Search Results

Search found 6604 results on 265 pages for 'double precision'.

Page 1/265 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • C# (4): double minus double giving precision problems

    - by thermal7
    I have come across a precision issue with double in .NET I thought this only applied to floats but now I see that double is a float. double test = 278.97 - 90.46; Debug.WriteLine(test) //188.51000000000005 //correct answer is 188.51 What is the correct way to handle this? Round? Lop off the unneeded decimal places?

    Read the article

  • Binary files printing and desired precision

    - by yCalleecharan
    Hi, I'm printing a variable say z1 which is a 1-D array containing floating point numbers to a text file so that I can import into Matlab or GNUPlot for plotting. I've heard that binary files (.dat) are smaller than .txt files. The definition that I currently use for printing to a .txt file is: void create_out_file(const char *file_name, const long double *z1, size_t z_size){ FILE *out; size_t i; if((out = _fsopen(file_name, "w+", _SH_DENYWR)) == NULL){ fprintf(stderr, "***> Open error on output file %s", file_name); exit(-1); } for(i = 0; i < z_size; i++) fprintf(out, "%.16Le\n", z1[i]); fclose(out); } I have three questions: Are binary files really more compact than text files?; If yes, I would like to know how to modify the above code so that I can print the values of the array z1 to a binary file. I've read that fprintf has to be replaced with fwrite. My output file say dodo.dat should contain the values of array z1 with one floating number per line. I have %.16Le up in my code but I think that %.15Le is right as I have 15 precision digits with long double. I have put a dot (.) in the width position as I believe that this allows expansion to an arbitrary field to hold the desired number. Am I right? As an example with %.16Le, I can have an output like 1.0047914240730432e-002 which gives me 16 precision digits and the width of the field has the right width to display the number correctly. Is placing a dot (.) in the width position instead of a width value a good practice? Thanks a lot...

    Read the article

  • SQL SERVER – Precision of SMALLDATETIME – A 1 Minute Precision

    - by pinaldave
    I am myself surprised that I am writing this post today. I am going to present one of the very known facts of SQL Server SMALLDATETIME datatype. Even though this is a very well-known datatype, many a time, I have seen developers getting confused with precision of the SMALLDATETIME datatype. The precision of the datatype SMALLDATETIME is 1 minute. It discards the seconds by rounding up or rounding down any seconds greater than zero. Let us see the following example DECLARE @varSDate AS SMALLDATETIME SET @varSDate = '1900-01-01 12:12:01' SELECT @varSDate C_SDT SET @varSDate = '1900-01-01 12:12:29' SELECT @varSDate C_SDT SET @varSDate = '1900-01-01 12:12:30' SELECT @varSDate C_SDT SET @varSDate = '1900-01-01 12:12:59' SELECT @varSDate C_SDT Following is the result of the above script and note that any value between 0 (zero) and 59 is converted up or down. The part that confuses the developers is the value of the seconds in the display. I think if it is not maintained or recorded, it should not be displayed as well. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL DateTime, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Find max integer size that a floating point type can handle without loss of precision

    - by Checkers
    Double has range more than a 64-bit integer, but its precision is less dues to its representation (since double is 64-bit as well, it can't fit more actual values). So, when representing larger integers, you start to lose precision in the integer part. #include <boost/cstdint.hpp> #include <limits> template<typename T, typename TFloat> void maxint_to_double() { T i = std::numeric_limits<T>::max(); TFloat d = i; std::cout << std::fixed << i << std::endl << d << std::endl; } int main() { maxint_to_double<int, double>(); maxint_to_double<boost::intmax_t, double>(); maxint_to_double<int, float>(); return 0; } This prints: 2147483647 2147483647.000000 9223372036854775807 9223372036854775800.000000 2147483647 2147483648.000000 Note how max int can fit into a double without loss of precision and boost::intmax_t (64-bit in this case) cannot. float can't even hold an int. Now, the question: is there a way in C++ to check if the entire range of a given integer type can fit into a loating point type without loss of precision? Preferably, it would be a compile-time check that can be used in a static assertion, and would not involve enumerating the constants the compiler should know or can compute.

    Read the article

  • double precision in Ada?

    - by yCalleecharan
    Hi, I'm very new to Ada and was trying to see if it offers double precision type. I see that we have float and Put( Integer'Image( Float'digits ) ); on my machine gives a value of 6, which is not enough for numerical computations. Does Ada has double and long double types as in C? Thanks a lot...

    Read the article

  • Precision error on matrix multiplication

    - by Wam
    Hello all, Coding a matrix multiplication in my program, I get precision errors (inaccurate results for large matrices). Here's my code. The current object has data stored in a flattened array, row after row. Other matrix B has data stored in a flattened array, column after column (so I can use pointer arithmetic). protected double[,] multiply (IMatrix B) { int columns = B.columns; int rows = Rows; int size = Columns; double[,] result = new double[rows,columns]; for (int row = 0; row < rows; row++) { for (int col = 0; col < columns; col++) { unsafe { fixed (float* ptrThis = data) fixed (float* ptrB = B.Data) { float* mePtr = ptrThis + row*rows; float* bPtr = ptrB + col*columns; double value = 0.0; for (int i = 0; i < size; i++) { value += *(mePtr++) * *(bPtr++); } result[row, col] = value; } } } } } Actually, the code is a bit more complicated : I do the multiply thing for several chunks (so instead of having i from 0 to size, I go from localStart to localStop), then sum up the resulting matrices. My problem : for a big matrix I get precision error : NUnit.Framework.AssertionException: Error at (0,1) expected: <6.4209571409444209E+18> but was: <6.4207619776304906E+18> Any idea ?

    Read the article

  • Loss of precision - int -> float or double

    - by stan
    I have an exam question i am revising for and the question is for 4 marks "In java we can assign a int to a double or a float". Will this ever loose infromation and why? I have put that because ints are normally of fixed length or size - the precision for sotring data is finite, where storing information in floating point can be infinite, essentially we loose infromation because of this Now i am a little sketchy as to whetehr or not i am hitting the right areas here. I very sure it will loose precision but i cant exactly put my finger on why. Can i getsome help please Thanks

    Read the article

  • Actual long double precision does not agree with std::numeric_limits

    - by dmb
    Working on Mac OS X 10.6.2, Intel, with i686-apple-darwin10-g++-4.2.1, and compiling with the -arch x86_64 flag, I just noticed that while... std::numeric_limits<long double>::max_exponent10 = 4932 ...as is expected, when a long double is actually set to a value with exponent greater than 308, it becomes inf--ie in reality it only has 64bit precision instead of 80bit. Also, sizeof() is showing long doubles to be 16 bytes, which they should be. Finally, using gives the same results as . Does anyone know where the discrepancy might be? long double x = 1e308, y = 1e309; cout << std::numeric_limits::max_exponent10 << endl; cout << x << '\t' << y << endl; cout << sizeof(x) << endl; gives 4932 1e+308 inf 16

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • How to rotate a set of points on z = 0 plane in 3-D, preserving pairwise distances?

    - by cagirici
    I have a set of points double n[] on the plane z = 0. And I have another set of points double[] m on the plane ax + by + cz + d = 0. Length of n is equal to length of m. Also, euclidean distance between n[i] and n[j] is equal to euclidean distance between m[i] and m[j]. I want to rotate n[] in 3-D, such that for all i, n[i] = m[i] would be true. In other words, I want to turn a plane into another plane, preserving the pairwise distances. Here's my code in java. But it does not help so much: double[] rotate(double[] point, double[] currentEquation, double[] targetEquation) { double[] currentNormal = new double[]{currentEquation[0], currentEquation[1], currentEquation[2]}; double[] targetNormal = new double[]{targetEquation[0], targetEquation[1], targetEquation[2]}; targetNormal = normalize(targetNormal); double angle = angleBetween(currentNormal, targetNormal); double[] axis = cross(targetNormal, currentNormal); double[][] R = getRotationMatrix(axis, angle); return rotated; } double[][] getRotationMatrix(double[] axis, double angle) { axis = normalize(axis); double cA = (float)Math.cos(angle); double sA = (float)Math.sin(angle); Matrix I = Matrix.identity(3, 3); Matrix a = new Matrix(axis, 3); Matrix aT = a.transpose(); Matrix a2 = a.times(aT); double[][] B = { {0, axis[2], -1*axis[1]}, {-1*axis[2], 0, axis[0]}, {axis[1], -1*axis[0], 0} }; Matrix A = new Matrix(B); Matrix R = I.minus(a2); R = R.times(cA); R = R.plus(a2); R = R.plus(A.times(sA)); return R.getArray(); } This is what I get. The point set on the right side is actually part of a point set on the left side. But they are on another plane. Here's a 2-D representation of what I try to do: There are two lines. The line on the bottom is the line I have. The line on the top is the target line. The distances are preserved (a, b and c). Edit: I have tried both methods written in answers. They both fail (I guess). Method of Martijn Courteaux public static double[][] getRotationMatrix(double[] v0, double[] v1, double[] v2, double[] u0, double[] u1, double[] u2) { RealMatrix M1 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*v0[0]}, {0,1,0,-1*v0[1]}, {0,0,1,0}, {0,0,0,1} }); RealMatrix M2 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*u0[0]}, {0,1,0,-1*u0[1]}, {0,0,1,-1*u0[2]}, {0,0,0,1} }); Vector3D imX = new Vector3D((v0[1] - v1[1])*(u2[0] - u0[0]) - (v0[1] - v2[1])*(u1[0] - u0[0]), (v0[1] - v1[1])*(u2[1] - u0[1]) - (v0[1] - v2[1])*(u1[1] - u0[1]), (v0[1] - v1[1])*(u2[2] - u0[2]) - (v0[1] - v2[1])*(u1[2] - u0[2]) ).scalarMultiply(1/((v0[0]*v1[1])-(v0[0]*v2[1])-(v1[0]*v0[1])+(v1[0]*v2[1])+(v2[0]*v0[1])-(v2[0]*v1[1]))); Vector3D imZ = new Vector3D(findEquation(u0, u1, u2)); Vector3D imY = Vector3D.crossProduct(imZ, imX); double[] imXn = imX.normalize().toArray(); double[] imYn = imY.normalize().toArray(); double[] imZn = imZ.normalize().toArray(); RealMatrix M = new Array2DRowRealMatrix(new double[][]{ {imXn[0], imXn[1], imXn[2], 0}, {imYn[0], imYn[1], imYn[2], 0}, {imZn[0], imZn[1], imZn[2], 0}, {0, 0, 0, 1} }); RealMatrix rotationMatrix = MatrixUtils.inverse(M2).multiply(M).multiply(M1); return rotationMatrix.getData(); } Method of Sam Hocevar static double[][] makeMatrix(double[] p1, double[] p2, double[] p3) { double[] v1 = normalize(difference(p2,p1)); double[] v2 = normalize(cross(difference(p3,p1), difference(p2,p1))); double[] v3 = cross(v1, v2); double[][] M = { { v1[0], v2[0], v3[0], p1[0] }, { v1[1], v2[1], v3[1], p1[1] }, { v1[2], v2[2], v3[2], p1[2] }, { 0.0, 0.0, 0.0, 1.0 } }; return M; } static double[][] createTransform(double[] A, double[] B, double[] C, double[] P, double[] Q, double[] R) { RealMatrix c = new Array2DRowRealMatrix(makeMatrix(A,B,C)); RealMatrix t = new Array2DRowRealMatrix(makeMatrix(P,Q,R)); return MatrixUtils.inverse(c).multiply(t).getData(); } The blue points are the calculated points. The black lines indicate the offset from the real position.

    Read the article

  • dividing double by double gives weird results - Java

    - by Aly
    Hi, I am trying to do the following 33.33333333333333/100.0 to get 0.333333333333333 however when I run System.out.println(33.33333333333333/100.0); I get 0.33333333333333326 as the output, similarly when I run System.out.println(33.33333333333333/1000.0); I get 0.033333333333333326 as the output. Does anyone know why, and how I can get the correct value (without loss of decimal places). Thanks

    Read the article

  • Preoblem with Precision floating point operation in C

    - by Microkernel
    Hi Guys, For one of my course project I started implementing "Naive Bayesian classifier" in C. My project is to implement a document classifier application (especially Spam) using huge training data. Now I have problem implementing the algorithm because of the limitations in the C's datatype. ( Algorithm I am using is given here, http://en.wikipedia.org/wiki/Bayesian_spam_filtering ) PROBLEM STATEMENT: The algorithm involves taking each word in a document and calculating probability of it being spam word. If p1, p2 p3 .... pn are probabilities of word-1, 2, 3 ... n. The probability of doc being spam or not is calculated using Here, probability value can be very easily around 0.01. So even if I use datatype "double" my calculation will go for a toss. To confirm this I wrote a sample code given below. #define PROBABILITY_OF_UNLIKELY_SPAM_WORD (0.01) #define PROBABILITY_OF_MOSTLY_SPAM_WORD (0.99) int main() { int index; long double numerator = 1.0; long double denom1 = 1.0, denom2 = 1.0; long double doc_spam_prob; /* Simulating FEW unlikely spam words */ for(index = 0; index < 162; index++) { numerator = numerator*(long double)PROBABILITY_OF_UNLIKELY_SPAM_WORD; denom2 = denom2*(long double)PROBABILITY_OF_UNLIKELY_SPAM_WORD; denom1 = denom1*(long double)(1 - PROBABILITY_OF_UNLIKELY_SPAM_WORD); } /* Simulating lot of mostly definite spam words */ for (index = 0; index < 1000; index++) { numerator = numerator*(long double)PROBABILITY_OF_MOSTLY_SPAM_WORD; denom2 = denom2*(long double)PROBABILITY_OF_MOSTLY_SPAM_WORD; denom1 = denom1*(long double)(1- PROBABILITY_OF_MOSTLY_SPAM_WORD); } doc_spam_prob= (numerator/(denom1+denom2)); return 0; } I tried Float, double and even long double datatypes but still same problem. Hence, say in a 100K words document I am analyzing, if just 162 words are having 1% spam probability and remaining 99838 are conspicuously spam words, then still my app will say it as Not Spam doc because of Precision error (as numerator easily goes to ZERO)!!!. This is the first time I am hitting such issue. So how exactly should this problem be tackled?

    Read the article

  • Problem with Precision floating point operation in C

    - by Microkernel
    Hi Guys, For one of my course project I started implementing "Naive Bayesian classifier" in C. My project is to implement a document classifier application (especially Spam) using huge training data. Now I have problem implementing the algorithm because of the limitations in the C's datatype. ( Algorithm I am using is given here, http://en.wikipedia.org/wiki/Bayesian_spam_filtering ) PROBLEM STATEMENT: The algorithm involves taking each word in a document and calculating probability of it being spam word. If p1, p2 p3 .... pn are probabilities of word-1, 2, 3 ... n. The probability of doc being spam or not is calculated using Here, probability value can be very easily around 0.01. So even if I use datatype "double" my calculation will go for a toss. To confirm this I wrote a sample code given below. #define PROBABILITY_OF_UNLIKELY_SPAM_WORD (0.01) #define PROBABILITY_OF_MOSTLY_SPAM_WORD (0.99) int main() { int index; long double numerator = 1.0; long double denom1 = 1.0, denom2 = 1.0; long double doc_spam_prob; /* Simulating FEW unlikely spam words */ for(index = 0; index < 162; index++) { numerator = numerator*(long double)PROBABILITY_OF_UNLIKELY_SPAM_WORD; denom2 = denom2*(long double)PROBABILITY_OF_UNLIKELY_SPAM_WORD; denom1 = denom1*(long double)(1 - PROBABILITY_OF_UNLIKELY_SPAM_WORD); } /* Simulating lot of mostly definite spam words */ for (index = 0; index < 1000; index++) { numerator = numerator*(long double)PROBABILITY_OF_MOSTLY_SPAM_WORD; denom2 = denom2*(long double)PROBABILITY_OF_MOSTLY_SPAM_WORD; denom1 = denom1*(long double)(1- PROBABILITY_OF_MOSTLY_SPAM_WORD); } doc_spam_prob= (numerator/(denom1+denom2)); return 0; } I tried Float, double and even long double datatypes but still same problem. Hence, say in a 100K words document I am analyzing, if just 162 words are having 1% spam probability and remaining 99838 are conspicuously spam words, then still my app will say it as Not Spam doc because of Precision error (as numerator easily goes to ZERO)!!!. This is the first time I am hitting such issue. So how exactly should this problem be tackled?

    Read the article

  • Why do you need float/double?

    - by acidzombie24
    I was watching http://www.joelonsoftware.com/items/2011/06/27.html and laughed at Jon Skeet joke about 0.3 not being 0.3. I personally never had problems with floats/decimals/doubles but then I remember I learned 6502 very early and never needed floats in most of my programs. The only time I used it was for graphics and math where inaccurate numbers were ok and the output was for the screen and not to be stored (in a db, file) or dependent on. My question is, where are places were you typically use floats/decimals/double? So I know to watch out for these gotchas. With money I use longs and store values by the cent, for speed of an object in a game I add ints and divide (or bitshift) the value to know if I need to move a pixel or not. (I made object move in the 6502 days, we had no divide nor floats but had shifts). So I was mostly curious.

    Read the article

  • how to double buffer in multiple classes with java

    - by kdavis8
    I am creating a Java 2D video game. I can load graphics just fine, but when it gets into double buffering I have issues. My source code package myPackage; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; public class GameView extends JFrame { private BufferedImage backbuffer; private Graphics2D g2d; public GameView() { setBounds(0, 0, 500, 500); setVisible(true); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); backbuffer = new BufferedImage(getHeight(), getWidth(), BufferedImage.TYPE_INT_BGR); g2d = backbuffer.createGraphics(); Toolkit tk = Toolkit.getDefaultToolkit(); Image img = tk.getImage(this.getClass().getResource("cage.png")); g2d.setColor(Color.red); //g2d.drawString("Hello",100,100); g2d.drawImage(img, 100, 100, this); repaint(); } public static void main(String args[]) { new GameView(); } public void paint(Graphics g) { g2d = (Graphics2D)g; g2d.drawImage(backbuffer, 0, 0, this); } }

    Read the article

  • Thread safe double buffering

    - by kdavis8
    I am trying to implement a draw map method that will draw the tiled image across the surface of the component. I'm having issue with this code. The double buffering does not seem to be working, because the sprite flickers like crazy; my source code: package myPackage; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; public class GameView extends JFrame implements Runnable { public BufferedImage backbuffer; public Graphics2D g2d; public Image img; Thread gameloop; Scene scene; public GameView() { super("Game View"); setSize(600, 600); setVisible(true); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); backbuffer = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_RGB); g2d = backbuffer.createGraphics(); Toolkit tk = Toolkit.getDefaultToolkit(); img = tk.getImage(this.getClass().getResource("cage.png")); scene = new Scene(g2d, this); gameloop = new Thread(this); gameloop.start(); } public static void main(String args[]) { new GameView(); } public void paint(Graphics g) { g.drawImage(backbuffer, 0, 0, this); repaint(); } @Override public void run() { // TODO Auto-generated method stub Thread t = Thread.currentThread(); while (t == gameloop) { scene.getScene("dirtmap"); g2d.drawImage(img, 80, 80,this![enter image description here][1]); } } private void drawScene(String string) { // TODO Auto-generated method stub // g2d.setColor(Color.white); // g2d.fillRect(0, 0, getWidth(), getHeight()); scene.getScene(string); } } package myPackage; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; public class Scene { Graphics g2d; Component c; boolean loaded = false; public Scene(Graphics2D gr, Component co) { g2d = gr; c = co; } public void getScene(String mapName) { Toolkit tk = Toolkit.getDefaultToolkit(); Image tile = tk.getImage(this.getClass().getResource("dirt.png")); // g2d.setColor(Color.red); for (int y = 0; y <= 18; y++) { for (int x = 0; x <= 18; x += 1) { g2d.drawImage(tile, x * 32, y * 32, c); } } loaded = true; } }

    Read the article

  • Is there a Math.atan2 substitute for j2ME? Blackberry development

    - by Kai
    I have a wide variety of locations stored in my persistent object that contain latitudes and longitudes in double(43.7389, 7.42577) format. I need to be able to grab the user's latitude and longitude and select all items within, say 1 mile. Walking distance. I have done this in PHP so I snagged my PHP code and transferred it to Java, where everything plugged in fine until I figured out J2ME doesn't support atan2(double, double). So, after some searching, I find a small snippet of code that is supposed to be a substitute for atan2. Here is the code: public double atan2(double y, double x) { double coeff_1 = Math.PI / 4d; double coeff_2 = 3d * coeff_1; double abs_y = Math.abs(y)+ 1e-10f; double r, angle; if (x >= 0d) { r = (x - abs_y) / (x + abs_y); angle = coeff_1; } else { r = (x + abs_y) / (abs_y - x); angle = coeff_2; } angle += (0.1963f * r * r - 0.9817f) * r; return y < 0.0f ? -angle : angle; } I am getting odd results from this. My min and max latitude and longitudes are coming back as incredibly low numbers that can't possibly be right. Like 0.003785746 when I am expecting something closer to the original lat and long values (43.7389, 7.42577). Since I am no master of advanced math, I don't really know what to look for here. Perhaps someone else may have an answer. Here is my complete code: package store_finder; import java.util.Vector; import javax.microedition.location.Criteria; import javax.microedition.location.Location; import javax.microedition.location.LocationException; import javax.microedition.location.LocationListener; import javax.microedition.location.LocationProvider; import javax.microedition.location.QualifiedCoordinates; import net.rim.blackberry.api.invoke.Invoke; import net.rim.blackberry.api.invoke.MapsArguments; import net.rim.device.api.system.Bitmap; import net.rim.device.api.system.Display; import net.rim.device.api.ui.Color; import net.rim.device.api.ui.Field; import net.rim.device.api.ui.Graphics; import net.rim.device.api.ui.Manager; import net.rim.device.api.ui.component.BitmapField; import net.rim.device.api.ui.component.RichTextField; import net.rim.device.api.ui.component.SeparatorField; import net.rim.device.api.ui.container.HorizontalFieldManager; import net.rim.device.api.ui.container.MainScreen; import net.rim.device.api.ui.container.VerticalFieldManager; public class nearBy extends MainScreen { private HorizontalFieldManager _top; private VerticalFieldManager _middle; private int horizontalOffset; private final static long animationTime = 300; private long animationStart = 0; private double latitude = 43.7389; private double longitude = 7.42577; private int _interval = -1; private double max_lat; private double min_lat; private double max_lon; private double min_lon; private double latitude_in_degrees; private double longitude_in_degrees; public nearBy() { super(); horizontalOffset = Display.getWidth(); _top = new HorizontalFieldManager(Manager.USE_ALL_WIDTH | Field.FIELD_HCENTER) { public void paint(Graphics gr) { Bitmap bg = Bitmap.getBitmapResource("bg.png"); gr.drawBitmap(0, 0, Display.getWidth(), Display.getHeight(), bg, 0, 0); subpaint(gr); } }; _middle = new VerticalFieldManager() { public void paint(Graphics graphics) { graphics.setBackgroundColor(0xFFFFFF); graphics.setColor(Color.BLACK); graphics.clear(); super.paint(graphics); } protected void sublayout(int maxWidth, int maxHeight) { int displayWidth = Display.getWidth(); int displayHeight = Display.getHeight(); super.sublayout( displayWidth, displayHeight); setExtent( displayWidth, displayHeight); } }; add(_top); add(_middle); Bitmap lol = Bitmap.getBitmapResource("logo.png"); BitmapField lolfield = new BitmapField(lol); _top.add(lolfield); Criteria cr= new Criteria(); cr.setCostAllowed(true); cr.setPreferredResponseTime(60); cr.setHorizontalAccuracy(5000); cr.setVerticalAccuracy(5000); cr.setAltitudeRequired(true); cr.isSpeedAndCourseRequired(); cr.isAddressInfoRequired(); try{ LocationProvider lp = LocationProvider.getInstance(cr); if( lp!=null ){ lp.setLocationListener(new LocationListenerImpl(), _interval, 1, 1); } } catch(LocationException le) { add(new RichTextField("Location exception "+le)); } //_middle.add(new RichTextField("this is a map " + Double.toString(latitude) + " " + Double.toString(longitude))); int lat = (int) (latitude * 100000); int lon = (int) (longitude * 100000); String document = "<location-document>" + "<location lon='" + lon + "' lat='" + lat + "' label='You are here' description='You' zoom='0' />" + "<location lon='742733' lat='4373930' label='Hotel de Paris' description='Hotel de Paris' address='Palace du Casino' postalCode='98000' phone='37798063000' zoom='0' />" + "</location-document>"; // Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, new MapsArguments( MapsArguments.ARG_LOCATION_DOCUMENT, document)); _middle.add(new SeparatorField()); surroundingVenues(); _middle.add(new RichTextField("max lat: " + max_lat)); _middle.add(new RichTextField("min lat: " + min_lat)); _middle.add(new RichTextField("max lon: " + max_lon)); _middle.add(new RichTextField("min lon: " + min_lon)); } private void surroundingVenues() { double point_1_latitude_in_degrees = latitude; double point_1_longitude_in_degrees= longitude; // diagonal distance + error margin double distance_in_miles = (5 * 1.90359441) + 10; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, 45); double lat_limit_1 = latitude_in_degrees; double lon_limit_1 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, 135); double lat_limit_2 = latitude_in_degrees; double lon_limit_2 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, -135); double lat_limit_3 = latitude_in_degrees; double lon_limit_3 = longitude_in_degrees; getCords (point_1_latitude_in_degrees, point_1_longitude_in_degrees, distance_in_miles, -45); double lat_limit_4 = latitude_in_degrees; double lon_limit_4 = longitude_in_degrees; double mx1 = Math.max(lat_limit_1, lat_limit_2); double mx2 = Math.max(lat_limit_3, lat_limit_4); max_lat = Math.max(mx1, mx2); double mm1 = Math.min(lat_limit_1, lat_limit_2); double mm2 = Math.min(lat_limit_3, lat_limit_4); min_lat = Math.max(mm1, mm2); double mlon1 = Math.max(lon_limit_1, lon_limit_2); double mlon2 = Math.max(lon_limit_3, lon_limit_4); max_lon = Math.max(mlon1, mlon2); double minl1 = Math.min(lon_limit_1, lon_limit_2); double minl2 = Math.min(lon_limit_3, lon_limit_4); min_lon = Math.max(minl1, minl2); //$qry = "SELECT DISTINCT zip.zipcode, zip.latitude, zip.longitude, sg_stores.* FROM zip JOIN store_finder AS sg_stores ON sg_stores.zip=zip.zipcode WHERE zip.latitude<=$lat_limit_max AND zip.latitude>=$lat_limit_min AND zip.longitude<=$lon_limit_max AND zip.longitude>=$lon_limit_min"; } private void getCords(double point_1_latitude, double point_1_longitude, double distance, int degs) { double m_EquatorialRadiusInMeters = 6366564.86; double m_Flattening=0; double distance_in_meters = distance * 1609.344 ; double direction_in_radians = Math.toRadians( degs ); double eps = 0.000000000000005; double r = 1.0 - m_Flattening; double point_1_latitude_in_radians = Math.toRadians( point_1_latitude ); double point_1_longitude_in_radians = Math.toRadians( point_1_longitude ); double tangent_u = (r * Math.sin( point_1_latitude_in_radians ) ) / Math.cos( point_1_latitude_in_radians ); double sine_of_direction = Math.sin( direction_in_radians ); double cosine_of_direction = Math.cos( direction_in_radians ); double heading_from_point_2_to_point_1_in_radians = 0.0; if ( cosine_of_direction != 0.0 ) { heading_from_point_2_to_point_1_in_radians = atan2( tangent_u, cosine_of_direction ) * 2.0; } double cu = 1.0 / Math.sqrt( ( tangent_u * tangent_u ) + 1.0 ); double su = tangent_u * cu; double sa = cu * sine_of_direction; double c2a = ( (-sa) * sa ) + 1.0; double x= Math.sqrt( ( ( ( 1.0 /r /r ) - 1.0 ) * c2a ) + 1.0 ) + 1.0; x= (x- 2.0 ) / x; double c= 1.0 - x; c= ( ( (x * x) / 4.0 ) + 1.0 ) / c; double d= ( ( 0.375 * (x * x) ) -1.0 ) * x; tangent_u = distance_in_meters /r / m_EquatorialRadiusInMeters /c; double y= tangent_u; boolean exit_loop = false; double cosine_of_y = 0.0; double cz = 0.0; double e = 0.0; double term_1 = 0.0; double term_2 = 0.0; double term_3 = 0.0; double sine_of_y = 0.0; while( exit_loop != true ) { sine_of_y = Math.sin(y); cosine_of_y = Math.cos(y); cz = Math.cos( heading_from_point_2_to_point_1_in_radians + y); e = (cz * cz * 2.0 ) - 1.0; c = y; x = e * cosine_of_y; y = (e + e) - 1.0; term_1 = ( sine_of_y * sine_of_y * 4.0 ) - 3.0; term_2 = ( ( term_1 * y * cz * d) / 6.0 ) + x; term_3 = ( ( term_2 * d) / 4.0 ) -cz; y= ( term_3 * sine_of_y * d) + tangent_u; if ( Math.abs(y - c) > eps ) { exit_loop = false; } else { exit_loop = true; } } heading_from_point_2_to_point_1_in_radians = ( cu * cosine_of_y * cosine_of_direction ) - ( su * sine_of_y ); c = r * Math.sqrt( ( sa * sa ) + ( heading_from_point_2_to_point_1_in_radians * heading_from_point_2_to_point_1_in_radians ) ); d = ( su * cosine_of_y ) + ( cu * sine_of_y * cosine_of_direction ); double point_2_latitude_in_radians = atan2(d, c); c = ( cu * cosine_of_y ) - ( su * sine_of_y * cosine_of_direction ); x = atan2( sine_of_y * sine_of_direction, c); c = ( ( ( ( ( -3.0 * c2a ) + 4.0 ) * m_Flattening ) + 4.0 ) * c2a * m_Flattening ) / 16.0; d = ( ( ( (e * cosine_of_y * c) + cz ) * sine_of_y * c) + y) * sa; double point_2_longitude_in_radians = ( point_1_longitude_in_radians + x) - ( ( 1.0 - c) * d * m_Flattening ); heading_from_point_2_to_point_1_in_radians = atan2( sa, heading_from_point_2_to_point_1_in_radians ) + Math.PI; latitude_in_degrees = Math.toRadians( point_2_latitude_in_radians ); longitude_in_degrees = Math.toRadians( point_2_longitude_in_radians ); } public double atan2(double y, double x) { double coeff_1 = Math.PI / 4d; double coeff_2 = 3d * coeff_1; double abs_y = Math.abs(y)+ 1e-10f; double r, angle; if (x >= 0d) { r = (x - abs_y) / (x + abs_y); angle = coeff_1; } else { r = (x + abs_y) / (abs_y - x); angle = coeff_2; } angle += (0.1963f * r * r - 0.9817f) * r; return y < 0.0f ? -angle : angle; } private Vector fetchVenues(double max_lat, double min_lat, double max_lon, double min_lon) { return new Vector(); } private class LocationListenerImpl implements LocationListener { public void locationUpdated(LocationProvider provider, Location location) { if(location.isValid()) { nearBy.this.longitude = location.getQualifiedCoordinates().getLongitude(); nearBy.this.latitude = location.getQualifiedCoordinates().getLatitude(); //double altitude = location.getQualifiedCoordinates().getAltitude(); //float speed = location.getSpeed(); } } public void providerStateChanged(LocationProvider provider, int newState) { // MUST implement this. Should probably do something useful with it as well. } } } please excuse the mess. I have the user lat long hard coded since I do not have GPS functional yet. You can see the SQL query commented out to know how I plan on using the min and max lat and long values. Any help is appreciated. Thanks

    Read the article

  • How many double numbers are there between 0.0 and 1.0?

    - by polygenelubricants
    This is something that's been on my mind for years, but I never took the time to ask before. Many (pseudo) random number generators generate a random number between 0.0 and 1.0. Mathematically there are infinite numbers in this range, but double is a floating point number, and therefore has a finite precision. So the questions are: Just how many double numbers are there between 0.0 and 1.0? Are there just as many numbers between 1 and 2? Between 100 and 101? Between 10^100 and 10^100+1? Note: if it makes a difference, I'm interested in Java's definition of double in particular.

    Read the article

  • Why does multiplying a double by -1 not give the negative of the current answer

    - by Ankur
    I am trying to multiply a double value by -1 to get the negative value. It continues to give me a positive value double man = Double.parseDouble(mantissa); double exp; if(sign.equals("plus")){ exp = Double.parseDouble(exponent); } else { exp = Double.parseDouble(exponent); exp = exp*-1; } System.out.println(man+" - "+sign+" - "+exp); The printed result is 13.93 - minus - 2.0 which is correct except that 2.0 should be -2.0

    Read the article

  • Required Working Precision for the BBP Algorithm?

    - by brainfsck
    Hello, I'm looking to compute the nth digit of Pi in a low-memory environment. As I don't have decimals available to me, this integer-only BBP algorithm in Python has been a great starting point. I only need to calculate one digit of Pi at a time. How can I determine the lowest I can set D, the "number of digits of working precision"? D=4 gives me many correct digits, but a few digits will be off by one. For example, computing digit 393 with precision of 4 gives me 0xafda, from which I extract the digit 0xa. However, the correct digit is 0xb. No matter how high I set D, it seems that testing a sufficient number of digits finds an one where the formula returns an incorrect value. I've tried upping the precision when the digit is "close" to another, e.g. 0x3fff or 0x1000, but cannot find any good definition of "close"; for instance, calculating at digit 9798 gives me 0xcde6 , which is not very close to 0xd000, but the correct digit is 0xd. Can anyone help me figure out how much working precision is needed to calculate a given digit using this algorithm? Thank you,

    Read the article

  • BigDecimal precision not persisted with javax.persistence annotations

    - by dkaczynski
    I am using the javax.persistence API and Hibernate to create annotations and persist entities and their attributes in an Oracle 11g Express database. I have the following attribute in an entity: @Column(precision = 12, scale = 9) private BigDecimal weightedScore; The goal is to persist a decimal value with a maximum of 12 digits and a maximum of 9 of those digits to the right of the decimal place. After calculating the weightedScore, the result is 0.1234, but once I commit the entity with the Oracle database, the value displays as 0.12. I can see this by either by using an EntityManager object to query the entry or by viewing it directly in the Oracle Application Express (Apex) interface in a web browser. How should I annotate my BigDecimal attribute so that the precision is persisted correctly? Note: We use an in-memory HSQL database to run our unit tests, and it does not experience the issue with the lack of precision, with or without the @Column annotation.

    Read the article

  • negative precision values in ostream

    - by daz-fuller
    This is more of a question of curiosity but does anyone know how negative precision values are handled in C++? For example: double pi = 3.14159265; cout.precision(-10); cout.setf(ios::fixed, ios::floatfield); cout << pi << endl; I've tried this out and using GCC and it seems that the precision value is ignored but I was curious if there is some official line on what happens in this situation.

    Read the article

  • Why is Double.Parse so slow?

    - by alexhildyard
    I was recently investigating a bottleneck in one of my applications, which read a CSV file from disk using a TextReader a line at a time, split the tokens, called Double.Parse on each one, then shunted the results into an object list. I was surprised to find it was actually the Double.Parse which seemed to be taking up most of the time.Googling turned up this, which is a little unfocused in places but throws out some excellent ideas:It makes more sense to work with binary format directly, rather than coerce strings into doublesThere is a significant performance improvement in composing doubles directly from the byte stream via long intermediariesString.Split is inefficient on fixed length recordsIn fact it turned out that my problem was more insidious and also more mundane -- a simple case of bad data in, bad data out. Since I had been serialising my Doubles as strings, when I inadvertently divided by zero and produced a "NaN", this of course was serialised as well without error. And because I was reading in using Double.Parse, these "NaN" fields were also (correctly) populating real Double objects without error. The issue is that Double.Parse("NaN") is incredibly slow. In fact, it is of the order of 2000x slower than parsing a valid double. For example, the code below gave me results of 357ms to parse 1000 NaNs, versus 15ms to parse 100,000 valid doubles.            const int invalid_iterations = 1000;            const int valid_iterations = invalid_iterations * 100;            const string invalid_string = "NaN";            const string valid_string = "3.14159265";            DateTime start = DateTime.Now;                        for (int i = 0; i < invalid_iterations; i++)            {                double invalid_double = Double.Parse(invalid_string);            }            Console.WriteLine(String.Format("{0} iterations of invalid double, time taken (ms): {1}",                invalid_iterations,                ((TimeSpan)DateTime.Now.Subtract(start)).Milliseconds            ));            start = DateTime.Now;            for (int i = 0; i < valid_iterations; i++)            {                double valid_double = Double.Parse(valid_string);            }            Console.WriteLine(String.Format("{0} iterations of valid double, time taken (ms): {1}",                valid_iterations,                ((TimeSpan)DateTime.Now.Subtract(start)).Milliseconds            )); I think the moral is to look at the context -- specifically the data -- as well as the code itself. Once I had corrected my data, the performance of Double.Parse was perfectly acceptable, and while clearly it could have been improved, it was now sufficient to my needs.

    Read the article

  • Delphi - Frac function losing precision.

    - by PeteDaMeat
    I have a TDateTime variable which is assigned a value at runtime of 40510.416667. When I extract the time to a TTime type variable using the Frac function, it sets it to 0.41666666666. Why has it changed the precision of the value and is there a workround to retain the precision from the original value ie. to set it to 0.416667.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >