then? I want the simplest approach. Were they also using assets (images) like newer engines now do? How do you achieve this kind of rendering using OpenGL? Keep in mind. Simplest solution. I want to know how it was made back then and how I can replicate that. Doesn't even have to be OpenGL. I can draw on window canvas. I do want to make it from scratch basically.

    Read the article

  • SqlParameter contructor compiler overload choice

    - by Ash
    When creating a SqlParameter (.NET3.5) or OdbcParameter I often use the SqlParameter(string parameterName, Object value) constructor overload to set the value in one statement. When I tried passing a literal 0 as the value paramter I was initially caught by the C# compiler choosing the (string, OdbcType) overload instead of (string, Object). MSDN actually warns about this gotcha in the remarks section, but the explanation confuses me. Why does the C# compiler decide that a literal 0 parameter should be converted to OdbcType rather than Object? The warning also says to use Convert.ToInt32(0) to force the Object overload to be used. It confusingly says that this converts the 0 to an "Object type". But isn't 0 already an "Object type"? The Types of Literal Values section of this page seems to say literals are always typed and so inherit from System.Object. This behavior doesn't seem very intuitive given my current understanding? Is this something to do with Contra-variance or Co-variance maybe?

    Read the article

  • How is method group overload resolution different to method call overload resolution?

    - by thecoop
    The following code doesn't compile (error CS0123: No overload for 'System.Convert.ToString(object)' matches delegate 'System.Converter<T,string>'): class A<T> { void Method(T obj) { Converter<T, string> toString = Convert.ToString; } } however, this does: class A<T> { void Method(T obj) { Converter<T, string> toString = o => Convert.ToString(o); } } intellisense gives o as a T, and the Convert.ToString call as using Convert.ToString(object). In c# 3.5, delegates can be created from co/contra-variant methods, so the ToString(object) method can be used as a Converter<T, string>, as T is always guarenteed to be an object. So, the first example (method group overload resolution) should be finding the only applicable method string Convert.ToString(object o), the same as the method call overload resolution. Why is the method group & method call overload resolution producing different results?

    Read the article

  • When is @uncheckedVariance needed in Scala, and why is it used in GenericTraversableTemplate?

    - by retronym
    @uncheckedVariance can be used to bridge the gap between Scala's declaration site variance annotations and Java's invariant generics. scala import java.util.Comparator import java.util.Comparator scala trait Foo[T] extends Comparator[T] defined trait Foo scala trait Foo[-T] extends Comparator[T] :5: error: contravariant type T occurs in invariant position in type [-T]java.lang.Object with java.util.Comparator[T] of trait Foo trait Foo[-T] extends Comparator[T] ^ scala import annotation.unchecked._ import annotation.unchecked._ scala trait Foo[-T] extends Comparator[T @uncheckedVariance] defined trait Foo This says that java.util.Comparator is naturally contra-variant, that is the type parameter T appears in parameters and never in a return type. Which begs the question, why is it also used in the Scala collections library: trait GenericTraversableTemplate[+A, +CC[X] <: Traversable[X]] extends HasNewBuilder[A, CC[A] @uncheckedVariance] What are the valid uses for this annotation?

    Read the article

  • What are the other new features of C# 4.0, after dynamic and optional parameters?

    - by Abel
    So, C# 4.0 came out yesterday. It introduced the much-debated dynamic keyword, named and optional parameters. Smaller improvements were the implicit ref and recognizing of indexed and default properties on COM methods, contra- and co-variance (really a .NET CLR feature, not C# only) and... Is that really it? Are dynamic and optional/named params the only real improvements to C#? Or did I miss something? Not that I'm complaining, but it seems a bit meager after C# 2.0 (generics) and C# 3.0 (lambda, LINQ). Maybe the language just reached actual maturity?

    Read the article

  • XML comments and "--"

    - by Vi.
    <!-- here is some comment -- ^ | what can be here apart from '>'? XML seems not to like '--' inside comments. I read somewhere that '--' switchs some modes inside <! ... > thing, but <!-- -- -- --> (even number of --s) seem to be invalid too. If it is some historic feature, what is "pro" part of it? ("contra" part is inability to have -- in comments). What is the reason of complicating comment processing by not making just '--' end of comment and allowing '--' inside?

    Read the article

  • select GUI on windows (wxPy vs pyQt)

    - by Golovko
    Hello! We are plan to create an application for monitoring and configuring our service (which is running on remote server). After long time discuss, we decide for python as pl for our app, because we love and know python (better, than english, really). but we don't know, what GUI toolkit preffered for our aims. We need fast (for development and running) app, which users are admins, mainteners and account managers. There is two GUI toolkit for python, which we know: wxPython and pyQT. Anybody have arguments pro et contra candidat? And maybe peoples know commercial applications, running in this products (only python version of toolkits)? Links are desirable. Thanks, and excuse my english.

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

1 2  | Next Page >