Search Results

Search found 38 results on 2 pages for 'iequalitycomparer'.

Page 1/2 | 1 2  | Next Page >

  • Remove duplicates from DataTable and custom IEqualityComparer<DataRow>

    - by abatishchev
    How have I to implement IEqualityComparer<DataRow> to remove duplicates rows from a DataTable with next structure: ID primary key, col_1, col_2, col_3, col_4 The default comparer doesn't work because each row has it's own, unique primary key. How to implement IEqualityComparer<DataRow> that will skip primary key and compare only data remained. I have something like this: public class DataRowComparer : IEqualityComparer<DataRow> { public bool Equals(DataRow x, DataRow y) { return x.ItemArray.Except(new object[] { x[x.Table.PrimaryKey[0].ColumnName] }) == y.ItemArray.Except(new object[] { y[y.Table.PrimaryKey[0].ColumnName] }); } public int GetHashCode(DataRow obj) { return obj.ToString().GetHashCode(); } } and public static DataTable RemoveDuplicates(this DataTable table) { return (table.Rows.Count > 0) ? table.AsEnumerable().Distinct(new DataRowComparer()).CopyToDataTable() : table; } but it calls only GetHashCode() and doesn't call Equals()

    Read the article

  • linq Except and custom IEqualityComparer

    - by Joe
    I'm trying to implement a custom comparer on two lists of strings and use the .Except() linq method to get those that aren't one one of the lists. The reason I'm doing a custom comparer is because I need to do a "fuzzy" compare, i.e. one string on one list could be embedded inside a string on the other list. I've made the following comparer ` public class ItemFuzzyMatchComparer : IEqualityComparer { bool IEqualityComparer<string>.Equals(string x, string y) { return (x.Contains(y) || y.Contains(x)); } int IEqualityComparer<string>.GetHashCode(string obj) { if (Object.ReferenceEquals(obj, null)) return 0; return obj.GetHashCode(); } } ` When I debug, the only breakpoint that hits is in the GetHashCode() method. The Equals() never gets touched. Any ideas?

    Read the article

  • Join + IEqualityComparer<T> and HashCode

    - by Jesus Rodriguez
    Im writing my own LINQ reference but Im getting troubles with some of the more complicated operators implementations. There is a Join implementation that takes a IEqualityComparer Im getting just crazy. Im trying to understand it first before I write (obviously) Image this two lists: List<string> initials = new List<string> {"A", "B", "C", "D", "E"}; List<string> words = new List<string> {"Ant", "Crawl", "Pig", "Boat", "Elephant", "Arc"}; Nothing weird here. I want to join both lists by the Initial, something like: Initial=A Word=Ant Initial=A Word=Arc Initial=B Word=Boat ... I need a comparator, I wrote this: public class InitialComparator : IEqualityComparer<string> { public bool Equals(string x, string y) { return x.StartsWith(y); } public int GetHashCode(string obj) { return obj[0].GetHashCode(); } } The Join itself: var blah = initials.Join(words, initial => initial, word => word, (initial, word) => new {Initial = initial, Word = word}, new InitialComparator()); It's the first time Im using HashCodes, after a good session of debugging I see that every word go to the comparator and look at its HashCode, if another word has the same HashCode it calls equals. Since I want to compare just the initial I though that I just need the first letter Hash (Am I wrong?) The thing is that this is not working correctly. Its says that "Ant" and "Arc" are equals, Ok, its comparing every word in the same list or not, But it adds only the last word it finds, in this case Arc, ignoring Ant and Ant is equals to "A" too... If I put "Ant" and "Ant" it add both. In short, What is the way of doing something like that? I know that Im doing something wrong. Thank you.

    Read the article

  • Generic IEqualityComparer

    - by Nettuce
    A generic equality comparer that takes a property expression or a comparison Func public class GenericComparer<T> : IEqualityComparer<T> where T : class         {             private readonly Func<T, T, bool> comparerExpression;             private readonly string propertyName;             public GenericComparer(Func<T, T, bool> comparerExpression)             {                 this.comparerExpression = comparerExpression;             }             public GenericComparer(Expression<Func<T, object>> propertyExpression)             {                 propertyName = (propertyExpression.Body is UnaryExpression ? (MemberExpression)((UnaryExpression)propertyExpression.Body).Operand : (MemberExpression)propertyExpression.Body).Member.Name;             }             public bool Equals(T x, T y)             {                 return comparerExpression == null ? x.GetType().GetProperty(propertyName).GetValue(x, null).Equals(y.GetType().GetProperty(propertyName).GetValue(y, null)) : comparerExpression.Invoke(x, y);             }             public int GetHashCode(T obj)             {                 return obj.ToString().GetHashCode();             }         }

    Read the article

  • How to get an object from a list based upon IEqualityComparer<T>

    - by Greg
    The Compare method in Linq lets you find by an IEqualityComparer, but I can't find a counterpart method that allows you retrieve an item by the same comparer. Is this really the best way to do it? MyItem myFinderItem = new MyItem(keyField1, keyField2); if (myList.Contains(myFinderItem, new MyEqualityComparer())) { MyItem myRealItem = myList.Single(item => new MyEqualityComparer().Equals(item , myFinderItem)); } (I'm sharing the usage of the IEqualityComaprer with a call to the Except Linq method and I'd like to maintain a single source for equality comparisons)

    Read the article

  • Equality Comparison with Multiple Instances/IEqualityComparer problems in LINQ

    - by Stacey
    This is similar to my last question; but from a different angle. http://stackoverflow.com/questions/2792393/see-if-item-exists-once-in-enumerable-linq Given the following set of items, and lists containing them... Item 1 Item 2 Item 3 Item 4 Item 5 class Item { string Name { get; set; } } List<Item> available = new List<Item>() { Item 1 Item 1 Item 2 Item 3 Item 5 } List<Item> selected = new List<Item>() { Item 1 Item 2 Item 3 } I need to make a third List that has everything from "available", except what is in "selected". However 'Item 1' is in 'available' twice, but only in 'selected' once. Since they are instances of the same item, I am having trouble figuring out the appropriate logic to accomodate this. The final array should look like... List<Item> selectable = new List<Item>() { Item 1 Item5 }

    Read the article

  • How to use Object.GetHashCode() on a type that overrides GetHashCode()

    - by Jimmy
    Hi, I have a class A that implements IEquatable<, using its fields (say, A.b and A.c) for implementing/overriding Equals() and overriding GetHashCode(), and everything works fine, 99% of the time. Class A is part of a hierarchy (class B, C) that all inherit from interface D; they can all be stored together in a dictionary Dictionary, thus it's convenient when they all carry their own default Equals()/GetHashCode(). However, while constructing A I sometime need to do some work to get the values for A.b and A.c; while that's happening, I want to store a reference to the instance that's being built. In that case, I don't want to use the default Equals()/GetHashCode() overrides provided by A. Thus, I was thinking of implementing a ReferenceEqualityComparer, that's meant to force the use of Object's Equals()/GetHashCode(): private class ReferenceEqualityComparer<T> : IEqualityComparer<T> { #region IEqualityComparer<T> Members public bool Equals(T x, T y) { return System.Object.ReferenceEquals(x, y); } public int GetHashCode(T obj) { // what goes here? I want to do something like System.Object.GetHashCode(obj); } #endregion } The question is, since A overrides Object.GetHashCode(), how can I (outside of A) call Object.GetHashCode() for an instance of A? One way of course would be for A to not implement IEquatable< and always supply an IEqualityComparer< to any dictionary that I create, but I'm hoping for a different answer. Thanks

    Read the article

  • Comparing two List<MyClass> in C#

    - by Matt
    I have a class called MyClass This class inherits IEquatable and implements equals the way I need it to. (Meaning: when I compare two MyClass tyupe objects individually in code, it works) I then create two List: var ListA = new List<MyClass>(); var ListB = new List<MyClass>(); // Add distinct objects that are equal to one another to // ListA and ListB in such a way that they are not added in the same order. When I go to compare ListA and ListB, should I get true? ListA.Equals(ListB)==true; //???

    Read the article

  • Checking instance of non-class constrained type parameter for null in generic method

    - by casperOne
    I currently have a generic method where I want to do some validation on the parameters before working on them. Specifically, if the instance of the type parameter T is a reference type, I want to check to see if it's null and throw an ArgumentNullException if it's null. Something along the lines of: // This can be a method on a generic class, it does not matter. public void DoSomething<T>(T instance) { if (instance == null) throw new ArgumentNullException("instance"); Note, I do not wish to constrain my type parameter using the class constraint. I thought I could use Marc Gravell's answer on "How do I compare a generic type to its default value?", and use the EqualityComparer<T> class like so: static void DoSomething<T>(T instance) { if (EqualityComparer<T>.Default.Equals(instance, null)) throw new ArgumentNullException("instance"); But it gives a very ambiguous error on the call to Equals: Member 'object.Equals(object, object)' cannot be accessed with an instance reference; qualify it with a type name instead How can I check an instance of T against null when T is not constrained on being a value or reference type?

    Read the article

  • List.Contains is not working as hoped

    - by VoodooChild
    If I have an object of type MyBull and a List<MyBull>: // Just an example MyBull x = getMeTheObjectWithIdFromDB(9); orig.add(x); // Again same? data object MyBull y = getMeTheObjectWithIdFromDB(9); Why is this false then? // This is false, even though all the properties // of x and y are the same. orig.Contains<MyBull>(y);

    Read the article

  • Using LINQ Distinct: With an Example on ASP.NET MVC SelectListItem

    - by Joe Mayo
    One of the things that might be surprising in the LINQ Distinct standard query operator is that it doesn’t automatically work properly on custom classes. There are reasons for this, which I’ll explain shortly. The example I’ll use in this post focuses on pulling a unique list of names to load into a drop-down list. I’ll explain the sample application, show you typical first shot at Distinct, explain why it won’t work as you expect, and then demonstrate a solution to make Distinct work with any custom class. The technologies I’m using are  LINQ to Twitter, LINQ to Objects, Telerik Extensions for ASP.NET MVC, ASP.NET MVC 2, and Visual Studio 2010. The function of the example program is to show a list of people that I follow.  In Twitter API vernacular, these people are called “Friends”; though I’ve never met most of them in real life. This is part of the ubiquitous language of social networking, and Twitter in particular, so you’ll see my objects named accordingly. Where Distinct comes into play is because I want to have a drop-down list with the names of the friends appearing in the list. Some friends are quite verbose, which means I can’t just extract names from each tweet and populate the drop-down; otherwise, I would end up with many duplicate names. Therefore, Distinct is the appropriate operator to eliminate the extra entries from my friends who tend to be enthusiastic tweeters. The sample doesn’t do anything with the drop-down list and I leave that up to imagination for what it’s practical purpose could be; perhaps a filter for the list if I only want to see a certain person’s tweets or maybe a quick list that I plan to combine with a TextBox and Button to reply to a friend. When the program runs, you’ll need to authenticate with Twitter, because I’m using OAuth (DotNetOpenAuth), for authentication, and then you’ll see the drop-down list of names above the grid with the most recent tweets from friends. Here’s what the application looks like when it runs: As you can see, there is a drop-down list above the grid. The drop-down list is where most of the focus of this article will be. There is some description of the code before we talk about the Distinct operator, but we’ll get there soon. This is an ASP.NET MVC2 application, written with VS 2010. Here’s the View that produces this screen: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<TwitterFriendsViewModel>" %> <%@ Import Namespace="DistinctSelectList.Models" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">     Home Page </asp:Content><asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">     <fieldset>         <legend>Twitter Friends</legend>         <div>             <%= Html.DropDownListFor(                     twendVM => twendVM.FriendNames,                     Model.FriendNames,                     "<All Friends>") %>         </div>         <div>             <% Html.Telerik().Grid<TweetViewModel>(Model.Tweets)                    .Name("TwitterFriendsGrid")                    .Columns(cols =>                     {                         cols.Template(col =>                             { %>                                 <img src="<%= col.ImageUrl %>"                                      alt="<%= col.ScreenName %>" />                         <% });                         cols.Bound(col => col.ScreenName);                         cols.Bound(col => col.Tweet);                     })                    .Render(); %>         </div>     </fieldset> </asp:Content> As shown above, the Grid is from Telerik’s Extensions for ASP.NET MVC. The first column is a template that renders the user’s Avatar from a URL provided by the Twitter query. Both the Grid and DropDownListFor display properties that are collections from a TwitterFriendsViewModel class, shown below: using System.Collections.Generic; using System.Web.Mvc; namespace DistinctSelectList.Models { /// /// For finding friend info on screen /// public class TwitterFriendsViewModel { /// /// Display names of friends in drop-down list /// public List FriendNames { get; set; } /// /// Display tweets in grid /// public List Tweets { get; set; } } } I created the TwitterFreindsViewModel. The two Lists are what the View consumes to populate the DropDownListFor and Grid. Notice that FriendNames is a List of SelectListItem, which is an MVC class. Another custom class I created is the TweetViewModel (the type of the Tweets List), shown below: namespace DistinctSelectList.Models { /// /// Info on friend tweets /// public class TweetViewModel { /// /// User's avatar /// public string ImageUrl { get; set; } /// /// User's Twitter name /// public string ScreenName { get; set; } /// /// Text containing user's tweet /// public string Tweet { get; set; } } } The initial Twitter query returns much more information than we need for our purposes and this a special class for displaying info in the View.  Now you know about the View and how it’s constructed. Let’s look at the controller next. The controller for this demo performs authentication, data retrieval, data manipulation, and view selection. I’ll skip the description of the authentication because it’s a normal part of using OAuth with LINQ to Twitter. Instead, we’ll drill down and focus on the Distinct operator. However, I’ll show you the entire controller, below,  so that you can see how it all fits together: using System.Linq; using System.Web.Mvc; using DistinctSelectList.Models; using LinqToTwitter; namespace DistinctSelectList.Controllers { [HandleError] public class HomeController : Controller { private MvcOAuthAuthorization auth; private TwitterContext twitterCtx; /// /// Display a list of friends current tweets /// /// public ActionResult Index() { auth = new MvcOAuthAuthorization(InMemoryTokenManager.Instance, InMemoryTokenManager.AccessToken); string accessToken = auth.CompleteAuthorize(); if (accessToken != null) { InMemoryTokenManager.AccessToken = accessToken; } if (auth.CachedCredentialsAvailable) { auth.SignOn(); } else { return auth.BeginAuthorize(); } twitterCtx = new TwitterContext(auth); var friendTweets = (from tweet in twitterCtx.Status where tweet.Type == StatusType.Friends select new TweetViewModel { ImageUrl = tweet.User.ProfileImageUrl, ScreenName = tweet.User.Identifier.ScreenName, Tweet = tweet.Text }) .ToList(); var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct() .ToList(); var twendsVM = new TwitterFriendsViewModel { Tweets = friendTweets, FriendNames = friendNames }; return View(twendsVM); } public ActionResult About() { return View(); } } } The important part of the listing above are the LINQ to Twitter queries for friendTweets and friendNames. Both of these results are used in the subsequent population of the twendsVM instance that is passed to the view. Let’s dissect these two statements for clarification and focus on what is happening with Distinct. The query for friendTweets gets a list of the 20 most recent tweets (as specified by the Twitter API for friend queries) and performs a projection into the custom TweetViewModel class, repeated below for your convenience: var friendTweets = (from tweet in twitterCtx.Status where tweet.Type == StatusType.Friends select new TweetViewModel { ImageUrl = tweet.User.ProfileImageUrl, ScreenName = tweet.User.Identifier.ScreenName, Tweet = tweet.Text }) .ToList(); The LINQ to Twitter query above simplifies what we need to work with in the View and the reduces the amount of information we have to look at in subsequent queries. Given the friendTweets above, the next query performs another projection into an MVC SelectListItem, which is required for binding to the DropDownList.  This brings us to the focus of this blog post, writing a correct query that uses the Distinct operator. The query below uses LINQ to Objects, querying the friendTweets collection to get friendNames: var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct() .ToList(); The above implementation of Distinct seems normal, but it is deceptively incorrect. After running the query above, by executing the application, you’ll notice that the drop-down list contains many duplicates.  This will send you back to the code scratching your head, but there’s a reason why this happens. To understand the problem, we must examine how Distinct works in LINQ to Objects. Distinct has two overloads: one without parameters, as shown above, and another that takes a parameter of type IEqualityComparer<T>.  In the case above, no parameters, Distinct will call EqualityComparer<T>.Default behind the scenes to make comparisons as it iterates through the list. You don’t have problems with the built-in types, such as string, int, DateTime, etc, because they all implement IEquatable<T>. However, many .NET Framework classes, such as SelectListItem, don’t implement IEquatable<T>. So, what happens is that EqualityComparer<T>.Default results in a call to Object.Equals, which performs reference equality on reference type objects.  You don’t have this problem with value types because the default implementation of Object.Equals is bitwise equality. However, most of your projections that use Distinct are on classes, just like the SelectListItem used in this demo application. So, the reason why Distinct didn’t produce the results we wanted was because we used a type that doesn’t define its own equality and Distinct used the default reference equality. This resulted in all objects being included in the results because they are all separate instances in memory with unique references. As you might have guessed, the solution to the problem is to use the second overload of Distinct that accepts an IEqualityComparer<T> instance. If you were projecting into your own custom type, you could make that type implement IEqualityComparer<T>, but SelectListItem belongs to the .NET Framework Class Library.  Therefore, the solution is to create a custom type to implement IEqualityComparer<T>, as in the SelectListItemComparer class, shown below: using System.Collections.Generic; using System.Web.Mvc; namespace DistinctSelectList.Models { public class SelectListItemComparer : EqualityComparer { public override bool Equals(SelectListItem x, SelectListItem y) { return x.Value.Equals(y.Value); } public override int GetHashCode(SelectListItem obj) { return obj.Value.GetHashCode(); } } } The SelectListItemComparer class above doesn’t implement IEqualityComparer<SelectListItem>, but rather derives from EqualityComparer<SelectListItem>. Microsoft recommends this approach for consistency with the behavior of generic collection classes. However, if your custom type already derives from a base class, go ahead and implement IEqualityComparer<T>, which will still work. EqualityComparer is an abstract class, that implements IEqualityComparer<T> with Equals and GetHashCode abstract methods. For the purposes of this application, the SelectListItem.Value property is sufficient to determine if two items are equal.   Since SelectListItem.Value is type string, the code delegates equality to the string class. The code also delegates the GetHashCode operation to the string class.You might have other criteria in your own object and would need to define what it means for your object to be equal. Now that we have an IEqualityComparer<SelectListItem>, let’s fix the problem. The code below modifies the query where we want distinct values: var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct(new SelectListItemComparer()) .ToList(); Notice how the code above passes a new instance of SelectListItemComparer as the parameter to the Distinct operator. Now, when you run the application, the drop-down list will behave as you expect, showing only a unique set of names. In addition to Distinct, other LINQ Standard Query Operators have overloads that accept IEqualityComparer<T>’s, You can use the same techniques as shown here, with SelectListItemComparer, with those other operators as well. Now you know how to resolve problems with getting Distinct to work properly and also have a way to fix problems with other operators that require equality comparisons. @JoeMayo

    Read the article

  • How can I make the C# compiler infer these type parameters automatically?

    - by John Feminella
    I have some code that looks like the following. First I have some domain classes and some special comparators for them. public class Fruit { public int Calories { get; set; } public string Name { get; set; } } public class FruitEqualityComparer : IEqualityComparer<Fruit> { // ... } public class BasketEqualityComparer : IEqualityComparer<IEnumerable<Fruit>> { // ... } Next, I have a helper class called ConstraintChecker. It has a simple BaseEquals method that makes sure some simple base cases are considered: public static class ConstraintChecker { public static bool BaseEquals(T lhs, T rhs) { bool sameObject = l == r; bool leftNull = l == null; bool rightNull = r == null; return sameObject && !leftNull && !rightNull; } There's also a SemanticEquals method which is just a BaseEquals check and a comparator function that you specify. public static bool SemanticEquals<T>(T lhs, T rhs, Func<T, T, bool> f) { return BaseEquals(lhs, rhs) && f(lhs, rhs); } And finally there's a SemanticSequenceEquals method which accepts two IEnumerable<T> instances to compare, and an IEqualityComparer instance that will get called on each pair of elements in the list via Enumerable.SequenceEquals. public static bool SemanticSequenceEquals<T, U, V>(U lhs, U rhs, V comparator) where U : IEnumerable<T> where V : IEqualityComparer<T> { return SemanticEquals(lhs, rhs, (l, r) => lhs.SequenceEqual(rhs, comparator)); } } // end of ConstraintChecker The point of SemanticSequenceEquals is that you don't have to define two comparators whenever you want to compare both IEnumerable<T> and T instances; now you can just specify an IEqualityComparer<T> and it will also handle lists when you invoke SemanticSequenceEquals. So I could get rid of the BasketEqualityComparer class, which would be nice. But there's a problem. The C# compiler can't figure out the types involved when you invoke SemanticSequenceEquals: return ConstraintChecker.SemanticSequenceEquals(lhs, rhs, new FruitEqualityComparer()); If I specify them explicitly, it works: return ConstraintChecker.SemanticSequenceEquals< Fruit, IEnumerable<Fruit>, IEqualityComparer<Fruit> > (lhs, rhs, new FruitEqualityComparer()); What can I change here so that I don't have to write the type parameters explicitly?

    Read the article

  • How can I get distinct values using Linq to NHibernate?

    - by Chris
    I've been trying to get distinct values using Linq to NHibernate and I'm failing miserably. I've tried: var query = from requesters in _session.Linq<Requesters>() orderby requesters.Requestor ascending select requesters; return query.Distinct(); As well as var query = from requesters in _session.Linq<Requesters>() orderby requesters.Requestor ascending select requesters; return query.Distinct(new RequestorComparer()); Where RequestorComparer is public class RequestorComparer : IEqualityComparer<Requesters> { #region IEqualityComparer<Requesters> Members bool IEqualityComparer<Requesters>.Equals(Requesters x, Requesters y) { //return x.RequestorId.Value.Equals(y.RequestorId.Value); return ((x.RequestorId == y.RequestorId) && (x.Requestor == y.Requestor)); } int IEqualityComparer<Requesters>.GetHashCode(Requesters obj) { return obj.RequestorId.Value.GetHashCode(); } #endregion } No matter how I structure the syntax, it never seems to hit the .Distinct(). Without .Distinct() there are multiple duplicates by default in the table I'm querying, on order of 195 total records but there should only be 22 distinct values returned. I'm not sure what I'm doing wrong but would greatly appreciate any assistance that can be provided. Thanks

    Read the article

  • Distinctly LINQ &ndash; Getting a Distinct List of Objects

    - by David Totzke
    Let’s say that you have a list of objects that contains duplicate items and you want to extract a subset of distinct items.  This is pretty straight forward in the trivial case where the duplicate objects are considered the same such as in the following example: List<int> ages = new List<int> { 21, 46, 46, 55, 17, 21, 55, 55 }; IEnumerable<int> distinctAges = ages.Distinct(); Console.WriteLine("Distinct ages:"); foreach (int age in distinctAges) { Console.WriteLine(age); } /* This code produces the following output: Distinct ages: 21 46 55 17 */ What if you are working with reference types instead?  Imagine a list of search results where items in the results, while unique in and of themselves, also point to a parent.  We’d like to be able to select a bunch of items in the list but then see only a distinct list of parents.  Distinct isn’t going to help us much on its own as all of the items are distinct already.  Perhaps we can create a class with just the information we are interested in like the Id and Name of the parents.  public class SelectedItem { public int ItemID { get; set; } public string DisplayName { get; set; } } We can then use LINQ to populate a list containing objects with just the information we are interested in and then get rid of the duplicates. IEnumerable<SelectedItem> list = (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>() select new SelectedItem { ItemID = item.ParentId, DisplayName = item.ParentName }) .Distinct(); Most of you will have guessed that this didn’t work.  Even though some of our objects are now duplicates, because we are working with reference types, it doesn’t matter that their properties are the same, they’re still considered unique.  What we need is a way to define equality for the Distinct() extension method. IEqualityComparer<T> Looking at the Distinct method we see that there is an overload that accepts an IEqualityComparer<T>.  We can simply create a class that implements this interface and that allows us to define equality for our SelectedItem class. public class SelectedItemComparer : IEqualityComparer<SelectedItem> { public new bool Equals(SelectedItem abc, SelectedItem def) { return abc.ItemID == def.ItemID && abc.DisplayName == def.DisplayName; } public int GetHashCode(SelectedItem obj) { string code = obj.DisplayName + obj.ItemID.ToString(); return code.GetHashCode(); } } In the Equals method we simply do whatever comparisons are necessary to determine equality and then return true or false.  Take note of the implementation of the GetHashCode method.  GetHashCode must return the same value for two different objects if our Equals method says they are equal.  Get this wrong and your comparer won’t work .  Even though the Equals method returns true, mismatched hash codes will cause the comparison to fail.  For our example, we simply build a string from the properties of the object and then call GetHashCode() on that. Now all we have to do is pass an instance of our IEqualitlyComarer<T> to Distinct and all will be well: IEnumerable<SelectedItem> list =     (from item in ResultView.SelectedRows.OfType<Contract.ReceiptSelectResults>()         select new SelectedItem { ItemID = item.dahfkp, DisplayName = item.document_code })                         .Distinct(new SelectedItemComparer());   Enjoy. Dave Just because I can… Technorati Tags: LINQ,C#

    Read the article

  • Culture Sensitive GetHashCode

    - by user114928
    Hi, I'm writing a c# application that will process some text and provide basic query functions. In order to ensure the best possible support for other languages, I am allowing the users of the application to specify the System.Globalization.CultureInfo (via the "en-GB" style code) and also the full range of collation options using the System.Globalization.CompareOptions flags enum. For regular string comparison I'm then using a combination of: a) String.Compare overload that accepts the culture and options b) For some bulk processes I'm caching the byte data (KeyData) from CompareInfo.GetSortKey (overload that accepts the options) and using a byte-by-byte comparison of the KeyData. This seemed fine (although please comment if you think these two methods shouldn't be mixed), but then I had reason to use the HashSet< class which only has an overload for IEqualityComparer<. MS documentation seems to suggest that I should use StringComparer (which implements both IEqualityComparer< and IComparer<), but this only seems to support the "IgnoreCase" option from CompareOptions and not "IgnoreKanaType", "IgnoreSymbols", "IgnoreWidth" etc. I'm assuming that a StringComparer that ignores these other options could produce different hashcodes for two strings that might be considered the same using my other comparison options. I'd therefore get incorrect results from my application. Only thought at the moment is to create my own IEqualityComparer< that generates a hashcode from the SortKey.KeyData and compares eqality be using the String.Compare overload. Any suggestions?

    Read the article

  • using dictionaries with WebServices

    - by umit-alba
    Hi! I tried to pass a dictionary via WebServices. However it is not serializeable. So i wrote an Own Class that makes it serializeable: using System; using System.Net; using System.Windows; using System.Collections.Generic; using System.Xml.Serialization; using System.Xml; using System.Xml.Schema; namespace Platform { public class SaDictionary<TKey, TValue> : Dictionary<TKey, TValue>, IXmlSerializable { #region Constructors public SaDictionary() : base() { } public SaDictionary(IDictionary<TKey, TValue> dictionary) : base(dictionary) { } public SaDictionary(IEqualityComparer<TKey> comparer) : base(comparer) { } public SaDictionary(int capacity) : base(capacity) { } public SaDictionary(IDictionary<TKey, TValue> dictionary, IEqualityComparer<TKey> comparer) : base(dictionary, comparer) { } public SaDictionary(int capacity, IEqualityComparer<TKey> comparer) : base(capacity, comparer) { } //protected SaDictionary(SerializationInfo info, StreamingContext context) // : base(info, context) //{ //} #endregion public XmlSchema GetSchema() { return null; } public void ReadXml(XmlReader reader) { XmlSerializer keySerializer = new XmlSerializer(typeof(TKey)); XmlSerializer valueSerializer = new XmlSerializer(typeof(TValue)); bool wasEmpty = reader.IsEmptyElement; reader.Read(); if (wasEmpty) return; while (reader.NodeType != XmlNodeType.EndElement) { reader.ReadStartElement("item"); reader.ReadStartElement("key"); TKey key = (TKey)keySerializer.Deserialize(reader); reader.ReadEndElement(); //key reader.ReadStartElement("value"); TValue value = (TValue)valueSerializer.Deserialize(reader); reader.ReadEndElement(); //value this.Add(key, value); reader.ReadEndElement(); //item // reader.MoveToContent(); } reader.ReadEndElement(); } public void WriteXml(XmlWriter writer) { XmlSerializer keySerializer = new XmlSerializer(typeof(TKey)); XmlSerializer valueSerializer = new XmlSerializer(typeof(TValue)); foreach (TKey key in this.Keys) { writer.WriteStartElement("item"); writer.WriteStartElement("key"); keySerializer.Serialize(writer, key); writer.WriteEndElement(); //key writer.WriteStartElement("value"); TValue value = this[key]; valueSerializer.Serialize(writer, value); writer.WriteEndElement(); //value writer.WriteEndElement(); //item } } } } However i get an ArrayOfXElement back. Is there a way to cast it back to a Dictionary? greets

    Read the article

  • Grouping data in LINQ with the help of group keyword

    - by vik20000in
    While working with any kind of advanced query grouping is a very important factor. Grouping helps in executing special function like sum, max average etc to be performed on certain groups of data inside the date result set. Grouping is done with the help of the Group method. Below is an example of the basic group functionality.     int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };         var numberGroups =         from num in numbers         group num by num % 5 into numGroup         select new { Remainder = numGroup.Key, Numbers = numGroup };  In the above example we have grouped the values based on the reminder left over when divided by 5. First we are grouping the values based on the reminder when divided by 5 into the numgroup variable.  numGroup.Key gives the value of the key on which the grouping has been applied. And the numGroup itself contains all the records that are contained in that group. Below is another example to explain the same. string[] words = { "blueberry", "abacus", "banana", "apple", "cheese" };         var wordGroups =         from num in words         group num by num[0] into grp         select new { FirstLetter = grp.Key, Words = grp }; In the above example we are grouping the value with the first character of the string (num[0]). Just like the order operator the group by clause also allows us to write our own logic for the Equal comparison (That means we can group Item by ignoring case also by writing out own implementation). For this we need to pass an object that implements the IEqualityComparer<string> interface. Below is an example. public class AnagramEqualityComparer : IEqualityComparer<string> {     public bool Equals(string x, string y) {         return getCanonicalString(x) == getCanonicalString(y);     }      public int GetHashCode(string obj) {         return getCanonicalString(obj).GetHashCode();     }         private string getCanonicalString(string word) {         char[] wordChars = word.ToCharArray();         Array.Sort<char>(wordChars);         return new string(wordChars);     } }  string[] anagrams = {"from   ", " salt", " earn", "  last   ", " near "}; var orderGroups = anagrams.GroupBy(w => w.Trim(), new AnagramEqualityComparer()); Vikram  

    Read the article

  • Tell LINQ Distinct which item to return

    - by Jon
    I understand how to do a Distinct() on a IEnumerable and that I have to create an IEqualityComparer for more advanced stuff however is there a way in which you can tell which duplicated item to return? For example say you have a List<T> List<MyClass> test = new List<MyClass>(); test.Add(new MyClass {ID = 1, InnerID = 4}); test.Add(new MyClass {ID = 2, InnerID = 4}); test.Add(new MyClass {ID = 3, InnerID = 14}); test.Add(new MyClass {ID = 4, InnerID = 14}); You then do: var distinctItems = test.Distinct(new DistinctItemComparer()); class DistinctItemComparer : IEqualityComparer<MyClass> { public bool Equals(MyClass x, MyClass y) { return x.InnerID == y.InnerID;; } public int GetHashCode(MyClassobj) { return obj.InnerID.GetHasCode(); } } This code will return the classes with ID 1 and 3. Is there a way to return the ID matches 2 & 4.

    Read the article

  • C# Using Enumerable Range and Except with custom class to determine missing sequence number

    - by Jon
    I have a List<MyClass> The class is like this: private class MyClass { public string Name{ get; set; } public int SequenceNumber { get; set; } } I want to work out what Sequence numbers might be missing. I can see how to do this here however because this is a class I am unsure what to do? I think I can handle the except method ok with my own IComparer but the Range method I can't figure out because it only excepts int so this doesn't compile: Enumerable.Range(0, 1000000).Except(chqList, MyEqualityComparer<MyClass>); Here is the IComparer: public class MyEqualityComparer<T> : IEqualityComparer<T> where T : MyClass { #region IEqualityComparer<T> Members public bool Equals(T x, T y) { return (x == null && y == null) || (x != null && y != null && x.SequenceNumber.Equals(y.SequenceNumber)); } /// </exception> public int GetHashCode(T obj) { if (obj == null) { throw new ArgumentNullException("obj"); } return obj.GetHashCode(); } #endregion }

    Read the article

  • How to get distinct values from the List&lt;T&gt; with LINQ

    - by Vincent Maverick Durano
    Recently I was working with data from a generic List<T> and one of my objectives is to get the distinct values that is found in the List. Consider that we have this simple class that holds the following properties: public class Product { public string Make { get; set; } public string Model { get; set; } }   Now in the page code behind we will create a list of product by doing the following: private List<Product> GetProducts() { List<Product> products = new List<Product>(); Product p = new Product(); p.Make = "Samsung"; p.Model = "Galaxy S 1"; products.Add(p); p = new Product(); p.Make = "Samsung"; p.Model = "Galaxy S 2"; products.Add(p); p = new Product(); p.Make = "Samsung"; p.Model = "Galaxy Note"; products.Add(p); p = new Product(); p.Make = "Apple"; p.Model = "iPhone 4"; products.Add(p); p = new Product(); p.Make = "Apple"; p.Model = "iPhone 4s"; products.Add(p); p = new Product(); p.Make = "HTC"; p.Model = "Sensation"; products.Add(p); p = new Product(); p.Make = "HTC"; p.Model = "Desire"; products.Add(p); p = new Product(); p.Make = "Nokia"; p.Model = "Some Model"; products.Add(p); p = new Product(); p.Make = "Nokia"; p.Model = "Some Model"; products.Add(p); p = new Product(); p.Make = "Sony Ericsson"; p.Model = "800i"; products.Add(p); p = new Product(); p.Make = "Sony Ericsson"; p.Model = "800i"; products.Add(p); return products; }   And then let’s bind the products to the GridView. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { Gridview1.DataSource = GetProducts(); Gridview1.DataBind(); } }   Running the code will display something like this in the page: Now what I want is to get the distinct row values from the list. So what I did is to use the LINQ Distinct operator and unfortunately it doesn't work. In order for it work is you must use the overload method of the Distinct operator for you to get the desired results. So I’ve added this IEqualityComparer<T> class to compare values: class ProductComparer : IEqualityComparer<Product> { public bool Equals(Product x, Product y) { if (Object.ReferenceEquals(x, y)) return true; if (Object.ReferenceEquals(x, null) || Object.ReferenceEquals(y, null)) return false; return x.Make == y.Make && x.Model == y.Model; } public int GetHashCode(Product product) { if (Object.ReferenceEquals(product, null)) return 0; int hashProductName = product.Make == null ? 0 : product.Make.GetHashCode(); int hashProductCode = product.Model.GetHashCode(); return hashProductName ^ hashProductCode; } }   After that you can then bind the GridView like this: protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { Gridview1.DataSource = GetProducts().Distinct(new ProductComparer()); Gridview1.DataBind(); } }   Running the page will give you the desired output below: As you notice, it now eliminates the duplicate rows in the GridView. Now what if we only want to get the distinct values for a certain field. For example I want to get the distinct “Make” values such as Samsung, Apple, HTC, Nokia and Sony Ericsson and populate them to a DropDownList control for filtering purposes. I was hoping the the Distinct operator has an overload that can compare values based on the property value like (GetProducts().Distinct(o => o.PropertyToCompare). But unfortunately it doesn’t provide that overload so what I did as a workaround is to use the GroupBy,Select and First LINQ query operators to achieve what I want. Here’s the code to get the distinct values of a certain field. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { DropDownList1.DataSource = GetProducts().GroupBy(o => o.Make).Select(o => o.First()); DropDownList1.DataTextField = "Make"; DropDownList1.DataValueField = "Model"; DropDownList1.DataBind(); } } Running the code will display the following output below:   That’s it! I hope someone find this post useful!

    Read the article

  • Intersection() and Except() is too slow with large collections of custom objects

    - by Theo
    I am importing data from another database. My process is importing data from a remote DB into a List<DataModel> named remoteData and also importing data from the local DB into a List<DataModel> named localData. I am then using LINQ to create a list of records that are different so that I can update the local DB to match the data pulled from remote DB. Like this: var outdatedData = this.localData.Intersect(this.remoteData, new OutdatedDataComparer()).ToList(); I am then using LINQ to create a list of records that no longer exist in remoteData, but do exist in localData, so that I delete them from local database. Like this: var oldData = this.localData.Except(this.remoteData, new MatchingDataComparer()).ToList(); I am then using LINQ to do the opposite of the above to add the new data to the local database. Like this: var newData = this.remoteData.Except(this.localData, new MatchingDataComparer()).ToList(); Each collection imports about 70k records, and each of the 3 LINQ operation take between 5 - 10 minutes to complete. How can I make this faster? Here is the object the collections are using: internal class DataModel { public string Key1{ get; set; } public string Key2{ get; set; } public string Value1{ get; set; } public string Value2{ get; set; } public byte? Value3{ get; set; } } The comparer used to check for outdated records: class OutdatedDataComparer : IEqualityComparer<DataModel> { public bool Equals(DataModel x, DataModel y) { var e = string.Equals(x.Key1, y.Key1) && string.Equals(x.Key2, y.Key2) && ( !string.Equals(x.Value1, y.Value1) || !string.Equals(x.Value2, y.Value2) || x.Value3 != y.Value3 ); return e; } public int GetHashCode(DataModel obj) { return 0; } } The comparer used to find old and new records: internal class MatchingDataComparer : IEqualityComparer<DataModel> { public bool Equals(DataModel x, DataModel y) { return string.Equals(x.Key1, y.Key1) && string.Equals(x.Key2, y.Key2); } public int GetHashCode(DataModel obj) { return 0; } }

    Read the article

  • Why unhandled exceptions are useful

    - by Simon Cooper
    It’s the bane of most programmers’ lives – an unhandled exception causes your application or webapp to crash, an ugly dialog gets displayed to the user, and they come complaining to you. Then, somehow, you need to figure out what went wrong. Hopefully, you’ve got a log file, or some other way of reporting unhandled exceptions (obligatory employer plug: SmartAssembly reports an application’s unhandled exceptions straight to you, along with the entire state of the stack and variables at that point). If not, you have to try and replicate it yourself, or do some psychic debugging to try and figure out what’s wrong. However, it’s good that the program crashed. Or, more precisely, it is correct behaviour. An unhandled exception in your application means that, somewhere in your code, there is an assumption that you made that is actually invalid. Coding assumptions Let me explain a bit more. Every method, every line of code you write, depends on implicit assumptions that you have made. Take this following simple method, that copies a collection to an array and includes an item if it isn’t in the collection already, using a supplied IEqualityComparer: public static T[] ToArrayWithItem( ICollection<T> coll, T obj, IEqualityComparer<T> comparer) { // check if the object is in collection already // using the supplied comparer foreach (var item in coll) { if (comparer.Equals(item, obj)) { // it's in the collection already // simply copy the collection to an array // and return it T[] array = new T[coll.Count]; coll.CopyTo(array, 0); return array; } } // not in the collection // copy coll to an array, and add obj to it // then return it T[] array = new T[coll.Count+1]; coll.CopyTo(array, 0); array[array.Length-1] = obj; return array; } What’s all the assumptions made by this fairly simple bit of code? coll is never null comparer is never null coll.CopyTo(array, 0) will copy all the items in the collection into the array, in the order defined for the collection, starting at the first item in the array. The enumerator for coll returns all the items in the collection, in the order defined for the collection comparer.Equals returns true if the items are equal (for whatever definition of ‘equal’ the comparer uses), false otherwise comparer.Equals, coll.CopyTo, and the coll enumerator will never throw an exception or hang for any possible input and any possible values of T coll will have less than 4 billion items in it (this is a built-in limit of the CLR) array won’t be more than 2GB, both on 32 and 64-bit systems, for any possible values of T (again, a limit of the CLR) There are no threads that will modify coll while this method is running and, more esoterically: The C# compiler will compile this code to IL according to the C# specification The CLR and JIT compiler will produce machine code to execute the IL on the user’s computer The computer will execute the machine code correctly That’s a lot of assumptions. Now, it could be that all these assumptions are valid for the situations this method is called. But if this does crash out with an exception, or crash later on, then that shows one of the assumptions has been invalidated somehow. An unhandled exception shows that your code is running in a situation which you did not anticipate, and there is something about how your code runs that you do not understand. Debugging the problem is the process of learning more about the new situation and how your code interacts with it. When you understand the problem, the solution is (usually) obvious. The solution may be a one-line fix, the rewrite of a method or class, or a large-scale refactoring of the codebase, but whatever it is, the fix for the crash will incorporate the new information you’ve gained about your own code, along with the modified assumptions. When code is running with an assumption or invariant it depended on broken, then the result is ‘undefined behaviour’. Anything can happen, up to and including formatting the entire disk or making the user’s computer sentient and start doing a good impression of Skynet. You might think that those can’t happen, but at Halting problem levels of generality, as soon as an assumption the code depended on is broken, the program can do anything. That is why it’s important to fail-fast and stop the program as soon as an invariant is broken, to minimise the damage that is done. What does this mean in practice? To start with, document and check your assumptions. As with most things, there is a level of judgement required. How you check and document your assumptions depends on how the code is used (that’s some more assumptions you’ve made), how likely it is a method will be passed invalid arguments or called in an invalid state, how likely it is the assumptions will be broken, how expensive it is to check the assumptions, and how bad things are likely to get if the assumptions are broken. Now, some assumptions you can assume unless proven otherwise. You can safely assume the C# compiler, CLR, and computer all run the method correctly, unless you have evidence of a compiler, CLR or processor bug. You can also assume that interface implementations work the way you expect them to; implementing an interface is more than simply declaring methods with certain signatures in your type. The behaviour of those methods, and how they work, is part of the interface contract as well. For example, for members of a public API, it is very important to document your assumptions and check your state before running the bulk of the method, throwing ArgumentException, ArgumentNullException, InvalidOperationException, or another exception type as appropriate if the input or state is wrong. For internal and private methods, it is less important. If a private method expects collection items in a certain order, then you don’t necessarily need to explicitly check it in code, but you can add comments or documentation specifying what state you expect the collection to be in at a certain point. That way, anyone debugging your code can immediately see what’s wrong if this does ever become an issue. You can also use DEBUG preprocessor blocks and Debug.Assert to document and check your assumptions without incurring a performance hit in release builds. On my coding soapbox… A few pet peeves of mine around assumptions. Firstly, catch-all try blocks: try { ... } catch { } A catch-all hides exceptions generated by broken assumptions, and lets the program carry on in an unknown state. Later, an exception is likely to be generated due to further broken assumptions due to the unknown state, causing difficulties when debugging as the catch-all has hidden the original problem. It’s much better to let the program crash straight away, so you know where the problem is. You should only use a catch-all if you are sure that any exception generated in the try block is safe to ignore. That’s a pretty big ask! Secondly, using as when you should be casting. Doing this: (obj as IFoo).Method(); or this: IFoo foo = obj as IFoo; ... foo.Method(); when you should be doing this: ((IFoo)obj).Method(); or this: IFoo foo = (IFoo)obj; ... foo.Method(); There’s an assumption here that obj will always implement IFoo. If it doesn’t, then by using as instead of a cast you’ve turned an obvious InvalidCastException at the point of the cast that will probably tell you what type obj actually is, into a non-obvious NullReferenceException at some later point that gives you no information at all. If you believe obj is always an IFoo, then say so in code! Let it fail-fast if not, then it’s far easier to figure out what’s wrong. Thirdly, document your assumptions. If an algorithm depends on a non-trivial relationship between several objects or variables, then say so. A single-line comment will do. Don’t leave it up to whoever’s debugging your code after you to figure it out. Conclusion It’s better to crash out and fail-fast when an assumption is broken. If it doesn’t, then there’s likely to be further crashes along the way that hide the original problem. Or, even worse, your program will be running in an undefined state, where anything can happen. Unhandled exceptions aren’t good per-se, but they give you some very useful information about your code that you didn’t know before. And that can only be a good thing.

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

1 2  | Next Page >