Search Results

Search found 648 results on 26 pages for 'division of labor'.

Page 1/26 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Finding the Right Solution to Source and Manage Your Contractors

    - by mark.rosenberg(at)oracle.com
    Many of our PeopleSoft Enterprise applications customers operate in service-based industries, and all of our customers have at least some internal service units, such as IT, marketing, and facilities. Employing the services of contractors, often referred to as "contingent labor," to deliver either or both internal and external services is common practice. As we've transitioned from an industrial age to a knowledge age, talent has become a primary competitive advantage for most organizations. Contingent labor offers talent on flexible terms; it offers the ability to scale up operations, close skill gaps, and manage risk in the process of delivering services. Talent comes from many sources and the rise in the contingent worker (contractor, consultant, temporary, part time) has increased significantly in the past decade and is expected to reach 40 percent in the next decade. Managing the total pool of talent in a seamless integrated fashion not only saves organizations money and increases efficiency, but creates a better place for workers of all kinds to work. Although the term "contingent labor" is frequently used to describe both contractors and employees who have flexible schedules and relationships with an organization, the remainder of this discussion focuses on contractors. The term "contingent labor" is used interchangeably with "contractor." Recognizing the importance of contingent labor, our PeopleSoft customers often ask our team, "What Oracle vendor management system (VMS) applications should I evaluate for managing contractors?" In response, I thought it would be useful to describe and compare the three most common Oracle-based options available to our customers. They are:   The enterprise licensed software model in which you implement and utilize the PeopleSoft Services Procurement (sPro) application and potentially other PeopleSoft applications;  The software-as-a-service model in which you gain access to a derivative of PeopleSoft sPro from an Oracle Business Process Outsourcing Partner; and  The managed service provider (MSP) model in which staffing industry professionals utilize either your enterprise licensed software or the software-as-a-service application to administer your contingent labor program. At this point, you may be asking yourself, "Why three options?" The answer is that since there is no "one size fits all" in terms of talent, there is also no "one size fits all" for effectively sourcing and managing contingent workers. Various factors influence how an organization thinks about and relates to its contractors, and each of the three Oracle-based options addresses an organization's needs and preferences differently. For the purposes of this discussion, I will describe the options with respect to (A) pricing and software provisioning models; (B) control and flexibility; (C) level of engagement with contractors; and (D) approach to sourcing, employment law, and financial settlement. Option 1:  Enterprise Licensed Software In this model, you purchase from Oracle the license and support for the applications you need. Typically, you license PeopleSoft sPro as your VMS tool for sourcing, monitoring, and paying your contract labor. In conjunction with sPro, you can also utilize PeopleSoft Human Capital Management (HCM) applications (if you do not already) to configure more advanced business processes for recruiting, training, and tracking your contractors. Many customers choose this enterprise license software model because of the functionality and natural integration of the PeopleSoft applications and because the cost for the PeopleSoft software is explicit. There is no fee per transaction to source each contractor under this model. Our customers that employ contractors to augment their permanent staff on billable client engagements often find this model appealing because there are no fees to affect their profit margins. With this model, you decide whether to have your own IT organization run the software or have the software hosted and managed by either Oracle or another application services provider. Your organization, perhaps with the assistance of consultants, configures, deploys, and operates the software for managing your contingent workforce. This model offers you the highest level of control and flexibility since your organization can configure the contractor process flow exactly to your business and security requirements and can extend the functionality with PeopleTools. This option has proven very valuable and applicable to our customers engaged in government contracting because their contingent labor management practices are subject to complex standards and regulations. Customers find a great deal of value in the application functionality and configurability the enterprise licensed software offers for managing contingent labor. Some examples of that functionality are... The ability to create a tiered network of preferred suppliers including competencies, pricing agreements, and elaborate candidate management capabilities. Configurable alerts and online collaboration for bid, resource requisition, timesheet, and deliverable entry, routing, and approval for both resource and deliverable-based services. The ability to manage contractors with the same PeopleSoft HCM and Projects applications that are used to manage the permanent workforce. Because it allows you to utilize much of the same PeopleSoft HCM and Projects application functionality for contractors that you use for permanent employees, the enterprise licensed software model supports the deepest level of engagement with the contingent workforce. For example, you can: fill job openings with contingent labor; guide contingent workers through essential safety and compliance training with PeopleSoft Enterprise Learning Management; and source contingent workers directly to project-based assignments in PeopleSoft Resource Management and PeopleSoft Program Management. This option enables contingent workers to collaborate closely with your permanent staff on complex, knowledge-based efforts - R&D projects, billable client contracts, architecture and engineering projects spanning multiple years, and so on. With the enterprise licensed software model, your organization maintains responsibility for the sourcing, onboarding (including adherence to employment laws), and financial settlement processes. This means your organization maintains on staff or hires the expertise in these domains to utilize the software and interact with suppliers and contractors. Option 2:  Software as a Service (SaaS) The effort involved in setting up and operating VMS software to handle a contingent workforce leads many organizations to seek a system that can be activated and configured within a few days and for which they can pay based on usage. Oracle's Business Process Outsourcing partner, Provade, Inc., provides exactly this option to our customers. Provade offers its vendor management software as a service over the Internet and usually charges your organization a fee that is a percentage of your total contingent labor spending processed through the Provade software. (Percentage of spend is the predominant fee model, although not the only one.) In addition to lower implementation costs, the effort of configuring and maintaining the software is largely upon Provade, not your organization. This can be very appealing to IT organizations that are thinly stretched supporting other important information technology initiatives. Built upon PeopleSoft sPro, the Provade solution is tailored for simple and quick deployment and administration. Provade has added capabilities to clone users rapidly and has simplified business documents, like work orders and change orders, to facilitate enterprise-wide, self-service adoption with little to no training. Provade also leverages Oracle Business Intelligence Enterprise Edition (OBIEE) to provide integrated spend analytics and dashboards. Although pure customization is more limited than with the enterprise licensed software model, Provade offers a very effective option for organizations that are regularly on-boarding and off-boarding high volumes of contingent staff hired to perform discrete support tasks (for example, order fulfillment during the holiday season, hourly clerical work, desktop technology repairs, and so on) or project tasks. The software is very configurable and at the same time very intuitive to even the most computer-phobic users. The level of contingent worker engagement your organization can achieve with the Provade option is generally the same as with the enterprise licensed software model since Provade can automatically establish contingent labor resources in your PeopleSoft applications. Provade has pre-built integrations to Oracle's PeopleSoft and the Oracle E-Business Suite procurement, projects, payables, and HCM applications, so that you can evaluate, train, assign, and track contingent workers like your permanent employees. Similar to the enterprise licensed software model, your organization is responsible for the contingent worker sourcing, administration, and financial settlement processes. This means your organization needs to maintain the staff expertise in these domains. Option 3:  Managed Services Provider (MSP) Whether you are using the enterprise licensed model or the SaaS model, you may want to engage the services of sourcing, employment, payroll, and financial settlement professionals to administer your contingent workforce program. Firms that offer this expertise are often referred to as "MSPs," and they are typically staffing companies that also offer permanent and temporary hiring services. (In fact, many of the major MSPs are Oracle applications customers themselves, and they utilize the PeopleSoft Solution for the Staffing Industry to run their own business operations.) Usually, MSPs place their staff on-site at your facilities, and they can utilize either your enterprise licensed PeopleSoft sPro application or the Provade VMS SaaS software to administer the network of suppliers providing contingent workers. When you utilize an MSP, there is a separate fee for the MSP's service that is typically funded by the participating suppliers of the contingent labor. Also in this model, the suppliers of the contingent labor (not the MSP) usually pay the contingent labor force. With an MSP, you are intentionally turning over business process control for the advantages associated with having someone else manage the processes. The software option you choose will to a certain extent affect your process flexibility; however, the MSPs are often able to adapt their processes to the unique demands of your business. When you engage an MSP, you will want to give some thought to the level of engagement and "partnering" you need with your contingent workforce. Because the MSP acts as an intermediary, it can be very valuable in handling high volume, routine contracting for which there is a relatively low need for "partnering" with the contingent workforce. However, if your organization (or part of your organization) engages contingent workers for high-profile client projects that require diplomacy, intensive amounts of interaction, and personal trust, introducing an MSP into the process may prove less effective than handling the process with your own staff. In fact, in many organizations, it is common to enlist an MSP to handle contractors working on internal projects and to have permanent employees handle the contractor relationships that affect the portion of the services portfolio focused on customer-facing, billable projects. One of the key advantages of enlisting an MSP is that you do not have to maintain the expertise required for orchestrating the sourcing, hiring, and paying of contingent workers.  These are the domain of the MSPs. If your own staff members are not prepared to manage the essential "overhead" processes associated with contingent labor, working with an MSP can make solid business sense. Proper administration of a contingent workforce can make the difference between project success and failure, operating profit and loss, and legal compliance and fines. Concluding Thoughts There is little doubt that thoughtfully and purposefully constructing a service delivery strategy that leverages the strengths of contingent workers can lead to better projects, deliverables, and business results. What requires a bit more thinking is determining the platform (or platforms) that will enable each part of your organization to best deliver on its mission.

    Read the article

  • 5 Things I Learned About the IT Labor Shortage

    - by Oracle Accelerate for Midsize Companies
    by Jim Lein | Sr. Principal Product Marketing Director | Oracle Midsize Programs | @JimLein Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} 5 Things I Learned About the IT Labor Shortage A gentle autumn breeze is nudging the last golden leaves off the aspen trees. It’s time to wrap up the series that I started back in April, “The Growing IT Labor Shortage: Are You Feeling It?” Even in a time of relatively high unemployment, labor shortages exist depending on many factors, including location, industry, IT requirements, and company size. According to Manpower Groups 2013 Talent Shortage Survey, 35% of hiring managers globally are having difficulty filling jobs. Their top three challenges in filling jobs are: 1. lack of technical competencies (hard skills) 2. Lack of available applicants 3. Lack of experience The same report listed Technicians as the most difficult position to fill in the United States For most companies, Human Capital and Talent Management have never been more strategic and they are striving for ways streamline processes, reduce turnover, and lower costs (see this Oracle whitepaper, “ Simplify Workforce Management and Increase Global Agility”). Everyone I spoke to—partner, customer, and Oracle experts—agreed that it can be extremely challenging to hire and retain IT talent in today’s labor market. And they generally agreed on the causes: a. IT is so pervasive that there are myriad moving parts requiring support and expertise, b. thus, it’s hard for university graduates to step in and contribute immediately without experience and specialization, c. big IT companies generally aren’t the talent incubators that they were in the freewheeling 90’s due to bottom line pressures that require hiring talent that can hit the ground running, and d. it’s often too expensive for resource-strapped midsize companies to invest the time and money required to get graduates up to speed. Here are my top lessons learned from my conversations with the experts. 1. A Better Title Would Have Been, “The Challenges of Finding and Retaining IT Talent That Matches Your Requirements” There are more applicants than jobs but it’s getting tougher and tougher to find individuals that perfectly fit each and every role. Top performing companies are increasingly looking to hire the “almost ready”, striving to keep their existing talent more engaged, and leveraging their employee’s social and professional networks to quickly narrow down candidate searches (here’s another whitepaper, “A Strategic Approach to Talent Management”). 2. Size Matters—But So Does Location Midsize companies must strive to build cultures that compete favorably with what large enterprises can offer, especially when they aren’t within commuting distance of IT talent strongholds. They can’t always match the compensation and benefits offered by large enterprises so it's paramount to offer candidates high quality of life and opportunities to build their resumes in alignment with their long term career aspirations. 3. Get By With a Little Help From Your Friends It doesn’t always make sense to invest time and money in training an employee on a task they will not perform frequently. Or get in a bidding war for talent with skills that are rare and in high demand. Many midsize companies are finding that it makes good economic sense to contract with partners for remote support rather than trying to divvy up each and every role amongst their lean staff. Internal staff can be assigned to roles that will have the highest positive impact on achieving organizational goals. 4. It’s Actually Both “What You Know” AND “Who You Know” If I was hiring someone today I would absolutely leverage the social and professional networks of my co-workers. Period. Most research shows that hiring in this manner is less expensive and time consuming AND produces better results. There is also some evidence that suggests new hires from employees’ networks have higher job performance and retention rates. 5. I Have New Respect for Recruiters and Hiring Managers My hats off to them—it’s not easy hiring and retaining top talent with today’s challenges. Check out the infographic, “A New Day: Taking HR from Chaos to Control”, on Oracle’s Human Capital Management solutions home page. You can also explore all of Oracle’s HCM solutions from that page based on your role. You can read all the posts in this series by clicking on the links in the right sidebar. Stay tuned…we’ll continue to post thought leadership on HCM and Talent Management topics.

    Read the article

  • trying to divide complex numbers, division by zero

    - by user553619
    I'm trying the program below to divide complex numbers, it works for complex numbers but not when the denominator is real (i.e, the complex part is zero). Division by zero occurs in this line ratio = b->r / b->i ;, when the complex part b->i is zero (in the case of a real denominator). How do I get around this? and why did the programmer do this, instead of the more straightforward rule for complex division The wikipedia rule seems to be better, and no division by zero error would occur here. Did I miss something? Why did the programmer not use the wikipedia formula?? Thanks /*! @file dcomplex.c * \brief Common arithmetic for complex type * * <pre> * -- SuperLU routine (version 2.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * November 15, 1997 * * This file defines common arithmetic operations for complex type. * </pre> */ #include <math.h> #include <stdlib.h> #include <stdio.h> #include "slu_dcomplex.h" /*! \brief Complex Division c = a/b */ void z_div(doublecomplex *c, doublecomplex *a, doublecomplex *b) { double ratio, den; double abr, abi, cr, ci; if( (abr = b->r) < 0.) abr = - abr; if( (abi = b->i) < 0.) abi = - abi; if( abr <= abi ) { if (abi == 0) { fprintf(stderr, "z_div.c: division by zero\n"); exit(-1); } ratio = b->r / b->i ; den = b->i * (1 + ratio*ratio); cr = (a->r*ratio + a->i) / den; ci = (a->i*ratio - a->r) / den; } else { ratio = b->i / b->r ; den = b->r * (1 + ratio*ratio); cr = (a->r + a->i*ratio) / den; ci = (a->i - a->r*ratio) / den; } c->r = cr; c->i = ci; }

    Read the article

  • Estimating cost of labor for a controlled experiment

    - by Lorin Hochstein
    Let's say you are a software engineering researcher and you are designing a controlled experiment to compare two software technologies or techniques (e.g., TDD vs. non-TDD, Python vs. Go) with respect to some qualities of interest (e.g., quality of resulting code, programmer productivity). According to your study design, participants will work alone to implement a non-trivial software system. You estimate it should take about six months for a single programmer to complete the task. You also estimate via power analysis that you will need around sixty study participants to obtain statistically significant results, assuming the technologies actually do yield different outcomes. To maximize external validity, you want to use professional programmers as study participants. Unfortunately, it isn't possible to find professional programmers who can volunteer for several months to work full-time on implementing a software system. You decide to go the simplest route and contract with a large IT consulting firm to obtain access to programmers to participate in the study. What is a reasonable estimate of the cost range, per person-month, for the programming labor? Assume you are constrained to work with a U.S.-based firm, but it doesn't matter where in the U.S. the firm itself or the programmers or located. Note: I'm looking for a reasonable order-of-magnitude range suitable for back-of-the-envelope calculations so that when people say "Why doesn't somebody just do a study to measure X", I can say, "Because running that study properly would cost $Y", and have a reasonable argument for the value of $Y.

    Read the article

  • C++ double division by 0.0 versus DBL_MIN

    - by wonsungi
    When finding the inverse square root of a double, is it better to clamp invalid non-positive inputs at 0.0 or MIN_DBL? (In my example below double b may end up being negative due to floating point rounding errors and because the laws of physics are slightly slightly fudged in the game.) Both division by 0.0 and MIN_DBL produce the same outcome in the game because 1/0.0 and 1/DBL_MIN are effectively infinity. My intuition says MIN_DBL is the better choice, but would there be any case for using 0.0? Like perhaps sqrt(0.0), 1/0.0 and multiplication by 1.#INF000000000000 execute faster because they are special cases. double b = 1 - v.length_squared()/(c*c); #ifdef CLAMP_BY_0 if (b < 0.0) b = 0.0; #endif #ifdef CLAMP_BY_DBL_MIN if (b <= 0.0) b = DBL_MIN; #endif double lorentz_factor = 1/sqrt(b); double division in MSVC: 1/0.0 = 1.#INF000000000000 1/DBL_MIN = 4.4942328371557898e+307

    Read the article

  • Division inaccurate in Javascript?

    - by Nate
    If I perform the following operation in Javascript: 0.06120*400 The result is 24.48. However, if I do this: 24.48/400 The result is: 0.061200000000000004 JSFiddle: http://jsfiddle.net/zcDH7/ So it appears that Javascript rounds things differently when doing division and multiplication? Using my calculator, the operation 24.48/400 results in the correct answer of 0.0612. How should I deal with Javascript's inaccurate division? I can't simply round the number off, because I will be dealing with numbers of varying precision. Thanks for your advice.

    Read the article

  • Using multiplication and division with delta time

    - by tesselode
    Using delta time with addition and subtraction is easy. player.x += 100 * dt However, multiplication and division complicate things a bit. For example, let's say I want the player to double his speed every second. player.x = player.x * 2 * dt I can't do this because it'll slow down the player (unless delta time is really high). Division is the same way, except it'll speed things way up. How can I handle multiplication and division with delta time?

    Read the article

  • How to catch a division by zero?

    - by Cristian Castiblanco
    I have a large mathematical expression that has to be created dinamically. So, for example, once I have parsed "something" the result will be a string like: "$foo+$bar/$baz";. So, for calculating the result of that expression I'm using the eval function... something like this: eval("\$result = $expresion;"); echo "The result is: $result"; The problem here is that sometimes I get errors that says there was a division by zero, and I don't know how to catch that Exception. I have tried things like: eval("try{\$result = $expresion;}catch(Exception \$e){\$result = 0;}"); echo "The result is: $result"; Or: try{ eval("\$result = $expresion;"); } catch(Exception $e){ $result = 0; } echo "The result is: $result"; But it does not work. So, how can I avoid that my application crashes when there is a division by zero?

    Read the article

  • Polynomial division overloading operator

    - by Vlad
    Ok. here's the operations i successfully code so far thank's to your help: Adittion: polinom operator+(const polinom& P) const { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(i->coef, i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(j->coef, j->pow); j++; } else { // if both are equal Result.insert(i->coef + j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Subtraction: polinom operator-(const polinom& P) const //fixed prototype re. const-correctness { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(-(i->coef), i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(-(j->coef), j->pow); j++; } else { // if both are equal Result.insert(i->coef - j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Multiplication: polinom operator*(const polinom& P) const { polinom Result; constIter i, j, lastItem = Result.poly.end(); Iter it1, it2, first, last; int nr_matches; for (i = poly.begin() ; i != poly.end(); i++) { for (j = P.poly.begin(); j != P.poly.end(); j++) Result.insert(i->coef * j->coef, i->pow + j->pow); } Result.poly.sort(SortDescending()); lastItem--; while (true) { nr_matches = 0; for (it1 = Result.poly.begin(); it1 != lastItem; it1++) { first = it1; last = it1; first++; for (it2 = first; it2 != Result.poly.end(); it2++) { if (it2->pow == it1->pow) { it1->coef += it2->coef; nr_matches++; } } nr_matches++; do { last++; nr_matches--; } while (nr_matches != 0); Result.poly.erase(first, last); } if (nr_matches == 0) break; } return Result; } Division(Edited): polinom operator/(const polinom& P) { polinom Result, temp; Iter i = poly.begin(); constIter j = P.poly.begin(); if (poly.size() < 2) { if (i->pow >= j->pow) { Result.insert(i->coef, i->pow - j->pow); *this = *this - Result; } } else { while (true) { if (i->pow >= j->pow) { Result.insert(i->coef, i->pow - j->pow); temp = Result * P; *this = *this - temp; } else break; } } return Result; } The first three are working correctly but division doesn't as it seems the program is in a infinite loop. Update Because no one seems to understand how i thought the algorithm, i'll explain: If the dividend contains only one term, we simply insert the quotient in Result, then we multiply it with the divisor ans subtract it from the first polynomial which stores the remainder. If the polynomial we do this until the second polynomial( P in this case) becomes bigger. I think this algorithm is called long division, isn't it? So based on these, can anyone help me with overloading the / operator correctly for my class? Thanks!

    Read the article

  • Faster integer division when denominator is known?

    - by aaa
    hi I am working on GPU device which has very high division integer latency, several hundred cycles. I am looking to optimize divisions. All divisions by denominator which is in a set { 1,3,6,10 }, however numerator is a runtime positive value, roughly 32000 or less. due to memory constraints, lookup table is not option. Can you think of alternatives? I have thought of computing float point inverses, and using those to multiply numerator. Thanks

    Read the article

  • Polynomial division overloading operator (solved)

    - by Vlad
    Ok. here's the operations i successfully code so far thank's to your help: Adittion: polinom operator+(const polinom& P) const { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(i->coef, i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(j->coef, j->pow); j++; } else { // if both are equal Result.insert(i->coef + j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Subtraction: polinom operator-(const polinom& P) const //fixed prototype re. const-correctness { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(-(i->coef), i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(-(j->coef), j->pow); j++; } else { // if both are equal Result.insert(i->coef - j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Multiplication: polinom operator*(const polinom& P) const { polinom Result; constIter i, j, lastItem = Result.poly.end(); Iter it1, it2, first, last; int nr_matches; for (i = poly.begin() ; i != poly.end(); i++) { for (j = P.poly.begin(); j != P.poly.end(); j++) Result.insert(i->coef * j->coef, i->pow + j->pow); } Result.poly.sort(SortDescending()); lastItem--; while (true) { nr_matches = 0; for (it1 = Result.poly.begin(); it1 != lastItem; it1++) { first = it1; last = it1; first++; for (it2 = first; it2 != Result.poly.end(); it2++) { if (it2->pow == it1->pow) { it1->coef += it2->coef; nr_matches++; } } nr_matches++; do { last++; nr_matches--; } while (nr_matches != 0); Result.poly.erase(first, last); } if (nr_matches == 0) break; } return Result; } Division(Edited): polinom operator/(const polinom& P) const { polinom Result, temp2; polinom temp = *this; Iter i = temp.poly.begin(); constIter j = P.poly.begin(); int resultSize = 0; if (temp.poly.size() < 2) { if (i->pow >= j->pow) { Result.insert(i->coef / j->coef, i->pow - j->pow); temp = temp - Result * P; } else { Result.insert(0, 0); } } else { while (true) { if (i->pow >= j->pow) { Result.insert(i->coef / j->coef, i->pow - j->pow); if (Result.poly.size() < 2) temp2 = Result; else { temp2 = Result; resultSize = Result.poly.size(); for (int k = 1 ; k != resultSize; k++) temp2.poly.pop_front(); } temp = temp - temp2 * P; } else break; } } return Result; } }; The first three are working correctly but division doesn't as it seems the program is in a infinite loop. Final Update After listening to Dave, I finally made it by overloading both / and & to return the quotient and the remainder so thanks a lot everyone for your help and especially you Dave for your great idea! P.S. If anyone wants for me to post these 2 overloaded operator please ask it by commenting on my post (and maybe give a vote up for everyone involved).

    Read the article

  • Division, Remainders and only Real Numbers Allowed

    - by Senica Gonzalez
    Trying to figure out this pseudo code. The following is assumed.... I can only use unsigned and signed integers (or long). Division returns a real number with no remainder. MOD returns a real number. Fractions and decimals are not handled. INT I = 41828; INT C = 15; INT D = 0; D = (I / 65535) * C; How would you handle a fraction (or decimal value) in this situation? Is there a way to use negative value to represent the remainder? In this example I/65535 should be 0.638, however, with the limitations, I get 0 with a MOD of 638. How can I then multiply by C to get the correct answer? Hope that makes sense.

    Read the article

  • What division operator symbol would you pick?

    - by Mackenzie
    I am currently designing and implementing a small programming language as an extra-credit project in a class I'm taking. My problem is that the language has three numeric types: Long, Double, and Fraction. Fractions can be written in the language as proper or improper fractions (e.g. "2 1/3" or "1/2"). This fact leads to problems such as "2/3.5" (Long/Double) and "2/3"(Long/Long) not being handled correctly by the lexer.The best solution that I see is to change the division operator. So far, I think "\" is the best solution since "//" starts comments. Would you pick "\", if you were designing the language? Would you pick something else? If so, what? Note: changing the way fractions are written is not possible. Thanks in advance for your help,

    Read the article

  • Custom "Very Long Int" Division Issue

    - by befall
    Hey everyone, So, for a very silly project in C++, we are making our own long integer class, called VLI (Very Long Int). The way it works (they backboned it, blame them for stupidity) is this: User inputs up to 50 digits, which are input as string. String is stored in pre-made Sequence class, which stores the string in an array, in reverse order. That means, when "1234" is input, it gets stored as [4|3|2|1]. So, my question is this: How can I go about doing division using only these arrays of chars? If the input answer is over 32 digits, I can't use ints to check for stuff, and they basically saying using long ints here is cheating. Any input is welcome, and I can give more clarification if need be, thanks everyone.

    Read the article

  • Windows Azure: Server and Cloud Division

    - by kaleidoscope
    On 8th Dec 2009 Microsoft announced the formation of a new organization within the Server & Tools Business that combines the Windows Server & Solutions group and the Windows Azure group, into a single organization called the Server & Cloud Division (SCD). SCD will deliver solutions that help our customers realize even greater benefits from Microsoft’s investments in on-premises and cloud technologies.  And the new division will help strengthen an already solid and extensive partner ecosystem. Together, Windows Server, Windows Azure, SQL Server, SQL Azure, Visual Studio and System Center help customers extend existing investments to include a future that will combine both on-premises and cloud solutions, and SCD is now a key player in that effort. http://blogs.technet.com/windowsserver/archive/2009/12/08/windows-server-and-windows-azure-come-together-in-a-new-stb-organization-the-server-cloud-division.aspx   Tinu, O

    Read the article

  • integer division properties

    - by aaa
    hi. does the following integer arithmetic property hold? (m/n)/l == m/(n*l) At first I thought I knew answer (does not hold), but now am not sure. Does it hold for all numbers or only for certain conditions, i.e. n > l?

    Read the article

  • Java - simple division in Java ---> bug/feature?!

    - by msr
    Hello, Im astonished. Im trying this simple calculation in a Java application: System.out.println("b=" + (1 - 7/10)); Obviously Im wainting for "b=0.3" in the output but here's what I get: b=1 What?! Why this happens? If I make: System.out.println("b=" + (1-0.7)); I get the right result which is "b=0.3". What's going wrong here? Thanks!

    Read the article

  • Python - Number of Significant Digits in results of division

    - by russ
    Newbie here. I have the following code: myADC = 128 maxVoltage = 5.0 maxADC = 255.0 VoltsPerADC = maxVoltage/maxADC myVolts = myADC * VoltsPerADC print "myADC = {0: >3}".format(myADC) print "VoltsPerADC = {0: >7}".format(VoltsPerADC) print VoltsPerADC print "myVolts = {0: >7}".format(myVolts) print myVolts This outputs the following: myADC = 128 VoltsPerADC = 0.0196078 0.0196078431373 myVolts = 2.5098 2.50980392157 I have been searching for an explanation of how the number of significant digits is determined by default, but have had trouble locating an explanation that makes sense to me. This link link text suggests that by default the "print" statement prints numbers to 10 significant figures, but that does not seem to be the case in my results. How are the number of significant digits/precision determined? Can someone shed some light on this for me. Thanks in advance for your time and patience.

    Read the article

  • Java - simple division in Java ---> bug?!

    - by msr
    Hello, Im astonished. Im trying this simple calculation in a Java application: System.out.println("b=" + (1 - 7/10)); Obviously Im wainting for "b=0.3" in the output but here's what I get: b=1 What?! Why this happens? If I make: System.out.println("b=" + (1-0.7)); I get the right result which is "b=0.3". What's going wrong here? Thanks!

    Read the article

  • Zero division does not throw exception in nunit

    - by Boris
    Running the following C# code through NUnit yields Test.ControllerTest.TestSanity: Expected: <System.DivideByZeroException> But was: null So either no DivideByZeroException is thrown, or NUnit does not catch it. Similar to this question, but the answers he got, do not seem to work for me. This is using NUnit 2.5.5.10112, and .NET 4.0.30319. [Test] public void TestSanity() { Assert.Throws<DivideByZeroException>(new TestDelegate(() => DivideByZero())); } private void DivideByZero() { // Parse "0" to make sure to get an error at run time, not compile time. var a = (1 / Double.Parse("0")); } Any ideas?

    Read the article

  • division with wrong result

    - by PeterK
    Hi, I am trying to divide integers but get 0 as result. I just do not understand what i am doing wrong. I am using only int's in this example but get the same result testing with float or double. The code i use is: int wrongAnswers = askedQuestions - playerResult; int percentCorrect = (playerResult / askedQuestions) * 100; int percentWrong = (wrongAnswers / askedQuestions) * 100; NSLog(@"askedQuestions: %i", askedQuestions); NSLog(@"playerResult: %i", playerResult); NSLog(@"wrongAnswers: %i", wrongAnswers); NSLog(@"percentCorrect: %i", percentCorrect); NSLog(@"percentWrong: %i", percentWrong); NSLog(@"calc: %i", (wrongAnswers + playerResult)); NSLog(@"wrong answers %: %i %%", ((wrongAnswers / askedQuestions) * 100)); The result i get is: 2011-01-09 16:45:53.411 XX[8296:207] askedQuestions: 5 2011-01-09 16:45:53.412 XX[8296:207] playerResult: 2 2011-01-09 16:45:53.412 XX[8296:207] wrongAnswers: 3 2011-01-09 16:45:53.413 XX[8296:207] percentCorrect: 0 % 2011-01-09 16:45:53.414 XX[8296:207] percentWrong: 0 % 2011-01-09 16:45:53.414 XX[8296:207] calc: 5 2011-01-09 16:45:53.415 XX[8296:207] wrong answers : 0 % I would very much appreciate help :-)

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >