Search Results

Search found 3131 results on 126 pages for 'upper stage'.

Page 11/126 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Unit Testing Framework for XQuery

    - by Knut Vatsendvik
    This posting provides a unit testing framework for XQuery using Oracle Service Bus. It allows you to write a test case to run your XQuery transformations in an automated fashion. When the test case is run, the framework returns any differences found in the response. The complete code sample with install instructions can be downloaded from here. Writing a Unit Test You start a new Test Case by creating a Proxy Service from Workshop that comes with Oracle Service Bus. In the General Configuration page select Service Type to be Messaging Service           In the Message Type Configuration page link both the Request & Response Message Type to the TestCase element of the UnitTest.xsd schema                 The TestCase element consists of the following child elements The ID and optional Name element is simply used for reference. The Transformation element is the XQuery resource to be executed. The Input elements represents the input to run the XQuery with. The Output element represents the expected output. These XML documents are “also” represented as an XQuery resource where the XQuery function takes no arguments and returns the XML document. Why not pass the test data with the TestCase? Passing an XML structure in another XML structure is not very easy or at least not very human readable. Therefore it was chosen to represent the test data as an loadable resource in the OSB. However you are free to go ahead with another approach on this if wanted. The XMLDiff elements represents any differences found. A sample on input is shown here. Modeling the Message Flow Then the next step is to model the message flow of the Proxy Service. In the Request Pipeline create a stage node that loads the test case input data.      For this, specify a dynamic XQuery expression that evaluates at runtime to the name of a pre-registered XQuery resource. The expression is of course set by the input data from the test case.           Add a Run stage node. Assign the result of the XQuery, that is to be run, to a context variable. Define a mapping for each of the input variables added in previous stage.     Add a Compare stage. Like with the input data, load the expected output data. Do a compare using XMLDiff XQuery provided where the first argument is the loaded output test data, and the second argument the result from the Run stage. Any differences found is replaced back into the test case XMLDiff element. In case of any unexpected failure while processing, add an Error Handler to the Pipeline to capture the fault. To pass back the result add the following Insert action In the Response Pipeline. A sample on output is shown here.

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • C#/.NET Little Wonders: Static Char Methods

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Often times in our code we deal with the bigger classes and types in the BCL, and occasionally forgot that there are some nice methods on the primitive types as well.  Today we will discuss some of the handy static methods that exist on the char (the C# alias of System.Char) type. The Background I was examining a piece of code this week where I saw the following: 1: // need to get the 5th (offset 4) character in upper case 2: var type = symbol.Substring(4, 1).ToUpper(); 3:  4: // test to see if the type is P 5: if (type == "P") 6: { 7: // ... do something with P type... 8: } Is there really any error in this code?  No, but it still struck me wrong because it is allocating two very short-lived throw-away strings, just to store and manipulate a single char: The call to Substring() generates a new string of length 1 The call to ToUpper() generates a new upper-case version of the string from Step 1. In my mind this is similar to using ToUpper() to do a case-insensitive compare: it isn’t wrong, it’s just much heavier than it needs to be (for more info on case-insensitive compares, see #2 in 5 More Little Wonders). One of my favorite books is the C++ Coding Standards: 101 Rules, Guidelines, and Best Practices by Sutter and Alexandrescu.  True, it’s about C++ standards, but there’s also some great general programming advice in there, including two rules I love:         8. Don’t Optimize Prematurely         9. Don’t Pessimize Prematurely We all know what #8 means: don’t optimize when there is no immediate need, especially at the expense of readability and maintainability.  I firmly believe this and in the axiom: it’s easier to make correct code fast than to make fast code correct.  Optimizing code to the point that it becomes difficult to maintain often gains little and often gives you little bang for the buck. But what about #9?  Well, for that they state: “All other things being equal, notably code complexity and readability, certain efficient design patterns and coding idioms should just flow naturally from your fingertips and are no harder to write then the pessimized alternatives. This is not premature optimization; it is avoiding gratuitous pessimization.” Or, if I may paraphrase: “where it doesn’t increase the code complexity and readability, prefer the more efficient option”. The example code above was one of those times I feel where we are violating a tacit C# coding idiom: avoid creating unnecessary temporary strings.  The code creates temporary strings to hold one char, which is just unnecessary.  I think the original coder thought he had to do this because ToUpper() is an instance method on string but not on char.  What he didn’t know, however, is that ToUpper() does exist on char, it’s just a static method instead (though you could write an extension method to make it look instance-ish). This leads me (in a long-winded way) to my Little Wonders for the day… Static Methods of System.Char So let’s look at some of these handy, and often overlooked, static methods on the char type: IsDigit(), IsLetter(), IsLetterOrDigit(), IsPunctuation(), IsWhiteSpace() Methods to tell you whether a char (or position in a string) belongs to a category of characters. IsLower(), IsUpper() Methods that check if a char (or position in a string) is lower or upper case ToLower(), ToUpper() Methods that convert a single char to the lower or upper equivalent. For example, if you wanted to see if a string contained any lower case characters, you could do the following: 1: if (symbol.Any(c => char.IsLower(c))) 2: { 3: // ... 4: } Which, incidentally, we could use a method group to shorten the expression to: 1: if (symbol.Any(char.IsLower)) 2: { 3: // ... 4: } Or, if you wanted to verify that all of the characters in a string are digits: 1: if (symbol.All(char.IsDigit)) 2: { 3: // ... 4: } Also, for the IsXxx() methods, there are overloads that take either a char, or a string and an index, this means that these two calls are logically identical: 1: // check given a character 2: if (char.IsUpper(symbol[0])) { ... } 3:  4: // check given a string and index 5: if (char.IsUpper(symbol, 0)) { ... } Obviously, if you just have a char, then you’d just use the first form.  But if you have a string you can use either form equally well. As a side note, care should be taken when examining all the available static methods on the System.Char type, as some seem to be redundant but actually have very different purposes.  For example, there are IsDigit() and IsNumeric() methods, which sound the same on the surface, but give you different results. IsDigit() returns true if it is a base-10 digit character (‘0’, ‘1’, … ‘9’) where IsNumeric() returns true if it’s any numeric character including the characters for ½, ¼, etc. Summary To come full circle back to our opening example, I would have preferred the code be written like this: 1: // grab 5th char and take upper case version of it 2: var type = char.ToUpper(symbol[4]); 3:  4: if (type == 'P') 5: { 6: // ... do something with P type... 7: } Not only is it just as readable (if not more so), but it performs over 3x faster on my machine:    1,000,000 iterations of char method took: 30 ms, 0.000050 ms/item.    1,000,000 iterations of string method took: 101 ms, 0.000101 ms/item. It’s not only immediately faster because we don’t allocate temporary strings, but as an added bonus there less garbage to collect later as well.  To me this qualifies as a case where we are using a common C# performance idiom (don’t create unnecessary temporary strings) to make our code better. Technorati Tags: C#,CSharp,.NET,Little Wonders,char,string

