Search Results

Search found 331 results on 14 pages for 'mutable'.

Page 10/14 | < Previous Page | 6 7 8 9 10 11 12 13 14  | Next Page >

  • Couldn't I just pass an copied string to an Core Data property?

    - by dontWatchMyProfile
    The docs say: The default implementation does not copy attribute values. If the attribute value may be mutable and implements the NSCopying protocol (as is the case with NSString, for example), you can copy the value in a custom accessor to help preserve encapsulation (for example, in the case where an instance of NSMutableString is passed as a value). So instead of getting into trouble and inconvenience with overwriting accessors in my NSManagedObject subclass, couldn't I simply do something like this? myManagedObject.firstName = [[firstNameMutableStr copy] autorelease]; This would have the exact same effect, or not? The dynamic implementation would retain that anyways ... so.... why not the easy way?

    Read the article

  • Scala loop returns as Unit and compiler points to "for" syntax?

    - by DeLongey
    Seems like Unit is the theme of my troubles today. I'm porting a JSON deserializer that uses Gson and when it comes to this for loop: def deserialize(json:JsonElement, typeOfT:Type, context:JsonDeserializationContext) = { var eventData = new EventData(null, null) var jsonObject = json.getAsJsonObject for(entry <- jsonObject.entrySet()) { var key = entry.getKey() var element = entry.getValue() element if("previous_attributes".equals(key)) { var previousAttributes = new scala.collection.mutable.HashMap[String, Object]() populateMapFromJSONObject(previousAttributes, element.getAsJsonObject()) eventData.setPreviousAttributes(previousAttributes) eventData } else if ("object".equals(key)) { val `type` = element.getAsJsonObject().get("object").getAsString() var cl = objectMap.get(`type`).asInstanceOf[StripeObject] var `object` = abstractObject.retrieve(cl, key) eventData.setObject(`object`) eventData } } } The compiler spits out the error type mismatch; found : Unit required: com.stripe.EventData and it points to this line here: for(entry <- jsonObject.entrySet()) Questions Confirm that it is indeed the Gson method entrySet() appearing as unit? If not, what part of the code is creating the issue? I've set return types/values for eventData class methods Is there a workaround for the Gson Unit issue? Thanks!

    Read the article

  • iphone/ipad with 2 side by side tables

    - by jesse001
    I want to create a view with 2 tables side by side, where selecting the row on 1 table effects the content of the other and vice versa (not parent child). My problem is how to send the request. I started with a utility app using core data, and added 2 table view controllers. I added these to the main view nib and moved the tables to the view. One table controls a list from Core Data, then on selecting a row I want it to move to the other table which is based on a mutable array. On didselectrow I want to tell the other table to update, however I can only find samples that are parent/child so involves initializing. Does anyone know of a way to do this for an active view? Thanks heaps for your help.

    Read the article

  • What's safe to assume about the NSMutableArray / NSArray class cluster?

    - by andyvn22
    I know you shouldn't use this to decide whether or not to change an array: if ([possiblyMutable isKindOfClass:[NSMutableArray class]]) But say I'm writing a method and need to return either an NSMutableArray or an NSArray, depending on the mutability of possiblyMutable. The class using my method already knows whether or not it's acceptable to change the returned array. Whether or not it's acceptable to change the returned array directly correlates with whether or not it's acceptable to change possiblyMutable. In that specific case, is this code safe? It seems to me that if it's not acceptable to change the array, but we accidentally get a mutable array, it's ok, because the class using my method won't try to change it. And if it is acceptable to change the array, then we will always get possiblyMutable as an NSMutableArray (though this is the part I'm not entirely clear on). So... safe or not? Alternatives?

    Read the article

  • Python: Access members of a set

    - by emu
    Say I have a set myset of custom objects that may be equal although their references are different (a == b and a is not b). Now if I add(a) to the set, Python correctly assumes that a in myset and b in myset even though there is only len(myset) == 1 object in the set. That is clear. But is it now possible to extract the value of a somehow out from the set, using b only? Suppose that the objects are mutable and I want to change them both, having forgotten the direct reference to a. Put differently, I am looking for the myset[b] operation, which would return exactly the member a of the set. It seems to me that the type set cannot do this (faster than iterating through all its members). If so, is there at least an effective work-around?

    Read the article

  • const member functions can call const member functions only?

    - by Abhi
    Hi all. Do const member functions call only const member functions? class Transmitter{ const static string msg; mutable int size; public: void xmit() const{ size = compute(); cout<<msg; } private: int compute() const{return 5;} }; string const Transmitter::msg = "beep"; int main(){ Transmitter t; t.xmit(); return EXIT_SUCCESS; } If i dont make compute() a const, then the compiler complains. Is it because since a const member function is not allowed to modify members, it wont allow any calls to non-consts since it would mean that the const member function would be 'indirectly' modifying the data members?

    Read the article

  • Imperative Programming v/s Declarative Programming v/s Functional Programming

    - by kaleidoscope
    Imperative Programming :: Imperative programming is a programming paradigm that describes computation in terms of statements that change a program state. In much the same way as the imperative mood in natural languages expresses commands to take action, imperative programs define sequences of commands for the computer to perform. The focus is on what steps the computer should take rather than what the computer will do (ex. C, C++, Java). Declarative Programming :: Declarative programming is a programming paradigm that expresses the logic of a computation without describing its control flow. It attempts to minimize or eliminate side effects by describing what the program should accomplish, rather than describing how to go about accomplishing it. The focus is on what the computer should do rather than how it should do it (ex. SQL). A  C# example of declarative v/s. imperative programming is LINQ. With imperative programming, you tell the compiler what you want to happen, step by step. For example, let's start with this collection, and choose the odd numbers: List<int> collection = new List<int> { 1, 2, 3, 4, 5 }; With imperative programming, we'd step through this, and decide what we want: List<int> results = new List<int>(); foreach(var num in collection) {     if (num % 2 != 0)           results.Add(num); } Here’s what we are doing: *Create a result collection *Step through each number in the collection *Check the number, if it's odd, add it to the results With declarative programming, on the other hand, we write the code that describes what you want, but not necessarily how to get it var results = collection.Where( num => num % 2 != 0); Here, we're saying "Give us everything where it's odd", not "Step through the collection. Check this item, if it's odd, add it to a result collection." Functional Programming :: Functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions.Functional programming has its roots in the lambda calculus. It is a subset of declarative languages that has heavy focus on recursion. Functional programming can be a mind-bender, which is one reason why Lisp, Scheme, and Haskell have never really surpassed C, C++, Java and COBOL in commercial popularity. But there are benefits to the functional way. For one, if you can get the logic correct, functional programming requires orders of magnitude less code than imperative programming. That means fewer points of failure, less code to test, and a more productive (and, many would say, happier) programming life. As systems get bigger, this has become more and more important. To know more : http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming http://msdn.microsoft.com/en-us/library/bb669144.aspx http://en.wikipedia.org/wiki/Imperative_programming   Technorati Tags: Ranjit,Imperative Programming,Declarative programming,Functional Programming

    Read the article

  • How to wire finite state machine into component-based architecture?

    - by Pup
    State machines seem to cause harmful dependencies in component-based architectures. How, specifically, is communication handled between a state machine and the components that carry out state-related behavior? Where I'm at: I'm new to component-based architectures. I'm making a fighting game, although I don't think that should matter. I envision my state machine being used to toggle states like "crouching", "dashing", "blocking", etc. I've found this state-management technique to be the most natural system for a component-based architecture, but it conflicts with techniques I've read about: Dynamic Game Object Component System for Mutable Behavior Characters It suggests that all components activate/deactivate themselves by continually checking a condition for activation. I think that actions like "running" or "walking" make sense as states, which is in disagreement with the accepted response here: finite state machine used in mario like platform game I've found this useful, but ambiguous: How to implement behavior in a component-based game architecture? It suggests having a separate component that contains nothing but a state machine. But, this necessitates some kind of coupling between the state machine component and nearly all the other components. I don't understand how this coupling should be handled. These are some guesses: A. Components depend on state machine: Components receive reference to state machine component's getState(), which returns an enumeration constant. Components update themselves regularly and check this as needed. B. State machine depends on components: The state machine component receives references to all the components it's monitoring. It queries their getState() methods to see where they're at. C. Some abstraction between them Use an event hub? Command pattern? D. Separate state objects that reference components State Pattern is used. Separate state objects are created, which activate/deactivate a set of components. State machine switches between state objects. I'm looking at components as implementations of aspects. They do everything that's needed internally to make that aspect happen. It seems like components should function on their own, without relying on other components. I know some dependencies are necessary, but state machines seem to want to control all of my components.

    Read the article

  • Simple Mouse Move Event in F# with Winforms

    - by MarkPearl
    This evening I had the pleasure of reading one of ThomasP’s blog posts on first class events. It was an excellent read, and I thought I would make a brief derivative of his post to explore some of the basics. In Thomas’s post he has a form with an ellipse on it that when he clicks on the ellipse it pops up a message box with the button clicked… awesome. Something that got me on the post though was the code similar to the one below… // React to Mouse Move events on the form let evtMessages = frm.MouseMove |> Event.map (fun mi -> mi.Location.ToString()) |> Event.map (sprintf "Hey, you clicked on the ellipse.\nUsing: %s") |> Event.add (MessageBox.Show >> ignore) The MessageBox is a function with a string passed into it. What if I wanted to rather change a mutable value holder instead, how would the syntax go for that? Immediately the thought came to me of anonymous functions. I’ve used them before to do something like this… let HelloPerson personName = "Hello " + personName |> fun(x) -> Console.WriteLine(x) So using the same approach I adapted the event code to instead of showing a Message Box with a string passed in to it, to rather change the forms header. |> Event.map (sprintf "Your mouse position is %s") |> Event.add(fun(x) -> frm.Text <- x) Okay… it looks a bit weird with the –> x <- syntax, but makes sense and works… The next thing I wanted to do was change Thomas’s code sample from having an ellipse, and reacting to the position of the mouse and click, to rather trigger the event whenever the mouse moved. This simple involved removing some filtering code. Finally I wanted the code to work as a FSharp Project without having to run through the F# interactive. To achieve this I just needed to find out how to trigger the window event loop. This can be achieved with the code below… // Program eventloop while frm.Created do Application.DoEvents()   So lets look at the complete code sample… #light open System open System.Drawing open System.Windows.Forms // Create the main form let frm = new Form(ClientSize=Size(600,400)) // React to Mouse Move events on the form let evtMessages = frm.MouseMove |> Event.map (fun mi -> mi.Location.ToString()) |> Event.map (sprintf "Your mouse position is %s") |> Event.add(fun(x) -> frm.Text <- x) // Show the form frm.Show() // Program eventloop while frm.Created do Application.DoEvents()

    Read the article

  • Internal Mutation of Persistent Data Structures

    - by Greg Ros
    To clarify, when I mean use the terms persistent and immutable on a data structure, I mean that: The state of the data structure remains unchanged for its lifetime. It always holds the same data, and the same operations always produce the same results. The data structure allows Add, Remove, and similar methods that return new objects of its kind, modified as instructed, that may or may not share some of the data of the original object. However, while a data structure may seem to the user as persistent, it may do other things under the hood. To be sure, all data structures are, internally, at least somewhere, based on mutable storage. If I were to base a persistent vector on an array, and copy it whenever Add is invoked, it would still be persistent, as long as I modify only locally created arrays. However, sometimes, you can greatly increase performance by mutating a data structure under the hood. In more, say, insidious, dangerous, and destructive ways. Ways that might leave the abstraction untouched, not letting the user know anything has changed about the data structure, but being critical in the implementation level. For example, let's say that we have a class called ArrayVector implemented using an array. Whenever you invoke Add, you get a ArrayVector build on top of a newly allocated array that has an additional item. A sequence of such updates will involve n array copies and allocations. Here is an illustration: However, let's say we implement a lazy mechanism that stores all sorts of updates -- such as Add, Set, and others in a queue. In this case, each update requires constant time (adding an item to a queue), and no array allocation is involved. When a user tries to get an item in the array, all the queued modifications are applied under the hood, requiring a single array allocation and copy (since we know exactly what data the final array will hold, and how big it will be). Future get operations will be performed on an empty cache, so they will take a single operation. But in order to implement this, we need to 'switch' or mutate the internal array to the new one, and empty the cache -- a very dangerous action. However, considering that in many circumstances (most updates are going to occur in sequence, after all), this can save a lot of time and memory, it might be worth it -- you will need to ensure exclusive access to the internal state, of course. This isn't a question about the efficacy of such a data structure. It's a more general question. Is it ever acceptable to mutate the internal state of a supposedly persistent or immutable object in destructive and dangerous ways? Does performance justify it? Would you still be able to call it immutable? Oh, and could you implement this sort of laziness without mutating the data structure in the specified fashion?

    Read the article

  • Will HTML5 make Silverlight redundant?

    - by Laila
    One of the great features of Adobe AIR v2 that was launched this month was its support for some of the 2008 draft of HTML5. The HTML5 specification was started in 2004, but the full spec will probably not be approved by W3C until around 2022. One might have thought that it would take years yet from now to reach the point where any browsers were remotely HTML5-compliant, but enough of HTML5 is published and agreed to make a lot of it possible, and Safari and Adobe have got there thanks to Apple's open-source WebKit. The race for HTML 5 has been fuelled by the demand by Apple and Google for advanced graphics, typography, animations and transitions without having to rely on third party browser plug-ins such as Adobe Flash or Silverlight. There is good reason for this haste: Flash doesn't support touch-devices and has been slow in supporting hardware video decoders such as H.264. There is a strong requirement to do all that Flash can do in an open-standards way. Those with proprietary solutions remain sniffy. In AIR 2, Adobe pointedly disables the HTML5 and tags that allow basic playing of media content, saying that the specification is not final and there is still no standard for the supported formats, and adding that Safari implements a 'disjoint set' of codecs. Microsoft also has little interest in HTML 5 as it has so much invested in Silverlight. Google stands to gain by the Adobe AIR for Android as it will allow a lot of applications to be migrated easily to the platform, so sees Apple's war on Flash as a way of gaining market share. Why do we care? It is because HTML5/CSS3 provides facilities much far beyond HTML4, bring the reality of browser-based applications a lot closer. Probably most generally useful is the advanced typography: Safari and AIR already both support a way of reflowing text in a container across an arbitrary number of columns; Page-specific fonts can also be specified. Then there is 2D drawing, video, transitions, local storage, AJAX navigation and mutable DOM prototypes. HTML5 is likely to provide base functionality that is required but it is too early to be certain that it will render Flash, Silverlight or JavaFX obsolete. In the meantime, Adobe Air provides the best vehicle for developing HTML5/CSS3 applications without a twinge of worry about browser incompatibilities. Cheers, Laila

    Read the article

  • "Hello World" in C++ AMP

    - by Daniel Moth
    Some say that the equivalent of "hello world" code in the data parallel world is matrix multiplication :) Below is the before C++ AMP and after C++ AMP code. For more on what it all means, watch the recording of my C++ AMP introduction (the example below is part of the session). void MatrixMultiply(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W ) { for (int y = 0; y < M; y++) { for (int x = 0; x < N; x++) { float sum = 0; for(int i = 0; i < W; i++) { sum += vA[y * W + i] * vB[i * N + x]; } vC[y * N + x] = sum; } } } Change the function to use C++ AMP and hence offload the computation to the GPU, and now the calling code (which I am not showing) needs no changes and the overall operation gives you really nice speed up for large datasets…  #include <amp.h> using namespace concurrency; void MatrixMultiply(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W ) { array_view<const float,2> a(M, W, vA); array_view<const float,2> b(W, N, vB); array_view<writeonly<float>,2> c(M, N, vC); parallel_for_each( c.grid, [=](index<2> idx) mutable restrict(direct3d) { float sum = 0; for(int i = 0; i < a.x; i++) { sum += a(idx.y, i) * b(i, idx.x); } c[idx] = sum; } ); } Again, you can understand the elements above, by using my C++ AMP presentation slides and recording… Stay tuned for more… Comments about this post welcome at the original blog.

    Read the article

  • Are closures with side-effects considered "functional style"?

    - by Giorgio
    Many modern programming languages support some concept of closure, i.e. of a piece of code (a block or a function) that Can be treated as a value, and therefore stored in a variable, passed around to different parts of the code, be defined in one part of a program and invoked in a totally different part of the same program. Can capture variables from the context in which it is defined, and access them when it is later invoked (possibly in a totally different context). Here is an example of a closure written in Scala: def filterList(xs: List[Int], lowerBound: Int): List[Int] = xs.filter(x => x >= lowerBound) The function literal x => x >= lowerBound contains the free variable lowerBound, which is closed (bound) by the argument of the function filterList that has the same name. The closure is passed to the library method filter, which can invoke it repeatedly as a normal function. I have been reading a lot of questions and answers on this site and, as far as I understand, the term closure is often automatically associated with functional programming and functional programming style. The definition of function programming on wikipedia reads: In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast to the imperative programming style, which emphasizes changes in state. and further on [...] in functional code, the output value of a function depends only on the arguments that are input to the function [...]. Eliminating side effects can make it much easier to understand and predict the behavior of a program, which is one of the key motivations for the development of functional programming. On the other hand, many closure constructs provided by programming languages allow a closure to capture non-local variables and change them when the closure is invoked, thus producing a side effect on the environment in which they were defined. In this case, closures implement the first idea of functional programming (functions are first-class entities that can be moved around like other values) but neglect the second idea (avoiding side-effects). Is this use of closures with side effects considered functional style or are closures considered a more general construct that can be used both for a functional and a non-functional programming style? Is there any literature on this topic? IMPORTANT NOTE I am not questioning the usefulness of side-effects or of having closures with side effects. Also, I am not interested in a discussion about the advantages / disadvantages of closures with or without side effects. I am only interested to know if using such closures is still considered functional style by the proponent of functional programming or if, on the contrary, their use is discouraged when using a functional style.

    Read the article

  • "static" as a semantic clue about statelessness?

    - by leoger
    this might be a little philosophical but I hope someone can help me find a good way to think about this. I've recently undertaken a refactoring of a medium sized project in Java to go back and add unit tests. When I realized what a pain it was to mock singletons and statics, I finally "got" what I've been reading about them all this time. (I'm one of those people that needs to learn from experience. Oh well.) So, now that I'm using Spring to create the objects and wire them around, I'm getting rid of static keywords left and right. (If I could potentially want to mock it, it's not really static in the same sense that Math.abs() is, right?) The thing is, I had gotten into the habit of using static to denote that a method didn't rely on any object state. For example: //Before import com.thirdparty.ThirdPartyLibrary.Thingy; public class ThirdPartyLibraryWrapper { public static Thingy newThingy(InputType input) { new Thingy.Builder().withInput(input).alwaysFrobnicate().build(); } } //called as... ThirdPartyLibraryWrapper.newThingy(input); //After public class ThirdPartyFactory { public Thingy newThingy(InputType input) { new Thingy.Builder().withInput(input).alwaysFrobnicate().build(); } } //called as... thirdPartyFactoryInstance.newThingy(input); So, here's where it gets touchy-feely. I liked the old way because the capital letter told me that, just like Math.sin(x), ThirdPartyLibraryWrapper.newThingy(x) did the same thing the same way every time. There's no object state to change how the object does what I'm asking it to do. Here are some possible answers I'm considering. Nobody else feels this way so there's something wrong with me. Maybe I just haven't really internalized the OO way of doing things! Maybe I'm writing in Java but thinking in FORTRAN or somesuch. (Which would be impressive since I've never written FORTRAN.) Maybe I'm using staticness as a sort of proxy for immutability for the purposes of reasoning about code. That being said, what clues should I have in my code for someone coming along to maintain it to know what's stateful and what's not? Perhaps this should just come for free if I choose good object metaphors? e.g. thingyWrapper doesn't sound like it has state indepdent of the wrapped Thingy which may itself be mutable. Similarly, a thingyFactory sounds like it should be immutable but could have different strategies that are chosen among at creation. I hope I've been clear and thanks in advance for your advice!

    Read the article

  • How best to look up objects by label?

    - by dsollen
    I am writing the server backed by a pre-written API. I'm going to get a number of strings representing ports, signals, paths, etc etc etc. I need to look up the object associated with a given label, these objects are all in memory (no sql magic to do this for me). My question is, how best do I associate a given unique label with the mutable object it represents? I have enough objects that looking through every signal or every port to find the one that matches is possible, but may be slightly too slow. To be honest the direct 'look at every object' method is probably good enough for so small a body of objects and anything else is premature optimization, but I still am curious what the proper solution would be if I thought my signals were going to grow a bit larger. As I see it there are two options available. First would be to to create a 'store' that is a simple map between object and label. I could have it so that every time I call addObject the object is automatically saved into a hashmap or the like. This works, but relies on my properly adding and deleting each object so the map doesn't grow indefinitely. The biggest issue to me is that this involves having some hidden static map in my ModelObject class that just feels...wrong somehow. The other option is to have some method that can interpret the labels. All of these labels are derived from the underlying objects. So I can look at the signal label, for instance, and say "these 20 characters are the port" to figure out what port I need. This would allow me to quickly figure out what I need. However, if the label method is changed the translateLabelToObject method needs to be updated as well or everything breaks. Which solution is cleaner, or possibly a cleaner solution than either of above? For the record I'm working with sufficient number of variables to make direct comparison a little slow, but not enough to be concerned about memory overhead, written in java. All objects that have labels I need to look up extend the same parent class.

    Read the article

  • Why shouldn't I be using public variables in my Java class?

    - by Omega
    In school, I've been told many times to stop using public for my variables. I haven't asked why yet. This question: Are Java's public fields just a tragic historical design flaw at this point? seems kinda related to this. However, they don't seem to discuss why is it "wrong", but instead focus on how can they use them instead. Look at this (unfinished) class: public class Reporte { public String rutaOriginal; public String rutaNueva; public int bytesOriginales; public int bytesFinales; public float ganancia; /** * Constructor para objetos de la clase Reporte */ public Reporte() { } } No need to understand Spanish. All this class does is hold some statistics (those public fields) and then do some operations with them (later). I will also need to be modifying those variables often. But well, since I've been told not to use public, this is what I ended up doing: public class Reporte { private String rutaOriginal; private String rutaNueva; private int bytesOriginales; private int bytesFinales; private float ganancia; /** * Constructor para objetos de la clase Reporte */ public Reporte() { } public String getRutaOriginal() { return rutaOriginal; } public String getRutaNueva() { return rutaNueva; } public int getBytesOriginales() { return bytesOriginales; } public int getBytesFinales() { return bytesFinales; } public float getGanancia() { return ganancia; } public void setRutaOriginal(String rutaOriginal) { this.rutaOriginal = rutaOriginal; } public void setRutaNueva(String rutaNueva) { this.rutaNueva = rutaNueva; } public void setBytesOriginales(int bytesOriginales) { this.bytesOriginales = bytesOriginales; } public void setBytesFinales(int bytesFinales) { this.bytesFinales = bytesFinales; } public void setGanancia(float ganancia) { this.ganancia = ganancia; } } Looks kinda pretty. But seems like a waste of time. Google searches about "When to use public in Java" and "Why shouldn't I use public in Java" seem to discuss about a concept of mutability, although I'm not really sure how to interpret such discussions. I do want my class to be mutable - all the time.

    Read the article

  • Asynchronous Webcrawling F#, something wrong ?

    - by jlezard
    Not quite sure if it is ok to do this but, my question is: Is there something wrong with my code ? It doesn't go as fast as I would like, and since I am using lots of async workflows maybe I am doing something wrong. The goal here is to build something that can crawl 20 000 pages in less than an hour. open System open System.Text open System.Net open System.IO open System.Text.RegularExpressions open System.Collections.Generic open System.ComponentModel open Microsoft.FSharp open System.Threading //This is the Parallel.Fs file type ComparableUri ( uri: string ) = inherit System.Uri( uri ) let elts (uri:System.Uri) = uri.Scheme, uri.Host, uri.Port, uri.Segments interface System.IComparable with member this.CompareTo( uri2 ) = compare (elts this) (elts(uri2 :?> ComparableUri)) override this.Equals(uri2) = compare this (uri2 :?> ComparableUri ) = 0 override this.GetHashCode() = 0 ///////////////////////////////////////////////Funtions to retreive html string////////////////////////////// let mutable error = Set.empty<ComparableUri> let mutable visited = Set.empty<ComparableUri> let getHtmlPrimitiveAsyncDelay (delay:int) (uri : ComparableUri) = async{ try let req = (WebRequest.Create(uri)) :?> HttpWebRequest // 'use' is equivalent to ‘using’ in C# for an IDisposable req.UserAgent<-"Mozilla" //Console.WriteLine("Waiting") do! Async.Sleep(delay * 250) let! resp = (req.AsyncGetResponse()) Console.WriteLine(uri.AbsoluteUri+" got response after delay "+string delay) use stream = resp.GetResponseStream() use reader = new StreamReader(stream) let html = reader.ReadToEnd() return html with | _ as ex -> Console.WriteLine( ex.ToString() ) lock error (fun () -> error<- error.Add uri ) lock visited (fun () -> visited<-visited.Add uri ) return "BadUri" } ///////////////////////////////////////////////Active Pattern Matching to retreive href////////////////////////////// let (|Matches|_|) (pat:string) (inp:string) = let m = Regex.Matches(inp, pat) // Note the List.tl, since the first group is always the entirety of the matched string. if m.Count > 0 then Some (List.tail [ for g in m -> g.Value ]) else None let (|Match|_|) (pat:string) (inp:string) = let m = Regex.Match(inp, pat) // Note the List.tl, since the first group is always the entirety of the matched string. if m.Success then Some (List.tail [ for g in m.Groups -> g.Value ]) else None ///////////////////////////////////////////////Find Bad href////////////////////////////// let isEmail (link:string) = link.Contains("@") let isMailto (link:string) = if Seq.length link >=6 then link.[0..5] = "mailto" else false let isJavascript (link:string) = if Seq.length link >=10 then link.[0..9] = "javascript" else false let isBadUri (link:string) = link="BadUri" let isEmptyHttp (link:string) = link="http://" let isFile (link:string)= if Seq.length link >=6 then link.[0..5] = "file:/" else false let containsPipe (link:string) = link.Contains("|") let isAdLink (link:string) = if Seq.length link >=6 then link.[0..5] = "adlink" elif Seq.length link >=9 then link.[0..8] = "http://adLink" else false ///////////////////////////////////////////////Find Bad href////////////////////////////// let getHref (htmlString:string) = let urlPat = "href=\"([^\"]+)" match htmlString with | Matches urlPat urls -> urls |> List.map( fun href -> match href with | Match (urlPat) (link::[]) -> link | _ -> failwith "The href was not in correct format, there was more than one match" ) | _ -> Console.WriteLine( "No links for this page" );[] |> List.filter( fun link -> not(isEmail link) ) |> List.filter( fun link -> not(isMailto link) ) |> List.filter( fun link -> not(isJavascript link) ) |> List.filter( fun link -> not(isBadUri link) ) |> List.filter( fun link -> not(isEmptyHttp link) ) |> List.filter( fun link -> not(isFile link) ) |> List.filter( fun link -> not(containsPipe link) ) |> List.filter( fun link -> not(isAdLink link) ) let treatAjax (href:System.Uri) = let link = href.ToString() let firstPart = (link.Split([|"#"|],System.StringSplitOptions.None)).[0] new Uri(firstPart) //only follow pages with certain extnsion or ones with no exensions let followHref (href:System.Uri) = let valid2 = set[".py"] let valid3 = set[".php";".htm";".asp"] let valid4 = set[".php3";".php4";".php5";".html";".aspx"] let arrLength = href.Segments |> Array.length let lastExtension = (href.Segments).[arrLength-1] let lengthLastExtension = Seq.length lastExtension if (lengthLastExtension <= 3) then not( lastExtension.Contains(".") ) else //test for the 2 case let last4 = lastExtension.[(lengthLastExtension-1)-3..(lengthLastExtension-1)] let isValid2 = valid2|>Seq.exists(fun validEnd -> last4.EndsWith( validEnd) ) if isValid2 then true else if lengthLastExtension <= 4 then not( last4.Contains(".") ) else let last5 = lastExtension.[(lengthLastExtension-1)-4..(lengthLastExtension-1)] let isValid3 = valid3|>Seq.exists(fun validEnd -> last5.EndsWith( validEnd) ) if isValid3 then true else if lengthLastExtension <= 5 then not( last5.Contains(".") ) else let last6 = lastExtension.[(lengthLastExtension-1)-5..(lengthLastExtension-1)] let isValid4 = valid4|>Seq.exists(fun validEnd -> last6.EndsWith( validEnd) ) if isValid4 then true else not( last6.Contains(".") ) && not(lastExtension.[0..5] = "mailto") //Create the correct links / -> add the homepage , make them a comparabel Uri let hrefLinksToUri ( uri:ComparableUri ) (hrefLinks:string list) = hrefLinks |> List.map( fun link -> try if Seq.length link <4 then Some(new Uri( uri, link )) else if link.[0..3] = "http" then Some(new Uri(link)) else Some(new Uri( uri, link )) with | _ as ex -> Console.WriteLine(link); lock error (fun () ->error<-error.Add uri) None ) |> List.filter( fun link -> link.IsSome ) |> List.map( fun o -> o.Value) |> List.map( fun uri -> new ComparableUri( string uri ) ) //Treat uri , removing ajax last part , and only following links specified b Benoit let linksToFollow (hrefUris:ComparableUri list) = hrefUris |>List.map( treatAjax ) |>List.filter( fun link -> followHref link ) |>List.map( fun uri -> new ComparableUri( string uri ) ) |>Set.ofList let needToVisit uri = ( lock visited (fun () -> not( visited.Contains uri) ) ) && (lock error (fun () -> not( error.Contains uri) )) let getLinksToFollowAsyncDelay (delay:int) ( uri: ComparableUri ) = async{ let! links = getHtmlPrimitiveAsyncDelay delay uri lock visited (fun () ->visited<-visited.Add uri) let linksToFollow = getHref links |> hrefLinksToUri uri |> linksToFollow |> Set.filter( needToVisit ) |> Set.map( fun link -> if uri.Authority=link.Authority then link else link ) return linksToFollow } //Add delays if visitng same authority let getDelay(uri:ComparableUri) (authorityDelay:Dictionary<string,int>) = let uriAuthority = uri.Authority let hasAuthority,delay = authorityDelay.TryGetValue(uriAuthority) if hasAuthority then authorityDelay.[uriAuthority] <-delay+1 delay else authorityDelay.Add(uriAuthority,1) 0 let rec getLinksToFollowFromSetAsync maxIteration ( uris: seq<ComparableUri> ) = let authorityDelay = Dictionary<string,int>() if maxIteration = 100 then Console.WriteLine("Finished") else //Unite by authority add delay for those we same authority others ignore let stopwatch= System.Diagnostics.Stopwatch() stopwatch.Start() let newLinks = uris |> Seq.map( fun uri -> let delay = lock authorityDelay (fun () -> getDelay uri authorityDelay ) getLinksToFollowAsyncDelay delay uri ) |> Async.Parallel |> Async.RunSynchronously |> Seq.concat stopwatch.Stop() Console.WriteLine("\n\n\n\n\n\n\nTimeElapse : "+string stopwatch.Elapsed+"\n\n\n\n\n\n\n\n\n") getLinksToFollowFromSetAsync (maxIteration+1) newLinks getLinksToFollowFromSetAsync 0 (seq[ComparableUri( "http://twitter.com/" )]) Console.WriteLine("Finished") Some feedBack would be great ! Thank you (note this is just something I am doing for fun)

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • St. Louis ALT.NET

    - by Brian Schroer
    I’m a huge fan of the St. Louis .NET User Group and a regular attendee of their meetings, but always wished there was a local group that discussed more advanced .NET topics. (That’s not a criticism of the group - I appreciate that they want to server developers with a broad range of skill levels). That’s why I was thrilled when Nicholas Cloud started a St. Louis ALT.NET group in 2010. Here’s the “about us” statement from the group’s web site: The ALT.NET community is a loosely coupled, highly cohesive group of like-minded individuals who believe that the best developers do not align themselves with platforms and languages, but with principles and ideas. In 2007, David Laribee created the term "ALT.NET" to explain this "alternative" view of the Microsoft development universe--a view that challenged the "Microsoft-only" approach to software development. He distilled his thoughts into four key developer characteristics which form the basis of the ALT.NET philosophy: You're the type of developer who uses what works while keeping an eye out for a better way. You reach outside the mainstream to adopt the best of any community: Open Source, Agile, Java, Ruby, etc. You're not content with the status quo. Things can always be better expressed, more elegant and simple, more mutable, higher quality, etc. You know tools are great, but they only take you so far. It's the principles and knowledge that really matter. The best tools are those that embed the knowledge and encourage the principles (e.g. Resharper.) The St. Louis ALT.NET meetup group is a place where .NET developers can learn, share, and critique approaches to software development on the .NET stack. We cater to the highest common denominator, not the lowest, and want to help all St. Louis .NET developers achieve a superior level of software craftsmanship. I don’t see a lot of ALT.NET talk in blogs these days. The movement was harmed early on by the negative attitudes of some of its early leaders, including jerk moves like the Entity Framework “vote of no confidence”, but I do see occasional mentions of local groups like the St. Louis one. I think ALT.NET has been successful at bringing some of its ideas into the .NET world, including heavily influencing ASP.NET MVC and raising the general level of software craftsmanship for developers working on the Microsoft stack. The ideas and ideals live on, they’re just not branded as “this is ALT.NET!” In the past 18 months, St. Louis ALT.NET meetups have discussed topics like: NHibernate F# and other functional languages AOP CoffeeScript “How Ruby Is Making Me a Stronger C# Developer” Using rake for builds CQRS .NET dynamic programming micro web frameworks – Nancy & Jessica Git ALT.NET doesn’t mean (to me, anyway) “alternatives to .NET”, but “alternatives for .NET”. We look at how things are done in Ruby and other languages/platforms, but always with the idea “What can I learn from this to take back to my “day job” with .NET?”. Meetings are held at 7PM on the fourth Wednesday of each month at the offices of Professional Employment Group. PEG is located at 999 Executive Parkway (Suite 100 – lower level) in Creve Coeur (South of Olive off of Mason Road - Here's a map). Food is not supplied (sorry if you’re a big fan of the Papa John’s Crust-Lovers’ Pizza that’s a staple of user group meetings), but attendees are encouraged to come early and bring/share beer, so that’s cool. Thanks to Nick for organizing, and to Professional Employment Group for lending their offices. Please visit the meetup site for more information.

    Read the article

  • F# Objects &ndash; Integration with the other .Net Languages &ndash; Part 2

    - by MarkPearl
    So in part one of my posting I covered the real basics of object creation. Today I will hopefully dig a little deeper… My expert F# book brings up an interesting point – properties in F# are just syntactic sugar for method calls. This makes sense… for instance assume I had the following object with the property exposed called Firstname. type Person(Firstname : string, Lastname : string) = member v.Firstname = Firstname I could extend the Firstname property with the following code and everything would be hunky dory… type Person(Firstname : string, Lastname : string) = member v.Firstname = Console.WriteLine("Side Effect") Firstname   All that this would do is each time I use the property Firstname, I would see the side effect printed to the screen saying “Side Effect”. Member methods have a very similar look & feel to properties, in fact the only difference really is that you declare that parameters are being passed in. type Person(Firstname : string, Lastname : string) = member v.FullName(middleName) = Firstname + " " + middleName + " " + Lastname   In the code above, FullName requires the parameter middleName, and if viewed from another project in C# would show as a method and not a property. Precomputation Optimizations Okay, so something that is obvious once you think of it but that poses an interesting side effect of mutable value holders is pre-computation of results. All it is, is a slight difference in code but can result in quite a huge saving in performance. Basically pre-computation means you would not need to compute a value every time a method is called – but could perform the computation at the creation of the object (I hope I have got it right). In a way I battle to differentiate this from lazy evaluation but I will show an example to explain the principle. Let me try and show an example to illustrate the principle… assume the following F# module namespace myNamespace open System module myMod = let Add val1 val2 = Console.WriteLine("Compute") val1 + val2 type MathPrecompute(val1 : int, val2 : int) = let precomputedsum = Add val1 val2 member v.Sum = precomputedsum type MathNormalCompute(val1 : int, val2 : int) = member v.Sum = Add val1 val2 Now assume you have a C# console app that makes use of the objects with code similar to the following… using System; using myNamespace; namespace CSharpTest { class Program { static void Main(string[] args) { Console.WriteLine("Constructing Objects"); var myObj1 = new myMod.MathNormalCompute(10, 11); var myObj2 = new myMod.MathPrecompute(10, 11); Console.WriteLine(""); Console.WriteLine("Normal Compute Sum..."); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(myObj1.Sum); Console.WriteLine(""); Console.WriteLine("Pre Compute Sum..."); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.WriteLine(myObj2.Sum); Console.ReadKey(); } } } The output when running the console application would be as follows…. You will notice with the normal compute object that the system would call the Add function every time the method was called. With the Precompute object it only called the compute method when the object was created. Subtle, but something that could lead to major performance benefits. So… this post has gone off in a slight tangent but still related to F# objects.

    Read the article

  • cannot convert 'b2PolygonShape' to 'objc_object*' in argument passing

    - by GONeale
    Hey there, I am not sure if many of you are familiar with the box2d physics engine, but I am using it within cocos2d and objective c. This more or less could be a general objective-c question though, I am performing this: NSMutableArray *allShapes = [[NSMutableArray array] retain]; b2PolygonShape shape; .. .. [allShapes addObject:shape]; and receiving this error on the addObject definition on build: cannot convert 'b2PolygonShape' to 'objc_object*' in argument passing So more or less I guess I want to know how to add a b2PolygonShape to a mutable array. b2PolygonShape appears to just be a class, not a struct or anything like that. The closest thing I could find on google to which I think could do this is described as 'encapsulating the b2PolygonShape as an NSObject and then add that to the array', but not sure the best way to do this, however I would have thought this object should add using addObject, as some of my other instantiated class objects add to arrays fine. Is this all because b2PolygonShape does not inherit NSObject at it's root? Thanks

    Read the article

  • C# and F# lambda expressions code generation

    - by ControlFlow
    Let's look at the code, generated by F# for simple function: let map_add valueToAdd xs = xs |> Seq.map (fun x -> x + valueToAdd) The generated code for lambda expression (instance of F# functional value) will looks like this: [Serializable] internal class map_add@3 : FSharpFunc<int, int> { public int valueToAdd; internal map_add@3(int valueToAdd) { this.valueToAdd = valueToAdd; } public override int Invoke(int x) { return (x + this.valueToAdd); } } And look at nearly the same C# code: using System.Collections.Generic; using System.Linq; static class Program { static IEnumerable<int> SelectAdd(IEnumerable<int> source, int valueToAdd) { return source.Select(x => x + valueToAdd); } } And the generated code for the C# lambda expression: [CompilerGenerated] private sealed class <>c__DisplayClass1 { public int valueToAdd; public int <SelectAdd>b__0(int x) { return (x + this.valueToAdd); } } So I have some questions: Why does F#-generated class is not marked as sealed? Why does F#-generated class contains public fields since F# doesn't allows mutable closures? Why does F# generated class has the constructor? It may be perfectly initialized with the public fields... Why does C#-generated class is not marked as [Serializable]? Also classes generated for F# sequence expressions are also became [Serializable] and classes for C# iterators are not.

    Read the article

  • how to show avg of employees salary in a NSTextField using NSArrayController and cocoa bindings

    - by Miraaj
    Hi all, I am new to cocoa bindings so I tried to make a simple application which will simply calculate avg of employees salary and display it in a text field, using cocoa bindings. I followed these steps: Made the model class : Person with one property for now - @property (readwrite, assign) int salary; In the application delegate class I initialized a mutable array : personArray with certain objects like this: Person *person1 = [[Person alloc] init]; person1.salary = 5000; Person *person2 = [[Person alloc] init]; person2.salary = 15000; Person *person3 = [[Person alloc] init]; person3.salary = 7000; Person *person4 = [[Person alloc] init]; person4.salary = 9000; Person *person5 = [[Person alloc] init]; person5.salary = 11000; personArray= [[NSMutableArray alloc] initWithObjects:person1, person2, person3, person4, person5,nil]; In IB I dropped a NSArrayController object, set its mode as Class - Person, added key salary in attribute pane. Then in bindings pane, binded contents array to ApplicationDelegate class with model key path set to self.personArray. Dropped a NSTextField on window. Binded its value to ArrayController object. Assigned controller key as - arrangedObjects. Assigned Model key path to @avg.salary When I executed the application I found no value being displayed in the text field. Can anyone suggest me where I may be wrong? Thanks, Miraaj

    Read the article

  • Ruby - Immutable Objects

    - by Chris Bunch
    I've got a highly multithreaded app written in Ruby that shares a few instance variables. Writes to these variables are rare (1%) while reads are very common (99%). What is the best way (either in your opinion or in the idiomatic Ruby fashion) to ensure that these threads always see the most up-to-date values involved? Here's some ideas so far that I had (although I'd like your input before I overhaul this): Have a lock that most be used before reading or writing any of these variables (from Java Concurrency in Practice). The downside of this is that it puts a lot of synchronize blocks in my code and I don't see an easy way to avoid it. Use Ruby's freeze method (see here), although it looks equally cumbersome and doesn't give me any of the synchronization benefits that the first option gives. These options both seem pretty similar but hopefully anyone out there will have a better idea (or can argue well for one of these ideas). I'd also be fine with making the objects immutable so they aren't corrupted or altered in the middle of an operation, but I don't know Ruby well enough to make the call on my own and this question seems to argue that objects are highly mutable.

    Read the article

  • How to determine if a ResourceDictionary is loaded correctly

    - by akaphenom
    How can I tell (through the debugger if my app resources are being loaded correctly). I have tried (in f#) type MyApp() as this = inherit Application() do Application.LoadComponent(this, new System.Uri("/FSSilverlightApp;component/App.xaml", System.UriKind.Relative)) let cc = new ContentControl() let mainGrid : Grid = loadXaml("MainWindow.xaml") let siteTemplate : Grid = mainGrid let txt : TextBlock = siteTemplate ? txt do this.Startup.Add(this.startup) let mutable s = "Items: " s <- s + this.Resources.Count.ToString() it is returning a count of zero. Though I am pretty sure the application is loading the resource because if I change the path within the App.xaml - I get exceptions at runtime. Other re,lavent snippets are: I have the following app.xaml <Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="Module1.MyApp"> <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="/FSSilverlightApp;component/TransitioningFrame.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> </Application> and content template: < ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:navigation="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <ControlTemplate x:Key="TransitioningFrame" TargetType="navigation:Frame"> <Border Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" VerticalAlignment="{TemplateBinding VerticalContentAlignment}"> <ContentPresenter Cursor="{TemplateBinding Cursor}" HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" Margin="{TemplateBinding Padding}" VerticalAlignment="{TemplateBinding VerticalContentAlignment}" Content="{TemplateBinding Content}"/> </Border> </ControlTemplate> </ResourceDictionary>

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14  | Next Page >