Search Results

Search found 27 results on 2 pages for 'octree'.

Page 1/2 | 1 2  | Next Page >

  • Octree implementation for fustrum culling

    - by Manvis
    I'm learning modern (=3.1) OpenGL by coding a 3D turn based strategy game, using C++. The maps are composed of 100x90 3D hexagon tiles that range from 50 to 600 tris (20 different types) + any player units on those tiles. My current rendering technique involves sorting meshes by shaders they use (minimizing state changes) and then calling glDrawElementsInstanced() for drawing. Still get solid 16.6 ms/frame on my GTX 560Ti machine but the game struggles (45.45 ms/frame) on an old 8600GT card. I'm certain that using an octree and fustrum culling will help me here, but I have a few questions before I start implementing it: Is it OK for an octree node to have multiple meshes in it (e.g. can a soldier and the hex tile he's standing on end up in the same octree node)? How is one supposed to treat changes in object postion (e.g. several units are moving 3 hexes down)? I can't seem to find good a explanation on how to do it. As I've noticed, soting meshes by shaders is a really good way to save GPU. If I put node contents into, let's say, std::list and sort it before rendering, do you think I would gain any performance, or would it just create overhead on CPU's end? I know that this sounds like early optimization and implementing + testing would be the best way to find out, but perhaps someone knows from experience?

    Read the article

  • Octree subdivision problem

    - by ChaosDev
    Im creating octree manually and want function for effectively divide all nodes and their subnodes - For example - I press button and subnodes divided - press again - all subnodes divided again. Must be like - 1 - 8 - 64. The problem is - i dont understand how organize recursive loops for that. OctreeNode in my unoptimized implementation contain pointers to subnodes(childs),parent,extra vector(contains dublicates of child),generation info and lots of information for drawing. class gOctreeNode { //necessary fields gOctreeNode* FrontBottomLeftNode; gOctreeNode* FrontBottomRightNode; gOctreeNode* FrontTopLeftNode; gOctreeNode* FrontTopRightNode; gOctreeNode* BackBottomLeftNode; gOctreeNode* BackBottomRightNode; gOctreeNode* BackTopLeftNode; gOctreeNode* BackTopRightNode; gOctreeNode* mParentNode; std::vector<gOctreeNode*> m_ChildsVector; UINT mGeneration; bool mSplitted; bool isSplitted(){return m_Splitted;} .... //unnecessary fields }; DivideNode of Octree class fill these fields, set mSplitted to true, and prepare for correctly drawing. Octree contains basic nodes(m_nodes). Basic node can be divided, but now I want recursivly divide already divided basic node with 8 subnodes. So I write this function. void DivideAllChildCells(int ix,int ih,int id) { std::vector<gOctreeNode*> nlist; std::vector<gOctreeNode*> dlist; int index = (ix * m_Height * m_Depth) + (ih * m_Depth) + (id * 1);//get index of specified node gOctreeNode* baseNode = m_nodes[index].get(); nlist.push_back(baseNode->FrontTopLeftNode); nlist.push_back(baseNode->FrontTopRightNode); nlist.push_back(baseNode->FrontBottomLeftNode); nlist.push_back(baseNode->FrontBottomRightNode); nlist.push_back(baseNode->BackBottomLeftNode); nlist.push_back(baseNode->BackBottomRightNode); nlist.push_back(baseNode->BackTopLeftNode); nlist.push_back(baseNode->BackTopRightNode); bool cont = true; UINT d = 0;//additional recursive loop param (?) UINT g = 0;//additional recursive loop param (?) LoopNodes(d,g,nlist,dlist); //Divide resulting nodes for(UINT i = 0; i < dlist.size(); i++) { DivideNode(dlist[i]); } } And now, back to the main question,I present LoopNodes, which must do all work for giving dlist nodes for splitting. void LoopNodes(UINT& od,UINT& og,std::vector<gOctreeNode*>& nlist,std::vector<gOctreeNode*>& dnodes) { //od++;//recursion depth bool f = false; //pass through childs for(UINT i = 0; i < 8; i++) { if(nlist[i]->isSplitted())//if node splitted and have childs { //pass forward through tree for(UINT j = 0; j < 8; j++) { nlist[j] = nlist[j]->m_ChildsVector[j];//set pointers to these childs } LoopNodes(od,og,nlist,dnodes); } else //if no childs { //add to split vector dnodes.push_back(nlist[i]); } } } This version of loop nodes works correctly for 2(or 1?) generations after - this will not divide neightbours nodes, only some corners. I need correct algorithm. Screenshot All I need - is correct version of LoopNodes, which can add all nodes for DivideNode.

    Read the article

  • library for octree or kdtree

    - by Will
    Are there any robust performant libraries for indexing objects? It would need frustum culling and visiting objects hit by a ray as well as neighbourhood searches. I can find lots of articles showing the math for the component parts, often as algebra rather than simple C, but nothing that puts it all together (apart from perhaps Ogre, which has rather more involved and isn't so stand-alone). Surely hobby game makers don't all have to make their own octrees? (Python or C/C++ w/bindings preferred)

    Read the article

  • Would someone please explain Octree Collisions to me?

    - by A-Type
    I've been reading everything I can find on the subject and I feel like the pieces are just about to fall into place, but I just can't quite get it. I'm making a space game, where collisions will occur between planets, ships, asteroids, and the sun. Each of these objects can be subdivided into 'chunks', which I have implemented to speed up rendering (the vertices can and will change often at runtime, so I've separated the buffers). These subdivisions also have bounding primitives to test for collision. All of these objects are made of blocks (yeah, it's that kind of game). Blocks can also be tested for rough collisions, though they do not have individual bounding primitives for memory reasons. I think the rough testing seems to be sufficient, though. So, collision needs to be fairly precise; at block resolution. Some functions rely on two blocks colliding. And, of course, attacking specific blocks is important. Now what I am struggling with is filtering my collision pairs. As I said, I've read a lot about Octrees, but I'm having trouble applying it to my situation as many tutorials are vague with very little code. My main issues are: Are Octrees recalculated each frame, or are they stored in memory and objects are shuffled into different divisions as they move? Despite all my reading I still am not clear on this... the vagueness of it all has been frustrating. How far do Octrees subdivide? Planets in my game are quite large, while asteroids are smaller. Do I subdivide to the size of the planet, or asteroid (where planet is in multiple divisions)? Or is the limit something else entirely, like number of elements in the division? Should I load objects into the octrees as 'chunks' or in the whole, then break into chunks later? This could be specific to my implementation, I suppose. I was going to ask about how big my root needed to be, but I did manage to find this question, and the second answer seems sufficient for me. I'm afraid I don't really get what he means by adding new nodes and doing subdivisions upon adding new objects, probably because I'm confused about whether the tree is maintained in memory or recalculated per-frame.

    Read the article

  • XNA Octree with batching

    - by Alex
    I'm integrating batching in my engine. However I'm using an octree which is auto generated around my scene. Now batching renders a hole group at ones while an octree sorts out which objects that should be rendered within the camera frustum, therefore dividing the group. Batching and octree doesn't go along very well, right? Problem: The way I see it I have two options, either create batch groups based on objects who are close to one another within the octree or I can rebuild the batching matrixbuffer for the instances visible each frame. Which approach should I go with or does there exist another solution?

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Octrees as data structure

    - by Christian Frantz
    In my cube world, I want to use octrees to represent my chunks of 20x20x20 cubes for frustum and occlusion culling. I understand how octrees work, I just dont know if I'm going about this the right way. My base octree class is taken from here: http://www.xnawiki.com/index.php/Octree What I'm wondering is how to apply occlusion culling using this class. Does it make sense to have one octree for each cube chunk? Or should I make the octree bigger? Since I'm using cubes, each cube should fit into a node without overlap so that won't be an issue

    Read the article

  • Function for building an isosurface (a sphere cut by planes)

    - by GameDevEnthusiast
    I want to build an octree over a quarter of a sphere (for debugging and testing). The octree generator relies on the AIsosurface interface to compute the density and normal at any given point in space. For example, for a full sphere the corresponding code is: // returns <0 if the point is inside the solid virtual float GetDensity( float _x, float _y, float _z ) const override { Float3 P = Float3_Set( _x, _y, _z ); Float3 v = Float3_Subtract( P, m_origin ); float l = Float3_LengthSquared( v ); float d = Float_Sqrt(l) - m_radius; return d; } // estimates the gradient at the given point virtual Float3 GetNormal( float _x, float _y, float _z ) const override { Float3 P = Float3_Set( _x, _y, _z ); float d = this->AIsosurface::GetDensity( P ); float Nx = this->GetDensity( _x + 0.001f, _y, _z ) - d; float Ny = this->GetDensity( _x, _y + 0.001f, _z ) - d; float Nz = this->GetDensity( _x, _y, _z + 0.001f ) - d; Float3 N = Float3_Normalized( Float3_Set( Nx, Ny, Nz ) ); return N; } What is a nice and fast way to compute those values when the shape is bounded by a low number of half-spaces?

    Read the article

  • Octrees and Vertex Buffer Objects

    - by sharethis
    As many others I want to code a game with a voxel based terrain. The data is represented by voxels which are rendered using triangles. I head of two different approaches and want to combine them. First, I could once divide the space in chunks of a fixed size like many games do. What I could do now is to generate a polygon shape for each chunk and store that in a vertex buffer object (vbo). Each time a voxel changes, the polygon and vbo of its chunk is recreated. Additionally it is easy to dynamically load and reload parts of the terrain. Another approach would be to use octrees and divide the space in eight cubes which are divided again and again. So I could efficiently render the terrain because I don't have to go deeper in a solid cube and can draw that as a single one (with a repeated texture). What I like to use for my game is an octree datastructure. But I can't imagine how to use vbos with that. How is that done, or is this impossible?

    Read the article

  • Lighting a Voxel World Realistically

    - by sharethis
    I am new to game development and never implemented a complicated (and realistic) lighting. My game uses a 3d voxel terrain world (like Minecraft). To hold the data I use octrees. My goal is to render a more realistic world scene like in most voxel games. For that I want to use a bezier algorithm to round out the blocky world. Assume that I already have a large generated polygon of my terrain (or some of them). I heard of some techniques like volumetric light, global illumination, ... What approaches of a very realistic lighting are there for my "organic shaped" voxel game?

    Read the article

  • Dynamic Quad/Oct Trees

    - by KKlouzal
    I've recently discovered the power of Quadtrees and Octrees and their role in culling/LOD applications, however I've been pondering on the implementations for a Dynamic Quad/Oct Tree. Such tree would not require a complete rebuild when some of the underlying data changes (Vertex Data). Would it be possible to create such a tree? What would that look like? Could someone point me in the correct direction to get started? The application here would, in my scenario, be used for a dynamically changing spherical landscape with over 10,000,000 verticies. The use of Quad/Oct Trees is obvious for Culling & LOD as well as the benefits from not having to completely recompute the tree when the underlying data changes.

    Read the article

  • Scene graphs and spatial partitioning structures: What do you really need?

    - by tapirath
    I've been fiddling with 2D games for awhile and I'm trying to go into 3D game development. I thought I should get my basics right first. From what I read scene graphs hold your game objects/entities and their relation to each other like 'a tire' would be the child of 'a vehicle'. It's mainly used for frustum/occlusion culling and minimizing the collision checks between the objects. Spatial partitioning structures on the other hand are used to divide a big game object (like the map) to smaller parts so that you can gain performance by only drawing the relevant polygons and again minimizing the collision checks to those polygons only. Also a spatial partitioning data structure can be used as a node in a scene graph. But... I've been reading about both subjects and I've seen a lot of "scene graphs are useless" and "BSP performance gain is irrelevant with modern hardware" kind of articles. Also some of the game engines I've checked like gameplay3d and jmonkeyengine are only using a scene graph (That also may be because they don't want to limit the developers). Whereas games like Quake and Half-Life only use spatial partitioning. I'm aware that the usage of these structures very much depend on the type of the game you're developing so for the sake of clarity let's assume the game is a FPS like Counter-Strike with some better outdoor environment capabilities (like a terrain). The obvious question is which one is needed and why (considering the modern hardware capabilities). Thank you.

    Read the article

  • What library for octrees or kd-trees?

    - by Will
    Are there any robust performant libraries for indexing objects? It would need frustum culling and visiting objects hit by a ray as well as neighbourhood searches. I can find lots of articles showing the math for the component parts, often as algebra rather than simple C, but nothing that puts it all together (apart from perhaps Ogre, which has rather more involved and isn't so stand-alone). Surely hobby game makers don't all have to make their own octrees? (Python or C/C++ w/bindings preferred)

    Read the article

  • C++ destructor seems to be called 'early'

    - by suicideducky
    Please see the "edit" section for the updated information. Sorry for yet another C++ dtor question... However I can't seem to find one exactly like mine as all the others are assigning to STL containers (that will delete objects itself) whereas mine is to an array of pointers. So I have the following code fragment #include<iostream> class Block{ public: int x, y, z; int type; Block(){ x=1; y=2; z=3; type=-1; } }; template <class T> class Octree{ T* children[8]; public: ~Octree(){ for( int i=0; i<8; i++){ std::cout << "del:" << i << std::endl; delete children[i]; } } Octree(){ for( int i=0; i<8; i++ ) children[i] = new T; } // place newchild in array at [i] void set_child(int i, T* newchild){ children[i] = newchild; } // return child at [i] T* get_child(int i){ return children[i]; } // place newchild at [i] and return the old [i] T* swap_child(int i, T* newchild){ T* p = children[i]; children[i] = newchild; return p; } }; int main(){ Octree< Octree<Block> > here; std::cout << "nothing seems to have broken" << std::endl; } Looking through the output I notice that the destructor is being called many times before I think it should (as Octree is still in scope), the end of the output also shows: del:0 del:0 del:1 del:2 del:3 Process returned -1073741819 (0xC0000005) execution time : 1.685 s Press any key to continue. For some reason the destructor is going through the same point in the loop twice (0) and then dying. All of this occures before the "nothing seems to have gone wrong" line which I expected before any dtor was called. Thanks in advance :) EDIT The code I posted has some things removed that I thought were unnecessary but after copying and compiling the code I pasted I no longer get the error. What I removed was other integer attributes of the code. Here is the origional: #include<iostream> class Block{ public: int x, y, z; int type; Block(){ x=1; y=2; z=3; type=-1; } Block(int xx, int yy, int zz, int ty){ x=xx; y=yy; z=zz; type=ty; } Block(int xx, int yy, int zz){ x=xx; y=yy; z=zz; type=0; } }; template <class T> class Octree{ int x, y, z; int size; T* children[8]; public: ~Octree(){ for( int i=0; i<8; i++){ std::cout << "del:" << i << std::endl; delete children[i]; } } Octree(int xx, int yy, int zz, int size){ x=xx; y=yy; z=zz; size=size; for( int i=0; i<8; i++ ) children[i] = new T; } Octree(){ Octree(0, 0, 0, 10); } // place newchild in array at [i] void set_child(int i, T* newchild){ children[i] = newchild; } // return child at [i] T* get_child(int i){ return children[i]; } // place newchild at [i] and return the old [i] T* swap_child(int i, T* newchild){ T* p = children[i]; children[i] = newchild; return p; } }; int main(){ Octree< Octree<Block> > here; std::cout << "nothing seems to have broken" << std::endl; } Also, as for the problems with set_child, get_child and swap_child leading to possible memory leaks this will be solved as a wrapper class will either use get before set or use swap to get the old child and write this out to disk before freeing the memory itself. I am glad that it is not my memory management failing but rather another error. I have not made a copy and/or assignment operator yet as I was just testing the block tree out, I will almost certainly make them all private very soon. This version spits out -1073741819. Thank you all for your suggestions and I apologise for highjacking my own thread :$

    Read the article

  • RTS Voxel Engine using LWJGL - Textures glitching

    - by Dieter Hubau
    I'm currently working on an RTS game engine using voxels. I have implemented a basic chunk manager using an Octree of Octrees which contains my voxels (simple square blocks, as in Minecraft). I'm using a Voronoi-based terrain generation to get a simplistic yet relatively realistic heightmap. I have no problem showing a 256*256*256 grid of voxels with a decent framerate (250), because of frustum culling, face culling and only rendering visible blocks. For example, in a random voxel grid of 256*256*256 I generally only render 100k-120k faces, not counting frustum culling. Frustum culling is only called every 100ms, since calling it every frame seemed a bit overkill. Now I have reached the stage of texturing and I'm experiencing some problems: Some experienced people might already see the problem, but if we zoom in, you can see the glitches more clearly: All the seams between my blocks are glitching and kind of 'overlapping' or something. It's much more visible when you're moving around. I'm using a single, simple texture map to draw on my cubes, where each texture is 16*16 pixels big: I have added black edges around the textures to get a kind of cellshaded look, I think it's cool. The texture map has 256 textures of each 16*16 pixels, meaning the total size of my texture map is 256*256 pixels. The code to update the ChunkManager: public void update(ChunkManager chunkManager) { for (Octree<Cube> chunk : chunks) { if (chunk.getId() < 0) { // generate an id for the chunk to be able to call it later chunk.setId(glGenLists(1)); } glNewList(chunk.getId(), GL_COMPILE); glBegin(GL_QUADS); faces += renderChunk(chunk); glEnd(); glEndList(); } } Where my renderChunk method is: private int renderChunk(Octree<Cube> node) { // keep track of the number of visible faces in this chunk int faces = 0; if (!node.isEmpty()) { if (node.isLeaf()) { faces += renderItem(node); } List<Octree<Cube>> children = node.getChildren(); if (children != null && !children.isEmpty()) { for (Octree<Cube> child : children) { faces += renderChunk(child); } } return faces; } Where my renderItem method is the following: private int renderItem(Octree<Cube> node) { Cube cube = node.getItem(-1, -1, -1); int faces = 0; float x = node.getPosition().x; float y = node.getPosition().y; float z = node.getPosition().z; float size = cube.getSize(); Vector3f point1 = new Vector3f(-size + x, -size + y, size + z); Vector3f point2 = new Vector3f(-size + x, size + y, size + z); Vector3f point3 = new Vector3f(size + x, size + y, size + z); Vector3f point4 = new Vector3f(size + x, -size + y, size + z); Vector3f point5 = new Vector3f(-size + x, -size + y, -size + z); Vector3f point6 = new Vector3f(-size + x, size + y, -size + z); Vector3f point7 = new Vector3f(size + x, size + y, -size + z); Vector3f point8 = new Vector3f(size + x, -size + y, -size + z); TextureCoordinates tc = textureManager.getTextureCoordinates(cube.getCubeType()); // front face if (cube.isVisible(CubeSide.FRONT)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point1.x, point1.y, point1.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point4.x, point4.y, point4.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point3.x, point3.y, point3.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point2.x, point2.y, point2.z); } // back face if (cube.isVisible(CubeSide.BACK)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point5.x, point5.y, point5.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point6.x, point6.y, point6.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point7.x, point7.y, point7.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point8.x, point8.y, point8.z); } // left face if (cube.isVisible(CubeSide.SIDE_LEFT)) { faces++; glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point5.x, point5.y, point5.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v]); glVertex3f(point1.x, point1.y, point1.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u + 1], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point2.x, point2.y, point2.z); glTexCoord2f(TEXTURE_U_COORDINATES[tc.u], TEXTURE_V_COORDINATES[tc.v + 1]); glVertex3f(point6.x, point6.y, point6.z); } // ETC ETC return faces; } When all this is done, I simply render my lists every frame, like this: public void render(ChunkManager chunkManager) { glBindTexture(GL_TEXTURE_2D, textureManager.getCubeTextureId()); // load all chunks from the tree List<Octree<Cube>> chunks = chunkManager.getTree().getAllItems(); for (Octree<Cube> chunk : chunks) { if (frustum.cubeInFrustum(chunk.getPosition(), chunk.getSize() / 2)) { glCallList(chunk.getId()); } } } I don't know if anyone is willing to go through all of this code or maybe you can spot the problem right away, but that is basically the problem, and I can't find a solution :-) Thanks for reading and any help is appreciated!

    Read the article

  • How to get results efficiently out of an Octree/Quadtree?

    - by Reveazure
    I am working on a piece of 3D software that has sometimes has to perform intersections between massive numbers of curves (sometimes ~100,000). The most natural way to do this is to do an N^2 bounding box check, and then those curves whose bounding boxes overlap get intersected. I heard good things about octrees, so I decided to try implementing one to see if I would get improved performance. Here's my design: Each octree node is implemented as a class with a list of subnodes and an ordered list of object indices. When an object is being added, it's added to the lowest node that entirely contains the object, or some of that node's children if the object doesn't fill all of the children. Now, what I want to do is retrieve all objects that share a tree node with a given object. To do this, I traverse all tree nodes, and if they contain the given index, I add all of their other indices to an ordered list. This is efficient because the indices within each node are already ordered, so finding out if each index is already in the list is fast. However, the list ends up having to be resized, and this takes up most of the time in the algorithm. So what I need is some kind of tree-like data structure that will allow me to efficiently add ordered data, and also be efficient in memory. Any suggestions?

    Read the article

  • Can frequent state changes decrease rendering performance?

    - by Miro
    Can frequent texture and shader binding decrease rendering performance? "Frequent" binding example: for object for material in object render part of object using that material "Low count" binding example: for material for object in material render part of object using that material I'm planning to use an octree later and with this "low count" method of rendering it can drastically increase memory consumption. So is it good idea?

    Read the article

  • How change LOD in geometry?

    - by ChaosDev
    Im looking for simple algorithm of LOD, for change geometry vertexes and decrease frame time. Im created octree, but now I want model or terrain vertex modify algorithm,not for increase(looking on tessellation later) but for decrease. I want something like this Questions: Is same algorithm can apply either to model and terrain correctly? Indexes need to be modified ? I must use octree or simple check distance between camera and object for desired effect ? New value of indexcount for DrawIndexed function needed ? Code: //m_LOD == 10 in the beginning //m_RawVerts - array of 3d Vector filled with values from vertex buffer. void DecreaseLOD() { m_LOD--; if(m_LOD<1)m_LOD=1; RebuildGeometry(); } void IncreaseLOD() { m_LOD++; if(m_LOD>10)m_LOD=10; RebuildGeometry(); } void RebuildGeometry() { void* vertexRawData = new byte[m_VertexBufferSize]; void* indexRawData = new DWORD[m_IndexCount]; auto context = mp_D3D->mp_Context; D3D11_MAPPED_SUBRESOURCE data; ZeroMemory(&data,sizeof(D3D11_MAPPED_SUBRESOURCE)); context->Map(mp_VertexBuffer->mp_buffer,0,D3D11_MAP_READ,0,&data); memcpy(vertexRawData,data.pData,m_VertexBufferSize); context->Unmap(mp_VertexBuffer->mp_buffer,0); context->Map(mp_IndexBuffer->mp_buffer,0,D3D11_MAP_READ,0,&data); memcpy(indexRawData,data.pData,m_IndexBufferSize); context->Unmap(mp_IndexBuffer->mp_buffer,0); DWORD* dwI = (DWORD*)indexRawData; int sz = (m_VertexStride/sizeof(float));//size of vertex element //algorithm must be here. std::vector<Vector3d> vertices; int i = 0; for(int j = 0; j < m_VertexCount; j++) { float x1 = (((float*)vertexRawData)[0+i]); float y1 = (((float*)vertexRawData)[1+i]); float z1 = (((float*)vertexRawData)[2+i]); Vector3d lv = Vector3d(x1,y1,z1); //my useless attempts if(j+m_LOD+1<m_RawVerts.size()) { float v1 = VECTORHELPER::Distance(m_RawVerts[dwI[j]],m_RawVerts[dwI[j+m_LOD]]); float v2 = VECTORHELPER::Distance(m_RawVerts[dwI[j]],m_RawVerts[dwI[j+m_LOD+1]]); if(v1>v2) lv = m_RawVerts[dwI[j+1]]; else if(v2<v1) lv = m_RawVerts[dwI[j+2]]; } (((float*)vertexRawData)[0+i]) = lv.x; (((float*)vertexRawData)[1+i]) = lv.y; (((float*)vertexRawData)[2+i]) = lv.z; i+=sz;//pass others vertex format values without change } for(int j = 0; j < m_IndexCount; j++) { //indices ? } //set vertexes to device UpdateVertexes(vertexRawData,mp_VertexBuffer->getSize()); delete[] vertexRawData; delete[] indexRawData; }

    Read the article

  • Implementation of Race Game Tree

    - by Mert Toka
    I build a racing game right in OpenGL using Glut, and I'm a bit lost in all the details. First of all, any suggestions as a road map would be more than great. So far what I thought is this: Tree implementation for transformations. Simulated dynamics.(*) Octree implementation for collusion detection. Actual collusion detection.(*) Modelling in Maya and export them as .OBJs. Polishing the game with GLSL or something like that for graphics quality. (*): I am not sure the order of these two. So I started with the simulated dynamics without tree, and it turned out to be a huge chaos for me. Is there any way you can think of such that could help me to build such tree to use in racing game? I thought something like this but I have no idea how to implement it. Reds are static, yellows are dynamic nodes

    Read the article

  • Castor3D en version 0.6.1.0, le moteur de rendu 3D en C++ supporte désormais OpenGL 3.x et 4.x

    Présentation Ce moteur 3D a l'ambition d'être multi-plateformes et multi-renderer. Pour l'instant, seul le développement sous Windows est exploitable (je galère pour la création d'une fenêtre compatible OpenGL sous Linux). Seul le Renderer OpenGL est implémenté (je n'ai aucune connaissance en Direct3D). La reconnaissance des Shaders est implémentée, uniquement la partie GLSL pour l'instant, on verra un jour pour intégrer Cg. Pas encore de LOD ni de gestion OcTree pour l'instant, mais c'est prévu. Support de plusieurs formats de fichiers : Obj, 3DS, MD2, MD3, PLY. Le système d'animation a un squelette qu'il me faut compléter afin d'avoir une implémentation correcte d'un système d'animation avec ou sans squeleton (...

    Read the article

  • What's a good data structure solution for a scene manager in XNA?

    - by tunnuz
    Hello, I'm playing with XNA for a game project of myself, I had previous exposure to OpenGL and worked a bit with Ogre, so I'm trying to get the same concepts working on XNA. Specifically I'm trying to add to XNA a scene manager to handle hierarchical transforms, frustum (maybe even occlusion) culling and transparency object sorting. My plan was to build a tree scene manager to handle hierarchical transforms and lighting, and then use an Octree for frustum culling and object sorting. The problem is how to do geometry sorting to support transparencies correctly. I know that sorting is very expensive if done on a per-polygon basis, so expensive that it is not even managed by Ogre. But still images from Ogre look right. Any ideas on how to do it and which data structures to use and their capabilities? I know people around is using: Octrees Kd-trees (someone on GameDev forum said that these are far better than Octrees) BSP (which should handle per-polygon ordering but are very expensive) BVH (but just for frustum and occlusion culling) Thank you Tunnuz

    Read the article

  • Knowing so much but application is a problem?

    - by Moaz ELdeen
    In my work, my friends always tell me, you know so much about computer science, electronics engineering,..etc. But I have difficulty in applying them and my code is crap. How to solve that problem? Will I be better or programming isn't my career? For example, yes I know OCTree that is used for space partitioning in games and it is used for optimization, did I implement it? No, but I know about it in principle.. Do I know algorithms like Sorting, Searching,..etc? Yes, and I know them pretty well, but didn't implement them.. When I get a task, I struggle in applying the things that I know...

    Read the article

  • Coarse Collision Detection in highly dynamic environment

    - by Millianz
    I'm currently working a 3D space game with A LOT of dynamic objects that are all moving (there is pretty much no static environment). I have the collision detection and resolution working just fine, but I am now trying to optimize the collision detection (which is currently O(N^2) -- linear search). I thought about multiple options, a bounding volume hierarchy, a Binary Spatial Partitioning tree, an Octree or a Grid. I however need some help with deciding what's best for my situation. A grid seems unfeasible simply due to the space requirements and cache coherence problems. Since everything is so dynamic however, it seems to be that trees aren't ideal either, since they would have to be completely rebuilt every frame. I must admit I never implemented a physics engine that required spatial partitioning, do I indeed need to rebuild the tree every frame (assuming that everything is constantly moving) or can I update the trees after integrating? Advice is much appreciated - to give some more background: You're flying a space ship in an asteroid field, and there are lots and lots of asteroids and some enemy ships, all of which shoot bullets. EDIT: I came across the "Sweep an Prune" algorithm, which seems like the right thing for my purposes. It appears like the right mixture of fast building of the data structures involved and detailed enough partitioning. This is the best resource I can find: http://www.codercorner.com/SAP.pdf If anyone has any suggestions whether or not I'm going in the right direction, please let me know.

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

1 2  | Next Page >