    Read the article

  • How to move a rectangle properly?

    - by bodycountPP
    I recently started to learn OpenGL. Right now I finished the first chapter of the "OpenGL SuperBible". There were two examples. The first had the complete code and showed how to draw a simple triangle. The second example is supposed to show how to move a rectangle using SpecialKeys. The only code provided for this example was the SpecialKeys method. I still tried to implement it but I had two problems. In the previous example I declared and instaciated vVerts in the SetupRC() method. Now as it is also used in the SpecialKeys() method, I moved the declaration and instantiation to the top of the code. Is this proper c++ practice? I copied the part where vertex positions are recalculated from the book, but I had to pick the vertices for the rectangle on my own. So now every time I press a key for the first time the rectangle's upper left vertex is moved to (-0,5:-0.5). This ok because of GLfloat blockX = vVerts[0]; //Upper left X GLfloat blockY = vVerts[7]; // Upper left Y But I also think that this is the reason why my rectangle is shifted in the beginning. After the first time a key was pressed everything works just fine. Here is my complete code I hope you can help me on those two points. GLBatch squareBatch; GLShaderManager shaderManager; //Load up a triangle GLfloat vVerts[] = {-0.5f,0.5f,0.0f, 0.5f,0.5f,0.0f, 0.5f,-0.5f,0.0f, -0.5f,-0.5f,0.0f}; //Window has changed size, or has just been created. //We need to use the window dimensions to set the viewport and the projection matrix. void ChangeSize(int w, int h) { glViewport(0,0,w,h); } //Called to draw the scene. void RenderScene(void) { //Clear the window with the current clearing color glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); GLfloat vRed[] = {1.0f,0.0f,0.0f,1.0f}; shaderManager.UseStockShader(GLT_SHADER_IDENTITY,vRed); squareBatch.Draw(); //perform the buffer swap to display the back buffer glutSwapBuffers(); } //This function does any needed initialization on the rendering context. //This is the first opportunity to do any OpenGL related Tasks. void SetupRC() { //Blue Background glClearColor(0.0f,0.0f,1.0f,1.0f); shaderManager.InitializeStockShaders(); squareBatch.Begin(GL_QUADS,4); squareBatch.CopyVertexData3f(vVerts); squareBatch.End(); } //Respond to arrow keys by moving the camera frame of reference void SpecialKeys(int key,int x,int y) { GLfloat stepSize = 0.025f; GLfloat blockSize = 0.5f; GLfloat blockX = vVerts[0]; //Upper left X GLfloat blockY = vVerts[7]; // Upper left Y if(key == GLUT_KEY_UP) { blockY += stepSize; } if(key == GLUT_KEY_DOWN){blockY -= stepSize;} if(key == GLUT_KEY_LEFT){blockX -= stepSize;} if(key == GLUT_KEY_RIGHT){blockX += stepSize;} //Recalculate vertex positions vVerts[0] = blockX; vVerts[1] = blockY - blockSize*2; vVerts[3] = blockX + blockSize * 2; vVerts[4] = blockY - blockSize *2; vVerts[6] = blockX+blockSize*2; vVerts[7] = blockY; vVerts[9] = blockX; vVerts[10] = blockY; squareBatch.CopyVertexData3f(vVerts); glutPostRedisplay(); } //Main entry point for GLUT based programs int main(int argc, char** argv) { //Sets the working directory. Not really needed gltSetWorkingDirectory(argv[0]); //Passes along the command-line parameters and initializes the GLUT library. glutInit(&argc,argv); //Tells the GLUT library what type of display mode to use, when creating the window. //Double buffered window, RGBA-Color mode,depth-buffer as part of our display, stencil buffer also available glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_DEPTH|GLUT_STENCIL); //Window size glutInitWindowSize(800,600); glutCreateWindow("MoveRect"); glutReshapeFunc(ChangeSize); glutDisplayFunc(RenderScene); glutSpecialFunc(SpecialKeys); //initialize GLEW library GLenum err = glewInit(); //Check that nothing goes wrong with the driver initialization before we try and do any rendering. if(GLEW_OK != err) { fprintf(stderr,"Glew Error: %s\n",glewGetErrorString); return 1; } SetupRC(); glutMainLoop(); return 0; }

    Read the article

  • ActionScipt MouseEvent's CLICK vs. DOUBLE_CLICK

    - by TheDarkIn1978
    is it not possible to have both CLICK and DOUBLE_CLICK on the same display object? i'm trying to have both for the stage where double clicking the stage adds a new object and clicking once on the stage deselects a selected object. it appears that DOUBLE_CLICK will execute both itself as well as 2 CLICK functions. in other languages i've programmed with there was a built-in timers that set the two apart. is this not available in AS3?

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • Random position without overlapping

    - by Hwang
    How to stop MCs from overlapping each other? private function loadWishes():void { for (i; i } } private function checkOverlap(wishB:MovieClip) { wishB.x=Math.random()*stage.stageWidth; wishB.y=Math.random()*stage.stageHeight; for (var i:uint=0; i This doesn't seems to be working cause the amount of it checking whether MC is overlapping is about the amount of MC on stage. how to make it keep checking till everything's fine?

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • Flex: CursorManager does nothing when `stage.mouseChildren = false`?

    - by David Wolever
    I've found that if I use the CursorManager to set a cursor — CursorManager.setBusyCursor() — then set stage.mouseChildren = false, the cursor set by CursorManager is replaced by the "default" mouse cursor the next time the mouse is moved. I'm setting stage.mouseChildren = false so that, while the mouse is being dragged, other "stuff" on the stage won't get mouse events (eg, so that mouse-over affordances aren't triggered if I'm in the middle of a drag). Is there some way I can work around this?

    Read the article

  • Build Pipelining and Continuous Integration with Maven and Hudson

    - by Brandon
    Currently the my team is considering splitting our single CI build process into a more streamlined multi-stage process to speed up basic build feedback and isolate different ci concerns. The idea we had was to have each stage exist in Hudson as a different build with the correct maven goal or maven plugin execution, then chain them together using the post-build hooks of Hudson. However to my knowledge, Maven as a build tool mandates that any lifecycle phase which is performed automatically builds every preceding lifecycle phase. This presents a number of problems the most significant of which is that maven is recreating the build resources with each distinct call and not using those of the previous stage. This not only breaks the consistency of the build lifecycle but has much more unnecessary processing overhead. Is there a way to accomplish pipelining with CI using Maven? Assuming there is, is there a way to let Hudson know to use those resources built from the previous stage in the next one?

    Read the article

  • Best way to track the stages of a form across different controllers - $_GET or routing

    - by chrisj
    Hi, I am in a bit of a dilemma about how best to handle the following situation. I have a long registration process on a site, where there are around 10 form sections to fill in. Some of these forms relate specifically to the user and their own personal data, while most of them relate to the user's pets - my current set up handles user specific forms in a User_Controller (e.g via methods like user/profile, user/household etc), and similarly the pet related forms are handled in a Pet_Controller (e.g pet/health). Whether or not all of these methods should be combined into a single Registration_Controller, I'm not sure - I'm open to any advice on that. Anyway, my main issue is that I want to generate a progress bar which shows how far along in the registration process each user is. As the urls in each form section can potentially be mapping to different controllers, I'm trying to find a clean way to extract which stage a person is at in the overall process. I could just use the query string to pass a stage parameter with each request, e.g user/profile?stage=1. Another way to do it potentially is to use routing - e.g the urls for each section of the form could be set up to be registration/stage/1, registration/stage/2 - then i could just map these urls to the appropriate controller/method behind the scenes. If this makes any sense at all, does anyone have any advice for me?

    Read the article

  • Using Maven to Deploy to Weblogic Clusters

    - by Mark Sailes
    org.codehaus.mojo weblogic-maven-plugin 2.9.1 We're currently using the weblogic maven plugin successfully to deploy to our local WebLogic 9.2 instances. When we try to deploy to a remote environment we have a problem. We use a two machine cluster, with the admin server and managed server on one machine, and another managed server on a seperate machine. When your plugin uploads the application to the admin server, it doesn't copy it to the second managed server on the seperate machine. This then causes the second managed server a problem, as it cannot find the application in the location where the admin server saved it on its own machine. Config below <configuration> <adminServerHostName>${weblogic.adminServerHostName}</adminServerHostName> <adminServerPort>${weblogic.adminServerPort}</adminServerPort> <adminServerProtocol>${weblogic.adminServerProtocol}</adminServerProtocol> <userId>${weblogic.userId}</userId> <password>${weblogic.password}</password> <upload>${weblogic.upload}</upload> <remote>${weblogic.remote}</remote> <verbose>${weblogic.verbose}</verbose> <debug>${weblogic.debug}</debug> <stage>${weblogic.stage}</stage> <targetNames>${weblogic.targetNames}</targetNames> <exploded>${weblogic.exploded}</exploded> </configuration> <profile> <id>localhost</id> <properties> <weblogic.adminServerHostName>localhost</weblogic.adminServerHostName> <weblogic.adminServerPort>7001</weblogic.adminServerPort> <weblogic.adminServerProtocol>t3</weblogic.adminServerProtocol> <weblogic.userId>weblogic</weblogic.userId> <weblogic.password>weblogic</weblogic.password> <weblogic.upload>false</weblogic.upload> <weblogic.remote>false</weblogic.remote> <weblogic.verbose>true</weblogic.verbose> <weblogic.debug>true</weblogic.debug> <weblogic.stage>false</weblogic.stage> <weblogic.targetNames>AdminServer</weblogic.targetNames> <weblogic.exploded>false</weblogic.exploded> </properties> </profile> <profile> <id>dev</id> <properties> <weblogic.adminServerHostName>******</weblogic.adminServerHostName> <weblogic.adminServerPort>9141</weblogic.adminServerPort> <weblogic.adminServerProtocol>t3</weblogic.adminServerProtocol> <weblogic.userId>******</weblogic.userId> <weblogic.password>******</weblogic.password> <weblogic.upload>true</weblogic.upload> <weblogic.remote>true</weblogic.remote> <weblogic.verbose>true</weblogic.verbose> <weblogic.debug>true</weblogic.debug> <weblogic.stage>true</weblogic.stage> <weblogic.targetNames>dev_cluster01</weblogic.targetNames> <weblogic.exploded>false</weblogic.exploded> </properties> </profile>

    Read the article

  • SecurityError: Error #2152: Full screen mode is not allowed.

    - by meghana
    I have one flash player , which have full-screen functionality . which is not working in FF and MAC Chrome . and throws an error as below. SecurityError: Error #2152: Full screen mode is not allowed. at flash.display::Stage/set displayState() at com.IQMediaCorp.core::IQMediaCorpPlayer/ToggleFullScreen() I have googled about the issue and already verified some points below my player have allowfullscreen = true in html object / encode element. the methid ToggleFullScreen is an mouse click event below is code for ToggleFullScreen method public function ToggleFullScreen(e:MouseEvent) { if (stage.displayState == StageDisplayState.FULL_SCREEN_INTERACTIVE) { bKnob.alpha=0; bigScreen=true; stage.displayState=StageDisplayState.NORMAL; } else { bigScreen=false; stage.displayState=StageDisplayState.FULL_SCREEN_INTERACTIVE; bKnob.alpha=0; } } i don't get the reason why it is not working. can anybody help?? Thanks

    Read the article

  • How to pass an integer to create new variable name?

    - by Joe
    I have 50 svg animations named animation0, animation1, animation2 etc. and I want to load them when the integer 0 to 49 is passed to this function: function loadAnimation(value){ var whichswiffy = "animation" + value; var stage = new swiffy.Stage(document.getElementById('swiffycontainer'), whichswiffy); stage.start(); } It doesn't work at the moment, maybe it's passing 'whichswiffy' rather than 'animation10'? Any ideas?

    Read the article

  • Greasemonkey script, that creates Kineticjs drag and drop canvas over every website

    - by Michael Moeller
    I'd like to put a drag and drop canvas over every website I visit in Firefox. My Greasemonkey script puts a drag and drop canvas under every page: kinetic.user.js: // ==UserScript== // @name kineticjs_example // @description Canvas Drag and Drop // @include * // @require http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js // @require http://d3lp1msu2r81bx.cloudfront.net/kjs/js/lib/kinetic-v4.7.2.min.js // ==/UserScript== var div = document.createElement( 'div' ); with( div ) { setAttribute( 'id', 'container' ); } // append at end document.getElementsByTagName( 'body' )[ 0 ].appendChild( div ); var stage = new Kinetic.Stage({ container: 'container', width: 1000, height: 1000 }); var layer = new Kinetic.Layer(); var rectX = stage.getWidth() / 2 - 50; var rectY = stage.getHeight() / 2 - 25; var box = new Kinetic.Rect({ x: rectX, y: rectY, width: 100, height: 50, fill: '#00D2FF', stroke: 'black', strokeWidth: 4, draggable: true }); // add cursor styling box.on('mouseover', function() { document.body.style.cursor = 'pointer'; }); box.on('mouseout', function() { document.body.style.cursor = 'default'; }); layer.add(box); stage.add(layer); How can I drag and drop this shape over the entire website?

    Read the article

  • Figuring out QuadCurveTo's parameters

    - by Fev
    Could you guys help me figuring out QuadCurveTo's 4 parameters , I tried to find information on http://docs.oracle.com/javafx/2/api/javafx/scene/shape/QuadCurveTo.html, but it's hard for me to understand without picture , I search on google about 'Quadratic Bezier' but it shows me more than 2 coordinates, I'm confused and blind now. I know those 4 parameters draw 2 lines to control the path , but how we know/count exactly which coordinates the object will throught by only knowing those 2 path-controller. Are there some formulas? import javafx.animation.PathTransition; import javafx.animation.PathTransition.OrientationType; import javafx.application.Application; import static javafx.application.Application.launch; import javafx.scene.Group; import javafx.scene.Scene; import javafx.scene.paint.Color; import javafx.scene.shape.MoveTo; import javafx.scene.shape.Path; import javafx.scene.shape.QuadCurveTo; import javafx.scene.shape.Rectangle; import javafx.stage.Stage; import javafx.util.Duration; public class _6 extends Application { public Rectangle r; @Override public void start(final Stage stage) { r = new Rectangle(50, 80, 80, 90); r.setFill(javafx.scene.paint.Color.ORANGE); r.setStrokeWidth(5); r.setStroke(Color.ANTIQUEWHITE); Path path = new Path(); path.getElements().add(new MoveTo(100.0f, 400.0f)); path.getElements().add(new QuadCurveTo(150.0f, 60.0f, 100.0f, 20.0f)); PathTransition pt = new PathTransition(Duration.millis(1000), path); pt.setDuration(Duration.millis(10000)); pt.setNode(r); pt.setPath(path); pt.setOrientation(OrientationType.ORTHOGONAL_TO_TANGENT); pt.setCycleCount(4000); pt.setAutoReverse(true); pt.play(); stage.setScene(new Scene(new Group(r), 500, 700)); stage.show(); } public static void main(String[] args) { launch(args); } } You can find those coordinates on this new QuadCurveTo(150.0f, 60.0f, 100.0f, 20.0f) line, and below is the picture of Quadratic Bezier

    Read the article

  • Cancel text selection on textinput in Flex

    - by Michael
    So the real problem is the lack of an onReleaseOutside function. I found some examples of how to bypass this during a drag function but it was not applicable for a text input. The problem is that when a user selects some text in textinput and mouses off the application area and then mouses up, I'm getting a problem that the textinput keeps thinking that the mouse down is actively selecting text in the textinput and continually overwrites the characters being entered in the textinput. You can test this at http://palermo.infusedindustries.com [ in the search bar of the live store on the page, type some text, then highlight it all and don't let up on the mouse until you are outside the store. I finally hacked some junk together so I can tell if the mouse goes off the stage using some code like var x = stage.mouseX; var y = stage.mouseY; if(x < 0 || y <0 || x >stage.stageWidth || y > stage.stageHeight) I'd like to just make the textinput stop thinking it should be highlighting text so that even if the user scrolls out of the applet and mouses up that the text input still overwrites what is in the search bar and functions as normal. I can't seem to find any events or ways to tell the Flex text field to stop thinking that the mouse is down and that the user is done selecting text.

    Read the article

  • ActionScript 3 Cant see Movieclip

    - by user3697993
    When I play my game it does not show my _Player Movieclip, but it does collide with the ground which is very confusing. So I believe the movieclip is there but not showing the texture/Sprite. I think the problem is in "function Spawn" (First Function). public class PewdyBird extends MovieClip { //Player variables public var Up_Speed:int = 25; public var speed:Number = 0; public var _grav:Number = 0.5; public var isJump:Boolean = false; public var Score:int = 0; public var Player_Live:Boolean = true; public var _Player:Player = new Player(); //Other variables //Environment variables var Floor:int = 480; var Clock:Number = 0; var Clock_restart:Number = 0; var Clock_ON:Boolean = false; var Clock_max:int = 15; var Player_Stage:Boolean = true; private var _X:int; private var _Y:int; private var hit_ground:Boolean = false; private var width_BG:int = 479; //SPAWN function Spawn(e:Event){ _Player.x = 200; _Player.y = 200; stage.addChild(_Player); } //Keyboard Input private function KeyboardListener(e:KeyboardEvent){ if(e.keyCode == Keyboard.SPACE){ Clock = Clock_restart; Clock_ON = true; isJump = true; if(isJump){ _Player.gotoAndPlay("Fly"); speed = -Up_Speed; isJump = false; } } } //Mouse Input & Spawn Listener private function MouseListener(m:MouseEvent){ if(MouseEvent.CLICK){ Clock = Clock_restart; Clock_ON = true; isJump = true; if(isJump){ _Player.gotoAndPlay("Fly"); speed = -Up_Speed; isJump = false; } } } //Rotation Fly function Rot_Fly(){ if(Clock < Clock_max){ _Player.rotation = -15; }else if(Clock >= Clock_max){ if(_Player.rotation < 90){ _Player.rotation += 10; }else if(_Player.rotation >= 90){ _Player.rotation = 90; } } } //END //Update Function function enter_frame(e:Event):void{ Rot_Fly(); //Clock if(Clock_ON){ Clock++; }else if(Clock > Clock_max){ Clock = Clock_max; } //Fall Limits if(speed >= 20){ _Player.y += 20; return; _Player.gotoAndPlay("Fall"); } //Physics speed += _grav*3; _Player.y += speed; } //Hit Ground function Hit_Ground(e:Event){ if(_Player.hitTestObject(Ground1)){ _grav = 0; speed = 0; trace("HIT GROUND"); }else if(_Player.hitTestObject(Ground2)){ _grav = 0; speed = 0; trace("HIT GROUND"); }else if(_Player.hitTestObject(Ground1) == false){ _grav = 1; }else if(_Player.hitTestObject(Ground2) == false){ _grav = 1; } } //Background Slide (Left) private function Background_Move(e:Event):void{ Background1.x -= 1.5; Background2.x -= 1.5; Ground1.x -= 4; Ground2.x -= 4; if(Background1.x < -width_BG){ Background1.x = width_BG; } else if(Background2.x < -width_BG){ Background2.x = width_BG; } else if(Ground1.x < -width_BG){ Ground1.x = width_BG; } else if(Ground2.x < -width_BG){ Ground2.x = width_BG; } } } The eventListeners are in flash it self stage.addEventListener(Event.ENTER_FRAME, enter_frame); stage.addEventListener(Event.ENTER_FRAME, Hit_Ground); stage.addEventListener(KeyboardEvent.KEY_UP, KeyboardListener); stage.addEventListener(MouseEvent.CLICK, MouseListener); stage.addEventListener(Event.ENTER_FRAME, Background_Move); stage.addEventListener(Event.ADDED_TO_STAGE, Spawn);

    Read the article

  • Libgdx - 2D Mesh rendering overlap glitch

    - by user46858
    I am trying to render a 2D circle segment mesh (quarter circle)using Libgdx/Opengl ES 2.0 but I seem to be getting an overlapping issue as seen in the picture attached. I cant seem to find the cause of the problem but the overlapping disappears/reappears if I drag and resize the window to random sizes. The problem occurs on both pc and android. The strange thing is the first two segments atleast dont seem to be causing any overlapping only the third and/or forth segment.......even though they are all rendered using the same mesh object..... I have spent ages trying to find the cause of the problem before posting here for help so ANY help/advice in finding the cause of this problem would be really appreciated. public class MyGdxGame extends Game { private SpriteBatch batch; private Texture texture; private OrthographicCamera myCamera; private float w; private float h; private ShaderProgram circleSegShader; private Mesh circleScaleSegMesh; private Stage stage; private float TotalSegments; Vector3 virtualres; @Override public void create() { w = Gdx.graphics.getWidth(); h = Gdx.graphics.getHeight(); batch = new SpriteBatch(); ViewPortsize = new Vector2(); TotalSegments = 4.0f; virtualres = new Vector3(1280.0f, 720.0f, 0.0f); myCamera = new OrthographicCamera(); myCamera.setToOrtho(false, w, h); texture = new Texture(Gdx.files.internal("data/libgdx.png")); texture.setFilter(TextureFilter.Linear, TextureFilter.Linear); circleScaleSegMesh = createCircleMesh_V3(0.0f,0.0f,200.0f, 30.0f,3, (360.0f /TotalSegments) ); circleSegShader = loadShaderFromFile(new String("circleseg.vert"), new String("circleseg.frag")); shaderProgram.pedantic = false; stage = new Stage(); stage.setViewport(new ExtendViewport(w, h)); Gdx.input.setInputProcessor(stage); } @Override public void render() { .... //render renderInit(); renderCircleScaledSegment(); } @Override public void resize(int width, int height) { stage.getViewport().update(width, height, true); myCamera.position.set( virtualres.x/2.0f, virtualres.y/2.0f, 0.0f); myCamera.update(); } public void renderInit(){ Gdx.gl20.glClearColor(1.0f, 1.0f, 1.0f, 0.0f); Gdx.gl20.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT); batch.setShader(null); batch.setProjectionMatrix(myCamera.combined); } public void renderCircleScaledSegment(){ Gdx.gl20.glEnable(GL20.GL_DEPTH_TEST); Gdx.gl20.glBlendFunc(GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA); Gdx.gl20.glEnable(GL20.GL_BLEND); batch.begin(); circleSegShader.begin(); Matrix4 modelMatrix = new Matrix4(); Matrix4 cameraMatrix = new Matrix4(); Matrix4 cameraMatrix2 = new Matrix4(); Matrix4 cameraMatrix3 = new Matrix4(); Matrix4 cameraMatrix4 = new Matrix4(); cameraMatrix = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f)).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix.mul(modelMatrix); cameraMatrix2 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(360.0f /TotalSegments) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix2.mul(modelMatrix); cameraMatrix3 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(2*(360.0f /TotalSegments))).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix3.mul(modelMatrix); cameraMatrix4 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f),0.0f - ((360.0f /TotalSegments)/ 2.0f) +(3*(360.0f /TotalSegments)) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix4.mul(modelMatrix); Vector3 box2dpos = new Vector3(0.0f, 0.0f, 0.0f); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix2); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix3); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix4); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.end(); batch.flush(); batch.end(); Gdx.gl20.glDisable(GL20.GL_DEPTH_TEST); Gdx.gl20.glDisable(GL20.GL_BLEND); } public Mesh createCircleMesh_V3(float cx, float cy, float r_out, float r_in, int num_segments, float segmentSizeDegrees){ float theta = (float) (2.0f * MathUtils.PI / (num_segments * (360.0f / segmentSizeDegrees))); float c = MathUtils.cos(theta);//precalculate the sine and cosine float s = MathUtils.sin(theta); float t,t2; float x = r_out;//we start at angle = 0 float y = 0; float x2 = r_in;//we start at angle = 0 float y2 = 0; float[] meshCoords = new float[num_segments *2 *3 *7]; int arrayIndex = 0; //array for triangles without indices for(int ii = 0; ii < num_segments; ii++) { meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t = x; x = c * x - s * y; y = s * t + c * y; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t2 = x2; x2 = c * x2 - s * y2; y2 = s * t2 + c * y2; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; } Mesh myMesh = new Mesh(VertexDataType.VertexArray, false, meshCoords.length, 0, new VertexAttribute(VertexAttributes.Usage.Position, 3, "a_position"), new VertexAttribute(VertexAttributes.Usage.Color, 4, "a_color")); myMesh.setVertices(meshCoords); return myMesh; } }

    Read the article

  • javafx tableview get selected data from ObservableList

    - by user3717821
    i am working on a javafx project and i need your help . while i am trying to get selected data from table i can get selected data from normal cell but can't get data from ObservableList inside tableview. code for my database: -- phpMyAdmin SQL Dump -- version 4.0.4 -- http://www.phpmyadmin.net -- -- Host: localhost -- Generation Time: Jun 10, 2014 at 06:20 AM -- Server version: 5.1.33-community -- PHP Version: 5.4.12 SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO"; SET time_zone = "+00:00"; /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */; /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */; /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */; /*!40101 SET NAMES utf8 */; -- -- Database: `test` -- -- -------------------------------------------------------- -- -- Table structure for table `customer` -- CREATE TABLE IF NOT EXISTS `customer` ( `col0` int(11) NOT NULL, `col1` varchar(255) DEFAULT NULL, `col2` int(11) DEFAULT NULL, PRIMARY KEY (`col0`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -- Dumping data for table `customer` -- INSERT INTO `customer` (`col0`, `col1`, `col2`) VALUES (12, 'adasdasd', 231), (22, 'adasdasd', 231), (212, 'adasdasd', 231); /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */; /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */; /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */; my javafx codes: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Map; import javafx.application.Application; import javafx.beans.property.SimpleStringProperty; import javafx.beans.value.ChangeListener; import javafx.beans.value.ObservableValue; import javafx.collections.FXCollections; import javafx.collections.ObservableList; import javafx.event.ActionEvent; import javafx.event.EventHandler; import javafx.scene.Scene; import javafx.scene.control.Button; import javafx.scene.control.TableCell; import javafx.scene.control.TableColumn; import javafx.scene.control.TableColumn.CellDataFeatures; import javafx.scene.control.TablePosition; import javafx.scene.control.TableView; import javafx.scene.control.TableView.TableViewSelectionModel; import javafx.scene.control.cell.ChoiceBoxTableCell; import javafx.scene.control.cell.TextFieldTableCell; import javafx.scene.layout.BorderPane; import javafx.stage.Stage; import javafx.util.Callback; import javafx.util.StringConverter; class DBConnector { private static Connection conn; private static String url = "jdbc:mysql://localhost/test"; private static String user = "root"; private static String pass = "root"; public static Connection connect() throws SQLException{ try{ Class.forName("com.mysql.jdbc.Driver").newInstance(); }catch(ClassNotFoundException cnfe){ System.err.println("Error: "+cnfe.getMessage()); }catch(InstantiationException ie){ System.err.println("Error: "+ie.getMessage()); }catch(IllegalAccessException iae){ System.err.println("Error: "+iae.getMessage()); } conn = DriverManager.getConnection(url,user,pass); return conn; } public static Connection getConnection() throws SQLException, ClassNotFoundException{ if(conn !=null && !conn.isClosed()) return conn; connect(); return conn; } } public class DynamicTable extends Application{ Object newValue; //TABLE VIEW AND DATA private ObservableList<ObservableList> data; private TableView<ObservableList> tableview; //MAIN EXECUTOR public static void main(String[] args) { launch(args); } //CONNECTION DATABASE public void buildData(){ tableview.setEditable(true); Callback<TableColumn<Map, String>, TableCell<Map, String>> cellFactoryForMap = new Callback<TableColumn<Map, String>, TableCell<Map, String>>() { @Override public TableCell call(TableColumn p) { return new TextFieldTableCell(new StringConverter() { @Override public String toString(Object t) { return t.toString(); } @Override public Object fromString(String string) { return string; } }); } }; Connection c ; data = FXCollections.observableArrayList(); try{ c = DBConnector.connect(); //SQL FOR SELECTING ALL OF CUSTOMER String SQL = "SELECT * from CUSTOMer"; //ResultSet ResultSet rs = c.createStatement().executeQuery(SQL); /********************************** * TABLE COLUMN ADDED DYNAMICALLY * **********************************/ for(int i=0 ; i<rs.getMetaData().getColumnCount(); i++){ //We are using non property style for making dynamic table final int j = i; TableColumn col = new TableColumn(rs.getMetaData().getColumnName(i+1)); if(j==1){ final ObservableList<String> logLevelList = FXCollections.observableArrayList("FATAL", "ERROR", "WARN", "INFO", "INOUT", "DEBUG"); col.setCellFactory(ChoiceBoxTableCell.forTableColumn(logLevelList)); tableview.getColumns().addAll(col); } else{ col.setCellValueFactory(new Callback<CellDataFeatures<ObservableList,String>,ObservableValue<String>>(){ public ObservableValue<String> call(CellDataFeatures<ObservableList, String> param) { return new SimpleStringProperty(param.getValue().get(j).toString()); } }); tableview.getColumns().addAll(col); } if(j!=1) col.setCellFactory(cellFactoryForMap); System.out.println("Column ["+i+"] "); } /******************************** * Data added to ObservableList * ********************************/ while(rs.next()){ //Iterate Row ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=rs.getMetaData().getColumnCount(); i++){ //Iterate Column row.add(rs.getString(i)); } System.out.println("Row [1] added "+row ); data.add(row); } //FINALLY ADDED TO TableView tableview.setItems(data); }catch(Exception e){ e.printStackTrace(); System.out.println("Error on Building Data"); } } @Override public void start(Stage stage) throws Exception { //TableView Button showDataButton = new Button("Add"); showDataButton.setOnAction(new EventHandler<ActionEvent>() { public void handle(ActionEvent event) { ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=3; i++){ //Iterate Column row.add("asdasd"); } data.add(row); //FINALLY ADDED TO TableView tableview.setItems(data); } }); tableview = new TableView(); buildData(); //Main Scene BorderPane root = new BorderPane(); root.setCenter(tableview); root.setBottom(showDataButton); Scene scene = new Scene(root,500,500); stage.setScene(scene); stage.show(); tableview.getSelectionModel().selectedItemProperty().addListener(new ChangeListener() { @Override public void changed(ObservableValue observableValue, Object oldValue, Object newValue) { //Check whether item is selected and set value of selected item to Label if (tableview.getSelectionModel().getSelectedItem() != null) { TableViewSelectionModel selectionModel = tableview.getSelectionModel(); ObservableList selectedCells = selectionModel.getSelectedCells(); TablePosition tablePosition = (TablePosition) selectedCells.get(0); Object val = tablePosition.getTableColumn().getCellData(newValue); System.out.println("Selected Value " + val); System.out.println("Selected row " + newValue); } } }); } } please help me..

    Read the article

  • My raycaster is putting out strange results, how do I fix it?

    - by JamesK89
    I'm working on a raycaster in ActionScript 3.0 for the fun of it, and as a learning experience. I've got it up and running and its displaying me output as expected however I'm getting this strange bug where rays go through corners of blocks and the edges of blocks appear through walls. Maybe somebody with more experience can point out what I'm doing wrong or maybe a fresh pair of eyes can spot a tiny bug I haven't noticed. Thank you so much for your help! Screenshots: http://i55.tinypic.com/25koebm.jpg http://i51.tinypic.com/zx5jq9.jpg Relevant code: function drawScene() { rays.graphics.clear(); rays.graphics.lineStyle(1, rgba(0x00,0x66,0x00)); var halfFov = (player.fov/2); var numRays:int = ( stage.stageWidth / COLUMN_SIZE ); var prjDist = ( stage.stageWidth / 2 ) / Math.tan(toRad( halfFov )); var angStep = ( player.fov / numRays ); for( var i:int = 0; i < numRays; i++ ) { var rAng = ( ( player.angle - halfFov ) + ( angStep * i ) ) % 360; if( rAng < 0 ) rAng += 360; var ray:Object = castRay(player.position, rAng); drawRaySlice(i*COLUMN_SIZE, prjDist, player.angle, ray); } } function drawRaySlice(sx:int, prjDist, angle, ray:Object) { if( ray.distance >= MAX_DIST ) return; var height:int = int(( TILE_SIZE / (ray.distance * Math.cos(toRad(angle-ray.angle))) ) * prjDist); if( !height ) return; var yTop = int(( stage.stageHeight / 2 ) - ( height / 2 )); if( yTop < 0 ) yTop = 0; var yBot = int(( stage.stageHeight / 2 ) + ( height / 2 )); if( yBot > stage.stageHeight ) yBot = stage.stageHeight; rays.graphics.moveTo( (ray.origin.x / TILE_SIZE) * MINI_SIZE, (ray.origin.y / TILE_SIZE) * MINI_SIZE ); rays.graphics.lineTo( (ray.hit.x / TILE_SIZE) * MINI_SIZE, (ray.hit.y / TILE_SIZE) * MINI_SIZE ); for( var x:int = 0; x < COLUMN_SIZE; x++ ) { for( var y:int = yTop; y < yBot; y++ ) { buffer.setPixel(sx+x, y, clrTable[ray.tile-1] >> ( ray.horz ? 1 : 0 )); } } } function castRay(origin:Point, angle):Object { // Return values var rTexel = 0; var rHorz = false; var rTile = 0; var rDist = MAX_DIST + 1; var rMap:Point = new Point(); var rHit:Point = new Point(); // Ray angle and slope var ra = toRad(angle) % ANGLE_360; if( ra < ANGLE_0 ) ra += ANGLE_360; var rs = Math.tan(ra); var rUp = ( ra > ANGLE_0 && ra < ANGLE_180 ); var rRight = ( ra < ANGLE_90 || ra > ANGLE_270 ); // Ray position var rx = 0; var ry = 0; // Ray step values var xa = 0; var ya = 0; // Ray position, in map coordinates var mx:int = 0; var my:int = 0; var mt:int = 0; // Distance var dx = 0; var dy = 0; var ds = MAX_DIST + 1; // Horizontal intersection if( ra != ANGLE_180 && ra != ANGLE_0 && ra != ANGLE_360 ) { ya = ( rUp ? TILE_SIZE : -TILE_SIZE ); xa = ya / rs; ry = int( origin.y / TILE_SIZE ) * ( TILE_SIZE ) + ( rUp ? TILE_SIZE : -1 ); rx = origin.x + ( ry - origin.y ) / rs; mx = 0; my = 0; while( mx >= 0 && my >= 0 && mx < world.size.x && my < world.size.y ) { mx = int( rx / TILE_SIZE ); my = int( ry / TILE_SIZE ); mt = getMapTile(mx,my); if( mt > 0 && mt < 9 ) { dx = rx - origin.x; dy = ry - origin.y; ds = ( dx * dx ) + ( dy * dy ); if( rDist >= MAX_DIST || ds < rDist ) { rDist = ds; rTile = mt; rMap.x = mx; rMap.y = my; rHit.x = rx; rHit.y = ry; rHorz = true; rTexel = int(rx % TILE_SIZE) } break; } rx += xa; ry += ya; } } // Vertical intersection if( ra != ANGLE_90 && ra != ANGLE_270 ) { xa = ( rRight ? TILE_SIZE : -TILE_SIZE ); ya = xa * rs; rx = int( origin.x / TILE_SIZE ) * ( TILE_SIZE ) + ( rRight ? TILE_SIZE : -1 ); ry = origin.y + ( rx - origin.x ) * rs; mx = 0; my = 0; while( mx >= 0 && my >= 0 && mx < world.size.x && my < world.size.y ) { mx = int( rx / TILE_SIZE ); my = int( ry / TILE_SIZE ); mt = getMapTile(mx,my); if( mt > 0 && mt < 9 ) { dx = rx - origin.x; dy = ry - origin.y; ds = ( dx * dx ) + ( dy * dy ); if( rDist >= MAX_DIST || ds < rDist ) { rDist = ds; rTile = mt; rMap.x = mx; rMap.y = my; rHit.x = rx; rHit.y = ry; rHorz = false; rTexel = int(ry % TILE_SIZE); } break; } rx += xa; ry += ya; } } return { angle: angle, distance: Math.sqrt(rDist), hit: rHit, map: rMap, tile: rTile, horz: rHorz, origin: origin, texel: rTexel }; }

    Read the article

  • Council for the Development of a jumping game!

    - by Esteban Quintero
    I want to create platforms on the stage, where a sprite is jumping on them. something like this http://itunes.apple.com/es/app/doodle-jump-cuidado-extremadamente/id307727765?mt=8 I would like some guidance to do so. 1) what is the best way to simulate the jump? (Velocity or EnityModifier) 2) as platforms rabdom I can generate, with no overlap? 3) should move the camera or the sprites of the stage?

    Read the article

  • vagrant up command very slow on OS X Lion

    - by Andy Hume
    When I run vagrant up to provision a new VM on Lion it takes an extremely long time, during which the entire Mac is very laggy and unresponsive. The output is as follows, the key point being the "notice: Finished catalog run in 754.28 seconds" > vagrant up [default] Importing base box 'lucid64'... [default] The guest additions on this VM do not match the install version of VirtualBox! This may cause things such as forwarded ports, shared folders, and more to not work properly. If any of those things fail on this machine, please update the guest additions and repackage the box. Guest Additions Version: 4.1.0 VirtualBox Version: 4.1.6 [default] Matching MAC address for NAT networking... [default] Clearing any previously set forwarded ports... [default] Forwarding ports... [default] -- ssh: 22 => 2222 (adapter 1) [default] -- web: 80 => 4567 (adapter 1) [default] Creating shared folders metadata... [default] Running any VM customizations... [default] Booting VM... [default] Waiting for VM to boot. This can take a few minutes. [default] VM booted and ready for use! [default] Mounting shared folders... [default] -- v-root: /vagrant [default] -- v-data: /var/www [default] -- manifests: /tmp/vagrant-puppet/manifests [default] Running provisioner: Vagrant::Provisioners::Puppet... [default] Running Puppet with lucid64.pp... [default] stdin: is not a tty [default] notice: /Stage[main]/Lucid64/Exec[apt-update]/returns: executed successfully [default] [default] notice: /Stage[main]/Lucid64/Package[apache2]/ensure: ensure changed 'purged' to 'present' [default] [default] notice: /Stage[main]/Lucid64/File[/etc/motd]/ensure: defined content as '{md5}a25e31ba9b8489da9cd5751c447a1741' [default] [default] notice: Finished catalog run in 754.28 seconds [default] [default] err: /File[/var/lib/puppet/rrd]/ensure: change from absent to directory failed: Could not find group puppet [default] [default] err: Could not send report: Got 1 failure(s) while initializing: change from absent to directory failed: Could not find group puppet [default] [default] Running provisioner: Vagrant::Provisioners::Puppet... [default] Running Puppet with lucid64.pp... [default] stdin: is not a tty [default] notice: /Stage[main]/Lucid64/Exec[apt-update]/returns: executed successfully [default] [default] notice: Finished catalog run in 2.05 seconds [default] [default] err: /File[/var/lib/puppet/rrd]: Could not evaluate: Could not find group puppet [default] [default] err: Could not send report: Got 1 failure(s) while initializing: Could not evaluate: Could not find group puppet [default] [default] Running provisioner: Vagrant::Provisioners::Puppet... [default] Running Puppet with lucid64.pp... [default] stdin: is not a tty [default] notice: /Stage[main]/Lucid64/Exec[apt-update]/returns: executed successfully [default] [default] notice: Finished catalog run in 1.36 seconds [default] [default] err: /File[/var/lib/puppet/rrd]: Could not evaluate: Could not find group puppet [default] [default] err: Could not send report: Got 1 failure(s) while initializing: Could not evaluate: Could not find group puppet [default] >

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >