Search Results

Search found 18706 results on 749 pages for 'network discovery'.

Page 1/749 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Service Discovery in WCF 4.0 – Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Defining Discovery: Core Concepts

    - by Joe Lamantia
    Discovery tools have had a referencable working definition since at least 2001, when Ben Shneiderman published 'Inventing Discovery Tools: Combining Information Visualization with Data Mining'.  Dr. Shneiderman suggested the combination of the two distinct fields of data mining and information visualization could manifest as new category of tools for discovery, an understanding that remains essentially unaltered over ten years later.  An industry analyst report titled Visual Discovery Tools: Market Segmentation and Product Positioning from March of this year, for example, reads, "Visual discovery tools are designed for visual data exploration, analysis and lightweight data mining." Tools should follow from the activities people undertake (a foundational tenet of activity centered design), however, and Dr. Shneiderman does not in fact describe or define discovery activity or capability. As I read it, discovery is assumed to be the implied sum of the separate fields of visualization and data mining as they were then understood.  As a working definition that catalyzes a field of product prototyping, it's adequate in the short term.  In the long term, it makes the boundaries of discovery both derived and temporary, and leaves a substantial gap in the landscape of core concepts around discovery, making consensus on the nature of most aspects of discovery difficult or impossible to reach.  I think this definitional gap is a major reason that discovery is still an ambiguous product landscape. To help close that gap, I'm suggesting a few definitions of four core aspects of discovery.  These come out of our sustained research into discovery needs and practices, and have the goal of clarifying the relationship between discvoery and other analytical categories.  They are suggested, but should be internally coherent and consistent.   Discovery activity is: "Purposeful sense making activity that intends to arrive at new insights and understanding through exploration and analysis (and for these we have specific defintions as well) of all types and sources of data." Discovery capability is: "The ability of people and organizations to purposefully realize valuable insights that address the full spectrum of business questions and problems by engaging effectively with all types and sources of data." Discovery tools: "Enhance individual and organizational ability to realize novel insights by augmenting and accelerating human sense making to allow engagement with all types of data at all useful scales." Discovery environments: "Enable organizations to undertake effective discovery efforts for all business purposes and perspectives, in an empirical and cooperative fashion." Note: applicability to a world of Big data is assumed - thus the refs to all scales / types / sources - rather than stated explicitly.  I like that Big Data doesn't have to be written into this core set of definitions, b/c I think it's a transitional label - the new version of Web 2.0 - and goes away over time. References and Resources: Inventing Discovery Tools Visual Discovery Tools: Market Segmentation and Product Positioning Logic versus usage: the case for activity-centered design A Taxonomy of Enterprise Search and Discovery

    Read the article

  • Video Of Discovery Shuttle Launch Recorded From An Airplane

    - by Gopinath
    Last week Thursday evening Space Shuttle Discovery started it’s journey to space station and the launch was recorded from an airplane.  Software developer Neil Monday shot this video aboard his flight from Orland and posted it to YouTube. Check out this embedded video. This article titled,Video Of Discovery Shuttle Launch Recorded From An Airplane, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Cannot turn on "Network Discovery and File Sharing" when Windows Firewall is enabled

    - by Cheeso
    I have a problem similar to this one. Windows Firewall prevents File and Printer sharing from working and Why does File and Printer Sharing keep turning off in Windows 7? I cannot turn on Network Discovery. This is Windows 7 Home Premium, x64. It's a Dell XPS 1340 and Windows came installed from the OEM. This used to work. Now it doesn't. I don't know what has changed. In windows Explorer, the UI looks like this: When I click the yellow panel that says "Click to change...", the panel disappears, then immediately reappears, with exactly the same text. If I go through the control panel "Network and Sharing Center" thing, the UI looks like this: If I tick the box to "turn on network discovery", the "Save Changes" button becomes enabled. If I then click that button, the dialog box just closes, with no message or confirmation. Re-opening the same dialog box shows that Network Discovery has not been turned on. If I turn off Windows Firewall, I can then turn on Network Discovery via either method. The machine is connected to a wireless home network, via a router. The network is marked as "Home Network" in the Network and Sharing Center, which I think corresponds to the "Private" profile in Windows Firewall Advanced Settings app. (Confirm?) The PC is not part of a domain, and has never been part of a domain. The machine is not bridging any networks. There is a regular 100baseT connector but I have the network adapter for that disabled in Windows. Something else that seems odd. Within Windows Firewall Advanced Settings, there are no predefined rules available. If I click the "New Rule...." Action on the action pane, the "Predefined" option is greyed out. like this: In order to attempt to allow the network discovery protocols through on the private network, I hand-coded a bunch of rules, intending to allow the necessary UPnP and WDP protocols supporting network discovery. I copied them from a working Windows 7 Ultimate PC, running on the same network. This did not work. Even with the hand-coded rules, I still cannot turn on Network Discovery. I looked on the interwebs, and the only solution that appears to work is a re-install of Windows. Seriously? If I try netsh advfirewall firewall set rule group="Network Discovery" new enable=Yes ...it says "No rules match the specified criteria" EDIT: by the way, these services are running. DNS Client Function Discovery Resource Publication SSDP Discovery UPnP Device Host in any case, since it works with no firewall, I would assume all necessary services are present and running. The issue is a firewall thing, but I don't know how to diagnose further, or fix it. Q1: Is there a way to definitively insure the correct holes are punched through the Windows Firewall to allow Network Discovery to function? Q2: Should I expect the "predefined" firewall rules to be greyed out? Q3: Why did this change?

    Read the article

  • Network connection delay after installing indicator-network

    - by Adrian
    Ok, so here's the thing,I installed wingpanel in UBUNTU 10.10, i removed the gnome-panels (yes, both). In the wingpanel itself there's no NETWORK indicator, so i google it and in some forums, some guy wrote that you have to install "indicator-network". I did it, and it solved the network indicator in the wingpanel, BUT now everytime i turn on my computer, the connection takes like 2 minutes or more to connect, when before installing this thing it did it immediately. How can i solve this? any help?

    Read the article

  • nm-applet gone?

    - by welp
    nm-applet seems to have disappeared from my system. I am running 12.10. Here's what I get when I check my package manager logs: ? ~ grep network-manager /var/log/dpkg.log 2012-10-06 10:37:08 upgrade network-manager-gnome:amd64 0.9.6.2-0ubuntu5 0.9.6.2-0ubuntu6 2012-10-06 10:37:08 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:08 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:09 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu5 2012-10-06 10:37:09 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:37:09 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 configure network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-06 10:39:50 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 remove network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status config-files network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-28 22:27:23 status config-files network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 install network-manager-gnome:amd64 0.9.6.2-0ubuntu6 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status half-installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:03 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:06 configure network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:06 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status unpacked network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status half-configured network-manager-gnome:amd64 0.9.6.2-0ubuntu6 2012-10-31 19:58:07 status installed network-manager-gnome:amd64 0.9.6.2-0ubuntu6 ? ~ Unfortunately, I cannot find network-manager-applet package at all: ? ~ apt-cache search network-manager-applet ? ~ Here are the contents of /etc/apt/sources.list: ? ~ cat /etc/apt/sources.list # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ dists/precise/main/binary-i386/ # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ dists/precise/restricted/binary-i386/ # deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release amd64 (20120425)]/ precise main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://gb.archive.ubuntu.com/ubuntu/ quantal main restricted deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal main restricted ## Major bug fix updates produced after the final release of the ## distribution. deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates main restricted deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates main restricted ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team. Also, please note that software in universe WILL NOT receive any ## review or updates from the Ubuntu security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal universe deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal universe deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates universe deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates universe ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team, and may not be under a free licence. Please satisfy yourself as to ## your rights to use the software. Also, please note that software in ## multiverse WILL NOT receive any review or updates from the Ubuntu ## security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal multiverse deb http://gb.archive.ubuntu.com/ubuntu/ quantal-updates multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-updates multiverse ## N.B. software from this repository may not have been tested as ## extensively as that contained in the main release, although it includes ## newer versions of some applications which may provide useful features. ## Also, please note that software in backports WILL NOT receive any review ## or updates from the Ubuntu security team. deb http://gb.archive.ubuntu.com/ubuntu/ quantal-backports main restricted universe multiverse deb-src http://gb.archive.ubuntu.com/ubuntu/ quantal-backports main restricted universe multiverse deb http://security.ubuntu.com/ubuntu quantal-security main restricted deb-src http://security.ubuntu.com/ubuntu quantal-security main restricted deb http://security.ubuntu.com/ubuntu quantal-security universe deb-src http://security.ubuntu.com/ubuntu quantal-security universe deb http://security.ubuntu.com/ubuntu quantal-security multiverse deb-src http://security.ubuntu.com/ubuntu quantal-security multiverse ## Uncomment the following two lines to add software from Canonical's ## 'partner' repository. ## This software is not part of Ubuntu, but is offered by Canonical and the ## respective vendors as a service to Ubuntu users. # deb http://archive.canonical.com/ubuntu precise partner # deb-src http://archive.canonical.com/ubuntu precise partner ## This software is not part of Ubuntu, but is offered by third-party ## developers who want to ship their latest software. deb http://extras.ubuntu.com/ubuntu quantal main deb-src http://extras.ubuntu.com/ubuntu quantal main ? ~ Right now, I can't think of anything else. Happy to provide more info upon request.

    Read the article

  • Neural Network settings for fast training

    - by danpalmer
    I am creating a tool for predicting the time and cost of software projects based on past data. The tool uses a neural network to do this and so far, the results are promising, but I think I can do a lot more optimisation just by changing the properties of the network. There don't seem to be any rules or even many best-practices when it comes to these settings so if anyone with experience could help me I would greatly appreciate it. The input data is made up of a series of integers that could go up as high as the user wants to go, but most will be under 100,000 I would have thought. Some will be as low as 1. They are details like number of people on a project and the cost of a project, as well as details about database entities and use cases. There are 10 inputs in total and 2 outputs (the time and cost). I am using Resilient Propagation to train the network. Currently it has: 10 input nodes, 1 hidden layer with 5 nodes and 2 output nodes. I am training to get under a 5% error rate. The algorithm must run on a webserver so I have put in a measure to stop training when it looks like it isn't going anywhere. This is set to 10,000 training iterations. Currently, when I try to train it with some data that is a bit varied, but well within the limits of what we expect users to put into it, it takes a long time to train, hitting the 10,000 iteration limit over and over again. This is the first time I have used a neural network and I don't really know what to expect. If you could give me some hints on what sort of settings I should be using for the network and for the iteration limit I would greatly appreciate it. Thank you!

    Read the article

  • "Hostile" network in the company - please comment on a security setup

    - by TomTom
    I have a little specific problem here that I want (need) to solve in a satisfactory way. My company has multiple (IPv4) networks that are controlled by our router sitting in the middle. Typical smaller shop setup. There is now one additional network that has an IP Range OUTSIDE of our control, connected to the internet with another router OUTSIDE of our control. Call it a project network that is part of another companies network and combined via VPN they set up. This means: They control the router that is used for this network and They can reconfigure things so that they can access the machines in this network. The network is physically split on our end through some VLAN capable switches as it covers three locations. At one end there is the router the other company controls. I Need / want to give the machines used in this network access to my company network. In fact, it may be good to make them part of my active directory domain. The people working on those machines are part of my company. BUT - I need to do so without compromising the security of my company network from outside influence. Any sort of router integration using the externally controlled router is out by this idea So, my idea is this: We accept the IPv4 address space and network topology in this network is not under our control. We seek alternatives to integrate those machines into our company network. The 2 concepts I came up with are: Use some sort of VPN - have the machines log into VPN. Thanks to them using modern windows, this could be transparent DirectAccess. This essentially treats the other IP space not different than any restaurant network a laptop of the company goes in. Alternatively - establish IPv6 routing to this ethernet segment. But - and this is a trick - block all IPv6 packets in the switch before they hit the third party controlled router, so that even IF they turn on IPv6 on that thing (not used now, but they could do it) they would get not a single packet. The switch can nicely do that by pulling all IPv6 traffic coming to that port into a separate VLAN (based on ethernet protocol type). Anyone sees a problem with using he switch to isolate the outer from IPv6? Any security hole? It is sad we have to treat this network as hostile - would be a lot easier - but the support personnel there is of "known dubious quality" and the legal side is clear - we can not fulfill our obligations when we integrate them into our company while they are under a jurisdiction we don't have a say in.

    Read the article

  • Enabled Network Discovery on Server, and now VNC and Squeezebox clients don't work

    - by Mike Hanson
    I've recently setup a Windows Server 2008. It's running an email server, Squeezebox server, MS SQL Server, etc. I'm doing remote maintenance with UltraVNC. I had everything working fine. Then the server needed to access a network share on another machine, and I was prompted to turn on network discovery, which I did. I chose the Home rather than Public option. Since doing that, some things have stopped working, while others are still fine. Shared folders and the the Email services (ports 25 and 110) are still accessible. VNC (port 5900) and Squeezeboxes (port 9000) no longer work. Here's what I've tried to try to solve the problem: Checked the network discovery settings, to see if anything looked strange. Checked the firewall settings, and those ports appear to be open. Also in the firewall settings, the entries for Private domain Network Discovery were all on, but the Domain/Public ones were off. I tried turning those on. In the services, turned on Function Discovery Resource Publication and SSDP Discovery. Any other suggestions?

    Read the article

  • How to send raw data over a network?

    - by youllknow
    Hi everyone! I've same data stored in a byte-array. The data contains a IPv4 packet (which contains a udp-packet). I want to send these array raw over the network using C# (preferred) or C++. I don't want to use C#'s udp-client for example. Does anyone know how to perform this? Sorry for my bad English and thanks for your help in advance!!!

    Read the article

  • Network / Internet diagnostic tool to locate an error?

    - by Jesper
    Hi, I’m facing some difficulties with the Internet / network at my work and I have trouble locating the precise error and when and how it occurs. The problem is that the client machines in the house sporadic is disconnected to the Internet. I’m some what new so I haven’t that much inside in the network and apparently neither has my predecessor. What I am requesting and hoping you guys knows about is, if there exist some kind of network monitor tool I can install and run and it will periodically check the network, the Internet connection etc. and record to logs. Then, if there suddenly arises a problem some time of the day in some part of the network or the Internet connection, I can check it perhaps the next day. I’ve just downloaded and installed Microsoft Network Monitor 3.3 application and hopeful it can give me some answers on where the instability is located but I still would like a tool to make different checks and test in some time interval. Do anyone know about such a program or another kind of performance / diagnostic tool / method I can use? Sincere Jesper

    Read the article

  • Make Network Manager use bridge for PPPoE instead of only working on ethernet?

    - by Azendale
    My ISP uses PPPoE on their DSL connections. I use Network Manager to connect to this using a bridged modem connected to eth0. Often, I want to test networking things, so a set myself up a KVM machine with a tap interface. I can then connect these interfaces to to virtual 'switches' by adding them to bridges. (I work for my ISP). Sometimes, I want to test cases where the PPPoE is connected more than once. For this, I would like to be able to add eth0 to my 'switch' (a bridge) so the VMs can have a 'bridged modem' connection to the internet. But I would like to still be able to run the PPPoE for my computer at the same time. Which means that I need to get network-manager to run PPPoE over the bridge (or eth0). The problem is that it considers eth0 (and the bridge) 'not managed' by network manager, so it refuses to use it. So, how can I have network manager dial PPPoE over a bridge?

    Read the article

  • Bridging: Loosing WLAN network connection with 4addr on option - Why?

    - by WitchCraft
    Question: For use with my Xen VM, I need to create a virtual network interface (vif) that is bridged to wlan0. If in /etc/network/interfaces I add auto xenbr0 iface xenbr0 inet dhcp And then later do brctl addif xenbr0 wlan0 I get this error message. can't add wlan0 to bridge xenbr0: Operation not supported I found out that Linux won't let you bridge a wireless interface in managed mode at all unless you enable the 4addr option (needed to recompile iw): iw dev wlan0 set 4addr on Afterwards brctl addif xenbr0 wlan0 works, and brctl show shows xenbr0 as bridged to wlan0. Unfortunately, as soon as I execute iw dev wlan0 set 4addr on my entire network connection is gone (no connection). As soon as then I execute iw dev wlan0 set 4addr off I reconnect and it works again. If I re-execute 4addr on, it breaks again, if I execute 4addr off, it works again. Unfortunately, I can't just turn 4addr on, activate the bridge and then turn it back off (error: device not ready). Does anybody know why I loose my connection ?

    Read the article

  • Wireless Network Issue, Disconnecting Randomly From Network

    - by Surfer513
    I'm having an odd problem with my wireless network. Here is the background information: Server (Windows Server 2008) 1 to 10 end user machines connecting to the network Layer 3 Access Point (Asus WL-330 gE) connected to ethernet of Server and all machines connect to the network via the AP The end user machines get a connection to the server with no problems initially. But then connections are randomly lost throughout the day to the server/network. The wireless NICs of the machines still see the wireless network but are unable to connect to it. Then after some time the connection is regained automatically. I initially thought there was a problem with this particular AP, but then I took the same make/model AP out of storage and still ran into the problem. Any ideas what could be causing this??? Very confusing that the wireless nics on the end user machines can still see the network but not connect, and that the connections are randomly lost/gained. Thanks in advance!

    Read the article

  • Create personal wireless network on laptop

    - by TechGuru
    I have a WiFi Network, now I have connected my laptop to the WiFi Network. And it is working fine I'm able to access the internet via WiFi. But I want to create other network on my laptop so that I can connect my mobile phone to the my laptop network. Means, my laptop is already connected to WiFi network (xyz). Now I want to create one wireless network on my laptop. So that I can connect my mobile phone to laptop network and access the internet on mobile. But I don't want to lost my `laptop and WiFi connection that is already connected. I tried to create the wireless network on my laptop, but when I created my personal wireless network I lost my wifi-laptop connection. I don't know it is possible or not.

    Read the article

  • Consumer Oriented Search In Oracle Endeca Information Discovery – Part 1

    - by Bob Zurek
    Information Discovery, a core capability of Oracle Endeca Information Discovery, enables business users to rapidly search, discover and navigate through a wide variety of big data including structured, unstructured and semi-structured data. One of the key capabilities, among many, that differentiate our solution from others in the Information Discovery market is our deep support for search across this growing amount of varied big data. Our method and approach is very different than classic simple keyword search that is found in may information discovery solutions. In this first part of a series on the topic of search, I will walk you through many of the key capabilities that go beyond the simple search box that you might experience in products where search was clearly an afterthought or attempt to catch up to our core capabilities in this area. Lets explore. The core data management solution of Oracle Endeca Information Discovery is the Endeca Server, a hybrid search-analytical database that his highly scalable and column-oriented in nature. We will talk in more technical detail about the capabilities of the Endeca Server in future blog posts as this post is intended to give you a feel for the deep search capabilities that are an integral part of the Endeca Server. The Endeca Server provides best-of-breed search features aw well as a new class of features that are the first to be designed around the requirement to bridge structured, semi-structured and unstructured big data. Some of the key features of search include type a heads, automatic alphanumeric spell corrections, positional search, Booleans, wildcarding, natural language, and category search and query classification dialogs. This is just a subset of the advanced search capabilities found in Oracle Endeca Information Discovery. Search is an important feature that makes it possible for business users to explore on the diverse data sets the Endeca Server can hold at any one time. The search capabilities in the Endeca server differ from other Information Discovery products with simple “search boxes” in the following ways: The Endeca Server Supports Exploratory Search.  Enterprise data frequently requires the user to explore content through an ad hoc dialog, with guidance that helps them succeed. This has implications for how to design search features. Traditional search doesn’t assume a dialog, and so it uses relevance ranking to get its best guess to the top of the results list. It calculates many relevance factors for each query, like word frequency, distance, and meaning, and then reduces those many factors to a single score based on a proprietary “black box” formula. But how can a business users, searching, act on the information that the document is say only 38.1% relevant? In contrast, exploratory search gives users the opportunity to clarify what is relevant to them through refinements and summaries. This approach has received consumer endorsement through popular ecommerce sites where guided navigation across a broad range of products has helped consumers better discover choices that meet their, sometimes undetermined requirements. This same model exists in Oracle Endeca Information Discovery. In fact, the Endeca Server powers many of the most popular e-commerce sites in the world. The Endeca Server Supports Cascading Relevance. Traditional approaches of search reduce many relevance weights to a single score. This means that if a result with a good title match gets a similar score to one with an exact phrase match, they’ll appear next to each other in a list. But a user can’t deduce from their score why each got it’s ranking, even though that information could be valuable. Oracle Endeca Information Discovery takes a different approach. The Endeca Server stratifies results by a primary relevance strategy, and then breaks ties within a strata by ordering them with a secondary strategy, and so on. Application managers get the explicit means to compose these strategies based on their knowledge of their own domain. This approach gives both business users and managers a deterministic way to set and understand relevance. Now that you have an understanding of two of the core search capabilities in Oracle Endeca Information Discovery, our next blog post on this topic will discuss more advanced features including set search, second-order relevance as well as an understanding of faceted search mechanisms that include queries and filters.  

    Read the article

  • Configure a wireless network that accepts any WPA2-PSK network key

    - by Michel
    I recently bought a UART WiFi module ( this one ) and configured it with right SSID but wrong password( and I don't know what it is ). The problem is that I can't reset this module to its manufacture settings and I can't connect to this module via serial port to configure it with some wire or cable. But I'm sure that my module is trying to connect my access point but with wrong network key ( because in logs of my access point I can see my module that trying to connect but it can't ) So, I wonder to know is there any way to create or configure a network (using some access point or something else) based on WPA2 Personal security that accepts any WPA2-PSK passwords ? Or is there any other solution for this problem ? If no, is there anyway to see what password this module using to connect to that network ? ( If yes, then I can change password of my network to that password and access to this module's admin panel ) I tried create an open network ( without any security key ) but my module just searches for WPA2 based networks ( I think ).

    Read the article

  • Not able to access other machines on network

    - by TheVillageIdiot
    Hi I'm running Windows 7 Enterprise (32bit) on my laptop. For some time I'm not able to access other machines using \\192.168.xxx.xxx. I've installed VM Ware player on my machine few days back but I don't remember if it happened just after that or there is some other reason behind it. EDIT:- I've disabled VMWare Bridge Protocol but still no effect. Please help me. PS:- I've used both wireless and wired networks. Network sharing is enabled and I can ping other machines but cannot access network shares. I get following message: \\xxx.xxx.xxx.xxx You might not have permission to use this network resource. Contact the administrator of this server to find out if you have acess permissions. The request is not supported. EDIT (2):- Network Discovery, File and Printer Sharing, Folder sharing are all on.

    Read the article

  • Why is it bad to map network drives in Windows?

    - by Beeblebrox
    There has been some spirited discussion within our IT department about mapping network drives. In particular, it has been said that mapping network drives is A Bad Thing and that adding DFS paths or network shares to your (Windows Explorer/Libraries) Favourites is a far better solution. Why is this the case? Personally I find the convenience of z:\folder to be better than \\server\path\folder', particularly with cmd line and scripting (of course I'm not talking about hard-coded links, naturally!). I have tried searching for pros and cons of mapped network drives, but I haven't seen anything other than 'should the network go down, the drive will be unavailable'. But this is a limitation of any network-accessed storage... I have also been told that mapped network drives poll the network when the network resource is unavailable, however I haven't found more information on this. Wouldn't this still be an issue with other network access mechanisms (that is, mapped Favourites) whenever Windows tries to enumerate the file system (for example, when a file/folder picker dialog is opened)? -- Do network drives poll the network any more than a Windows Explorer library/favourite?

    Read the article

  • Keep Xubuntu Network Manager from overwriting resolv.conf

    - by leeand00
    How do I keep Xubuntu 11.10 from overwriting resolv.conf everytime I reboot my machine? Everytime I reboot, I get an overwritten resolv.conf that has the words # Generated by Network Manager and no nameservers specified. I ran the following to get rid of Network Manager, but it's still replacing my resolv.conf when I restart the machine. sudo apt-get --purge remove network-manager sudo apt-get --purge remove network-manager-gnome sudo apt-get --purge remove network-manager-pptp sudo apt-get --purge remove network-manager-pptp-gnome

    Read the article

  • New Version 3.1 Endeca Information Discovery Now Available

    - by Mike.Hallett(at)Oracle-BI&EPM
    Normal 0 false false false EN-GB X-NONE X-NONE MicrosoftInternetExplorer4 Business User Self-Service Data Mash-up Analysis and Discovery integrated with OBI11g and Hadoop Oracle Endeca Information Discovery 3.1 (OEID) is a major release that incorporates significant new self-service discovery capabilities for business users, including agile data mashup, extended support for unstructured analytics, and an even tighter integration with Oracle BI.  · Self-Service Data Mashup and Discovery Dashboards: business users can combine information from multiple sources, including their own up-loaded spreadsheets, to conduct analysis on the complete set.  Creating discovery dashboards has been made even easier by intuitive drag-and drop layouts and wizard-based configuration.  Business users can now build new discovery applications in minutes, without depending on IT. · Enhanced Integration with Oracle BI: OEID 3.1 enhances its’ native integration with Oracle Business Intelligence Foundation. Business users can now incorporate information from trusted BI warehouses, leveraging dimensions and attributes defined in Oracle’s Common Enterprise Information Model, but evolve them based on the varying day-to-day demands and requirements that they personally manage. · Deep Unstructured Analysis: business users can gain new insights from a wide variety of enterprise and public sources, helping companies to build an actionable Big Data strategy.  With OEID’s long-standing differentiation in correlating unstructured information with structured data, business users can now perform their own text mining to identify hidden concepts, without having to request support from IT. They can augment these insights with best in class keyword search and pattern matching, all in the context of rich, interactive visualizations and analytic summaries. · Enterprise-Class Self-Service Discovery:  OEID 3.1 enables IT to provide a powerful self-service platform to the business as part of a broader Business Analytics strategy, preserving the value of existing investments in data quality, governance, and security.  Business users can take advantage of IT-curated information to drive discovery across high volumes and varieties of data, and share insights with colleagues at a moment’s notice. · Harvest Content from the Web with the Endeca Web Acquisition Toolkit:  Oracle now provides best-of-breed data access to website content through the Oracle Endeca Web Acquisition Toolkit.  This provides an agile, graphical interface for developers to rapidly access and integrate any information exposed through a web front-end.  Organizations can now cost-effectively include content from consumer sites, industry forums, government or supplier portals, cloud applications, and myriad other web sources as part of their overall strategy for data discovery and unstructured analytics. For more information: OEID 3.1 OTN Software and Documentation Download And Endeca available for download on Software Delivery Cloud (eDelivery) New OEID 3.1 Videos on YouTube Oracle.com Endeca Site /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}

    Read the article

  • New MOS Community: Oracle Endeca Information Discovery

    - by inowodwo
    Effective November 22, the Oracle Endeca Community has been split into separate communities representing individual Oracle Endeca products. The Oracle Endeca Information Discovery Community will fall under the Business Intelligence (BI) category, and can be found here: https://communities.oracle.com/portal/server.pt/community/oracle_endeca_information_discovery/551. This community will focus on the Oracle Endeca Information Discovery (OEID) product, formerly known as Endeca Latitude and Endeca Discovery Framework. The previous Oracle Endeca Community has been renamed to Oracle Endeca Guided Search Community and will focus on discussions around the Oracle Endeca Guided Search product, formerly known as Endeca Infront and Endeca IAP. The Guided Search Community will continue to be located under the Oracle Commerce Category. Forum threads in the previous Oracle Endeca Community related to Oracle Endeca Information Discovery product have been moved to the new Oracle Endeca Information Discovery Community. We look forward to your continued involvement.

    Read the article

  • Why are two indicator-network versions being worked on?

    - by Daniel Rodrigues
    Some months ago, on the road to Ubuntu Maverick, a new system indicator, network (with connman as a backend), started to be developed. The plan was to get it into UNE and release it with no notifcation area. Unfortunately it didn't make it into the final version. However, continued efforts are still being made to improve it, and I'm getting regular updates. From a blueprint from the last UDS, I read that the plan was to ship no notification area and only indicators. For that, it was defined that nm-applet (backend: NetworkManager) should be ported to the appindicator library. Today I discovered that those efforts are going on and a initial version is available for testing, available from Matt Trudel PPA (Natty only). So, my questions is, to whoever has the necessary info: wouldn't it be easier to join efforts and concentrate the work in just one version (probably NetworkManager backend, as that's the official plan), instead of breaking those efforts apart and hampering both testing and developing? Both indicators are being developed by Canonical engineers, and that really doesn't make much sense. So, any Canonical engineer willing to clarify this?

    Read the article

  • Oracle Endeca Information Discovery 3.1 is Now Available

    - by p.anda
    Oracle Endeca Information Discovery (OEID) 3.1 is a major release that incorporates significant new self-service discovery capabilities for business users. These include agile data mashup, extended support for unstructured analytics, and an even tighter integration with Oracle BI This release is available for download from: Oracle Delivery Cloud Oracle Technology Network Some of the what's new highlights ... Self-service data mashup... enables access to a wider variety of personal and trusted enterprise data sources. Blend multiple data sets in a single app. Agile discovery dashboards... allows users to easily create, configure, and securely share discovery dashboards with intelligent defaults, intuitive wizards and drag-and-drop configuration. Deeper unstructured analysis ... enables users to enrich text using term extraction and whitelist tagging while the data is live. Enhanced integration with OBI... provides easier wizards for data selection and enables OBI Server as a self-service data source. Enterprise-class data discovery... offers faster performance, a trusted data connection library, improved auditing and increased data connectivity for Hadoop, web content and Oracle Data Integrator. Find out more ... visit the OEID Overview page to download the What's New and related Data Sheet PDF documents. Have questions or want to share details for Oracle Endeca Information Discovery?  The MOS Communities is a great first stop to visit and you can stop-by at MOS OEID Community.

    Read the article

  • 12.04 wired network doesn't work RTL8111/8168B

    - by laket
    its a fresh 12.04 install 64bits. wifi works fine, wired stays off with cable connected and network-manager shows as if cable is disconnected. Turning off networking lights up my network-cards leds, turning networking on shuts off the leds and no communication is possible. I already tried, turning off the network-manager (sudo service network-manager stop) and setting up my eth0 manually, as soon as I switch off the network-manager my leds light up, but after setting up manually eth0 (sudo ifconfig eth0 10.2.10.114 netmask 255.255.0.0 up) the leds turn off again. I am still dual booting with 10.04 where I have no issues at all, leaving the cable connected all time to my notebook and a switch. Here is some hardware info: lshw: *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 03 serial: c8:0a:a9:d7:05:97 size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half firmware=rtl_nic/rtl8168d-2.fw latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:42 ioport:2000(size=256) memory:f0004000-f0004fff memory:f0000000-f0003fff memory:f0010000-f001ffff lspci: 02:00.0 Network controller: Atheros Communications Inc. AR9285 Wireless Network Adapter (PCI-Express) (rev 01) 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 03) ifconfig eth0: eth0 Link encap:Ethernet HWaddr c8:0a:a9:d7:05:97 inet addr:10.2.10.114 Bcast:10.2.255.255 Mask:255.255.0.0 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:42 Base address:0xc000 cat /etc/network/interfaces: (already tried here with and w/o eth0) auto lo eth0 iface lo inet loopback cat /etc/NetworkManager/NetworkManager.conf [main] plugins=ifupdown,keyfile dns=dnsmasq [ifupdown] managed=false Any help is welcome ;) Laket

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >