Search Results

Search found 555 results on 23 pages for 'projection'.

Page 12/23 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Access violation writing location, in my loop

    - by numerical25
    The exact error I am getting is First-chance exception at 0x0096234a in chp2.exe: 0xC0000005: Access violation writing location 0x002b0000. Windows has triggered a breakpoint in chp2.exe. And the breakpoint stops here for(DWORD i = 0; i < m; ++i) { //we are start at the top of z float z = halfDepth - i*dx; for(DWORD j = 0; j < n; ++j) { //to the left of us float x = -halfWidth + j*dx; float y = 0.0f; vertices[i*n+j].pos = D3DXVECTOR3(x, y, z); //<----- Right here vertices[i*n+j].color = D3DXVECTOR4(1.0f, 0.0f, 0.0f, 0.0f); } } I am not sure what I am doing wrong. below is the code in its entirety #include "MyGame.h" //#include "CubeVector.h" /* This code sets a projection and shows a turning cube. What has been added is the project, rotation and a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file which was causing the vertices not to be rendered correctly.*/ typedef struct { ID3D10Effect* pEffect; ID3D10EffectTechnique* pTechnique; //vertex information ID3D10Buffer* pVertexBuffer; ID3D10Buffer* pIndicesBuffer; ID3D10InputLayout* pVertexLayout; UINT numVertices; UINT numIndices; }ModelObject; ModelObject modelObject; // World Matrix D3DXMATRIX WorldMatrix; // View Matrix D3DXMATRIX ViewMatrix; // Projection Matrix D3DXMATRIX ProjectionMatrix; ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL; //grid information #define NUM_COLS 16 #define NUM_ROWS 16 #define CELL_WIDTH 32 #define CELL_HEIGHT 32 #define NUM_VERTSX (NUM_COLS + 1) #define NUM_VERTSY (NUM_ROWS + 1) bool MyGame::InitDirect3D() { if(!DX3dApp::InitDirect3D()) { return false; } D3D10_RASTERIZER_DESC rastDesc; rastDesc.FillMode = D3D10_FILL_WIREFRAME; rastDesc.CullMode = D3D10_CULL_FRONT; rastDesc.FrontCounterClockwise = true; rastDesc.DepthBias = false; rastDesc.DepthBiasClamp = 0; rastDesc.SlopeScaledDepthBias = 0; rastDesc.DepthClipEnable = false; rastDesc.ScissorEnable = false; rastDesc.MultisampleEnable = false; rastDesc.AntialiasedLineEnable = false; ID3D10RasterizerState *g_pRasterizerState; mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState); mpD3DDevice->RSSetState(g_pRasterizerState); // Set up the World Matrix //The first line of code creates your identity matrix. Second line of code //second combines your camera position, target location, and which way is up respectively D3DXMatrixIdentity(&WorldMatrix); D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(200.0f, 60.0f, -20.0f), new D3DXVECTOR3(200.0f, 50.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // Set up the projection matrix D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f); if(!CreateObject()) { return false; } return true; } //These are actions that take place after the clearing of the buffer and before the present void MyGame::GameDraw() { static float rotationAngle = 0.0f; // create the rotation matrix using the rotation angle D3DXMatrixRotationY(&WorldMatrix, rotationAngle); rotationAngle += (float)D3DX_PI * 0.0f; // Set the input layout mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout); // Set vertex buffer UINT stride = sizeof(VertexPos); UINT offset = 0; mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset); mpD3DDevice->IASetIndexBuffer(modelObject.pIndicesBuffer, DXGI_FORMAT_R32_UINT, 0); // Set primitive topology mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Combine and send the final matrix to the shader D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix); pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix); // make sure modelObject is valid // Render a model object D3D10_TECHNIQUE_DESC techniqueDescription; modelObject.pTechnique->GetDesc(&techniqueDescription); // Loop through the technique passes for(UINT p=0; p < techniqueDescription.Passes; ++p) { modelObject.pTechnique->GetPassByIndex(p)->Apply(0); // draw the cube using all 36 vertices and 12 triangles mpD3DDevice->DrawIndexed(modelObject.numIndices,0,0); } } //Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you //present data void MyGame::Render() { DX3dApp::Render(); } bool MyGame::CreateObject() { //dx will represent the width and the height of the spacing of each vector float dx = 1; //Below are the number of vertices //m is the vertices of each row. n is the columns DWORD m = 30; DWORD n = 30; //This get the width of the entire land //30 - 1 = 29 rows * 1 = 29 * 0.5 = 14.5 float halfWidth = (n-1)*dx*0.5f; float halfDepth = (m-1)*dx*0.5f; float vertexsize = m * n; VertexPos vertices[80]; for(DWORD i = 0; i < m; ++i) { //we are start at the top of z float z = halfDepth - i*dx; for(DWORD j = 0; j < n; ++j) { //to the left of us float x = -halfWidth + j*dx; float y = 0.0f; vertices[i*n+j].pos = D3DXVECTOR3(x, y, z); vertices[i*n+j].color = D3DXVECTOR4(1.0f, 0.0f, 0.0f, 0.0f); } } int k = 0; DWORD indices[540]; for(DWORD i = 0; i < n-1; ++i) { for(DWORD j = 0; j < n-1; ++j) { indices[k] = (i * n) + j; indices[k + 1] = (i * n) + j + 1; indices[k + 2] = (i + 1) * n + j; indices[k + 3] = (i + 1) * n + j; indices[k + 4] = (i * n) + j + 1; indices[k + 5] = (i + 1) * n + j+ 1; k += 6; } } //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false; modelObject.numIndices = sizeof(indices)/sizeof(DWORD); bufferDesc.ByteWidth = sizeof(DWORD) * modelObject.numIndices; bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; initData.pSysMem = indices; hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pIndicesBuffer); if(FAILED(hr)) return false; ///////////////////////////////////////////////////////////////////////////// //Set up fx files LPCWSTR effectFilename = L"effect.fx"; modelObject.pEffect = NULL; hr = D3DX10CreateEffectFromFile(effectFilename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, mpD3DDevice, NULL, NULL, &modelObject.pEffect, NULL, NULL); if(FAILED(hr)) return false; pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix(); //Dont sweat the technique. Get it! LPCSTR effectTechniqueName = "Render"; modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName); if(modelObject.pTechnique == NULL) return false; //Create Vertex layout D3D10_PASS_DESC passDesc; modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc); hr = mpD3DDevice->CreateInputLayout(layout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &modelObject.pVertexLayout); if(FAILED(hr)) return false; return true; }

    Read the article

  • why my customized marker not showing up in openstreet maps

    - by troy
    I have following java script used for showing the customized marker. But for some reasons its showing up the default marker.. function init() { map = new OpenLayers.Map("basicMap"); var mapnik = new OpenLayers.Layer.OSM(); var fromProjection = new OpenLayers.Projection("EPSG:4326"); var toProjection = new OpenLayers.Projection("EPSG:900913"); var position = new OpenLayers.LonLat(-6.242981,53.331201).transform( fromProjection, toProjection); var zoom = 12; map.addLayer(mapnik); var markers = new OpenLayers.Layer.Markers( "Markers" ); map.addLayer(markers); var size = new OpenLayers.Size(16,28); var offset = new OpenLayers.Pixel(-(size.w*0), -(size.h*1)); var icon = new OpenLayers.Icon('http://m.osmtools.de/images/pin_red.png',size,offset); markers.addMarker(new OpenLayers.Marker(position),icon); map.setCenter(position, zoom ); } And here is my html: <body onload="init();"> <div id="basicMap"></div> </body> I dont understand what wrong with my code .... Please help me.. THank You

    Read the article

  • OpenGL, draw two polygons in the same time (by mouse clicks)

    - by YoungSalafi
    im trying to draw 2 polygons at the same time depending on user input from the opengl screen... so i made 2 arrays which each one of them will carry the vertices of each polygon ... i think my logic is right but the program still prints only polygon and delete the old polygon if you draw a polygon again . and its acting weird too please check the code yourself here it is : P.S dont mind the delete function right now.. i know it missing something. #include <windows.h> #include <gl/gl.h> #include <gl/glut.h> void Draw(); void Set_Transformations(); void Initialize(int argc, char *argv[]); void OnKeyPress(unsigned char key, int x, int y); void DeleteVer(); void MouseClick(int bin, int state , int x , int y); void GetOGLPos(int x, int y,float* arrY,float* arrX); void DrawPolygon(float* arrX,float* arrY); float xPos[20]; float yPos[20]; float xPos2[20]; float yPos2[20]; float fx = 0,fy = 0; float size = 10; int count = 0; bool done = false; bool flag = true; void Initialize(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA); glutInitWindowPosition(100, 100); glutInitWindowSize(600, 600); glutCreateWindow("OpenGL Lab1"); Set_Transformations(); glutDisplayFunc(Draw); glutMouseFunc(MouseClick); glutKeyboardFunc(OnKeyPress); glutMainLoop(); } void Set_Transformations() { glClearColor(1, 1, 1, 1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(-200, 200, -200, 200); } void OnKeyPress(unsigned char key, int x, int y) { if (key == 27) exit(0); switch(key) { case 13: //enter key it will draw done = true; glutPostRedisplay(); flag=!flag; // this flag to switch to the other array that the vertices will be stored in, in order to draw the second polygon break; } } void MouseClick(int button, int state , int x , int y) { switch (button) { case GLUT_RIGHT_BUTTON: if (state == GLUT_DOWN) { if (count>0) { DeleteVer(); //dont mind this right now } } break; case GLUT_LEFT_BUTTON: if (state == GLUT_DOWN) { if(count<20) { if(flag =true){ // drawing first polygon GetOGLPos(x, y,xPos,yPos);} if (flag=false) //drawing second polygon after Enter is pressed GetOGLPos(x, y,xPos2,yPos2); } } break; } } void GetOGLPos(int x, int y,float* arrY,float* arrX) //getting the vertices from the user { GLint viewport[4]; GLdouble modelview[16]; GLdouble projection[16]; GLfloat winX, winY, winZ; GLdouble posX, posY, posZ; glGetDoublev( GL_MODELVIEW_MATRIX, modelview ); glGetDoublev( GL_PROJECTION_MATRIX, projection ); glGetIntegerv( GL_VIEWPORT, viewport ); winX = (float)x; winY = (float)viewport[3] - (float)y; glReadPixels( x, int(winY), 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &winZ ); gluUnProject( winX, winY, winZ, modelview, projection, viewport, &posX, &posY, &posZ); arrX[count] = posX; arrY[count] = posY; count++; glPointSize( 6.0 ); glBegin(GL_POINTS); glVertex2f(posX,posY); glEnd(); glFlush(); } void DeleteVer(){ //dont mind this glColor3f ( 1, 1, 1); glBegin(GL_POINTS); glVertex2f(xPos[count-1],yPos[count-1]); glEnd(); glFlush(); xPos[count] = NULL; yPos[count] = NULL; count--; glColor3f ( 0, 0, 0); } void DrawPolygon(float* arrX,float* arrY) { int n=0; glColor3f ( 0, 0, 0); glBegin(GL_POLYGON); while(n<count) { glVertex2f(arrX[n],arrY[n]); n++; } count=0; glEnd(); glFlush(); } void Draw() //main drawing func { glClear(GL_COLOR_BUFFER_BIT); glColor3f(0, 0, 0); if(done) { DrawPolygon(xPos,yPos); DrawPolygon(xPos2,yPos2); } glFlush(); } int main(int argc, char *argv[]) { Initialize(argc, argv); return 0; }

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • Polished DIY Projector Is Painted Right onto the Wall

    - by Jason Fitzpatrick
    If you’re contemplating building a projector screen but find yourself not entirely unhappy with just projecting right onto the wall, this simple paint-it-on-the-wall upgrade is for you. Check out the above video to see the steps required to patch, paint, and frame a space on your wall to serve as a projection screen. You’ll need spackle, sandpaper, white paint, and some very basic carpentry skills to complete the simple wood frame for your painted-on screen. If you’d like to create a screen using the same technique but make it removable (for adjustments or to take it with you when you move out) you can just as easily use the paint-it-on technique with a piece of hardboard instead of the drywall. [via Hack A Day] HTG Explains: Is ReadyBoost Worth Using? HTG Explains: What The Windows Event Viewer Is and How You Can Use It HTG Explains: How Windows Uses The Task Scheduler for System Tasks

    Read the article

  • How do I convert my matrix from OpenGL to Marmalade?

    - by King Snail
    I am using a third party rendering API, Marmalade, on top of OpenGL code and I cannot get my matrices correct. One of the API's authors states this: We're right handed by default, and we treat y as up by convention. Since IwGx's coordinate system has (0,0) as the top left, you typically need a 180 degree rotation around Z in your view matrix. I think the viewer does this by default. In my OpenGL app I have access to the view and projection matrices separately. How can I convert them to fit the criteria used by my third party rendering API? I don't understand what they mean to rotate 180 degrees around Z, is that in the view matrix itself or something in the camera before making the view matrix. Any code would be helpful, thanks.

    Read the article

  • Hurricanes Since 1851 [Visualization]

    - by Jason Fitzpatrick
    Much like you can map out volcanic eruptions to create a neat pattern around the Pacific Ring of Fire, you can also map out hurricanes and tropical storms. Check out this high-resolution visualization to see the pattern formed by a century and a half of storms. Courtesy of UXBlog and data from the National Oceanic and Atmospheric Administration, the above projection shows the path of tropical storms around the equator (the perspective, if the map looks unfamiliar to you, is bottom up with Antarctica and the lower portion of South America in the center). For a full resolution copy of the image and more information about how it was rendered, hit up the link below. Hurricanes Since 1851 [via Cool Infographics] How To Get a Better Wireless Signal and Reduce Wireless Network Interference How To Troubleshoot Internet Connection Problems 7 Ways To Free Up Hard Disk Space On Windows

    Read the article

  • Drawing a textured triangle with CPU instead of GPU

    - by Jenko
    I understand the benefits of GPU rendering and such, but for a certain limited application I need to render textured triangles purely using CPU. I've built a 3D engine capable of object handling, transform, projection, culling and the likes ... now all I need is a little code snippet that draws a single textured triangle onto a bitmap... any language accepted! Inputs: Texture bitmap, Triangle U/V/W coords, Triangle X/Y screen coords Output: The textured triangle drawn at the given screen coords I've currently been using a platform function to draw triangles to screen, but I'm looking to handle it myself to speeden up the process.

    Read the article

  • 3d vertex translated onto 2d viewport

    - by Dan Leidal
    I have a spherical world defined by simple trigonometric functions to create triangles that are relatively similar in size and shape throughout. What I want to be able to do is use mouse input to target a range of vertices in the area around the mouse click in order to manipulate these vertices in real time. I read a post on this forum regarding translating 3d world coordinates into the 2d viewport.. it recommended that you should multiply the world vector coordinates by the viewport and then the projection, but they didn't include any code examples, and suffice to say i couldn't get any good results. Further information.. I am using a lookat method for the viewport. Does this cause a problem, and if so is there a solution? If this isn't the problem, does anyone have a simple code example illustrating translating one vertex in a 3d world into a 2d viewspace? I am using XNA.

    Read the article

  • View matrix question (rotate by 180 degrees)

    - by King Snail
    I am using a third party rendering API on top of OpenGL code and I cannot get my matrices correct. The API states this: We're right handed by default, and we treat y as up by convention. Since IwGx's coordinate system has (0,0) as the top left, you typically need a 180 degree rotation around Z in your view matrix. I think the viewer does this by default. In my OpenGL app I have access to the view and projection matrices separately. How can I convert them to fit the criteria used by my third party rendering API? I don't understand what they mean to rotate 180 degrees around Z, is that in the view matrix itself or something in the camera before making the view matrix. Any code would be helpful, thanks.

    Read the article

  • Retrieving model position after applying modeltransforms in XNA

    - by Glen Dekker
    For this method that the goingBeyond XNA tutorial provides, it would be really convenient if I could retrieve the new position of the model after I apply all the transforms to the mesh. I have edited the method a little for what I need. Does anyone know a way I can do this? public void DrawModel( Camera camera ) { Matrix scaleY = Matrix.CreateScale(new Vector3(1, 2, 1)); Matrix temp = Matrix.CreateScale(100f) * scaleY * rotationMatrix * translationMatrix * Matrix.CreateRotationY(MathHelper.Pi / 6) * translationMatrix2; Matrix[] modelTransforms = new Matrix[model.Bones.Count]; model.CopyAbsoluteBoneTransformsTo(modelTransforms); if (camera.getDistanceFromPlayer(position+position1) > 3000) return; foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.World = modelTransforms[mesh.ParentBone.Index] * temp * worldMatrix; effect.View = camera.viewMatrix; effect.Projection = camera.projectionMatrix; } mesh.Draw(); } }

    Read the article

  • Trying to detect collision between two polygons using Separating Axis Theorem

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(vertices[0]); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(vertices[i]); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if( other.x <= y || other.y >= x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Error in my Separating Axis Theorem collision code

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; int x; int y; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } public void update(int xPos, int yPos){ x = xPos; y = yPos; } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(new Vect(vertices[0].x+x, vertices[0].y+y)); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(new Vect(vertices[i].x+x, vertices[i].y+y)); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if(y > other.x && other.y > x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Speed up lighting in deferred shading

    - by kochol
    I implemented a simple deferred shading renderer. I use 3 G-Buffer for storing position (R32F), normal (G16R16F) and albedo (ARGB8). I use sphere map algorithm to store normals in world space. Currently I use inverse of view * projection matrix to calculate the position of each pixel from stored depth value. First I want to avoid per pixel matrix multiplication for calculating the position. Is there another way to store and calculate position in G-Buffer without the need of matrix multiplication Store the normal in view space Every lighting in my engine is in world space and I want do the lighting in view space to speed up my lighting pass. I want an optimized lighting pass for my deferred engine.

    Read the article

  • HLSL problem with divide by homogeneous component

    - by Berend
    When I try to divide my position.z by my position.w in HLSL I get as result always 1.0f or higher. Is this a common problem for some reason? When I divide my position.x or y by the w this works fine. But the divide for the z gives a wrong result. I use the view matrix for my camera and the projection matrix as i use it in the game because I want to create a depthmap from the cameraposition. Can anybody explain what I'm doing wrong? Do I need another view matrix?

    Read the article

  • For 2D games, is there any reason NOT to use a 3D API like Direct3D or OpenGL?

    - by Eric Palakovich Carr
    I've been out of hobby Game Development for quite a while now. Back when I did it, most people used Direct Draw to create 2D games. By the time I stopped people were saying OpenGL or Direct3D with an orthogonal projection is just the way to go. I'm thinking about getting back into creating 2D games, in particular on mobile phone but maybe on the XNA platform as well. To make something using OpenGL I'd have a (hopefullly) small learning curve to acclimate myself to 3D development. Is there any reason to skip that and instead work with a 2D framework where I just have a Width x Height frame buffer I need to fill with pixels?

    Read the article

  • Multiple textures on a mesh created in blender and imported in xna

    - by alecnash
    I created a cube in blender which has multiple images applied to its faces. I am trying to import the model into xna and get the same results as shown when rendering the model in blender. I go through every mesh (for the cube its only one) and through every part but only the first image used in blender is displayed in every face. The code I am using to fetch the texture looks like that: foreach (ModelMesh m in model.Meshes) { foreach (Effect e in m.Effects) { foreach (var part in m.MeshParts) { e.CurrentTechnique = e.Techniques["Lambert"]; e.Parameters["view"].SetValue(camera.viewMatrix); e.Parameters["projection"].SetValue(camera.projectionMatrix); e.Parameters["colorMap"].SetValue(modelTextures[part.GetHashCode()]); } } m.Draw(); } Am I missing something?

    Read the article

  • How exactly does XNA's SpriteBatch work?

    - by David Gouveia
    To be more precise, if I needed to recreate this functionality from scratch in another API (e.g. in OpenGL) what would it need to be capable of doing? I do have a general idea of some of the steps, such as how it prepares an orthographic projection matrix and creates a quad for each draw call. I'm not too familiar, however, with the batching process itself. Are all quads stored in the same vertex buffer? Does it need an index buffer? How are different textures handled? If possible I'd be grateful if you could guide me through the process from when SpriteBatch.Begin() is called until SpriteBatch.End(), at least when using the default Deferred mode.

    Read the article

  • Projecting onto different size screens by cropping

    - by Jason
    Hi, I am building a phone application which will display a shape on screen. The shape should look the same on different screen sizes. I. Decided the best way to do this is to show more of the background on larger screen keeping the shapes proportion the same on all screens. My problem is I am not sure how to achieve this, I can query the screen size at runtime and calculate how different it is from the six is designed for but I am not sure what to do with this value. What kind of projection should I use for my orthographic matrix an hour will I display more on larger screens and not loose information on smaller screens? Thanks, Jason.

    Read the article

  • OpenGL ES 1 Pixel Error?

    - by Beginner001
    I am developing a game on android using OpenGL ES 1.0 for Android OS. It is a 2d game using a simple Orthographic projection and textures for the sprites. One of these textures has a small line (it looks like 1 pixel) all the way across the top that has the same colors as the bottom 1-pixel line of the texture. It is almost as if the bottom line of the image raster was copied and pasted as the top line as well. Is anyone familiar with this type of error? What could the problem be?

    Read the article

  • OpenGL 2D Rasterization Sub-Pixel Translations

    - by Armin Ronacher
    I have a tile based 2D engine where the projection matrix is an orthographic view of the world without any scaling applied. Thus: one pixel texture is drawn on the screen in the same size. That all works well and looks nice but if the camera makes a sub-pixel movement small lines appear between the tiles. I can tell you in advance what does not fix the problem: GL_NEAREST texture interpolation GL_CLAMP_TO_EDGE What does “fix” the problem is anchoring the camera to the nearest pixel instead of doing a sub-pixel translation. I can live with that, but the camera movement becomes jerky. Any ideas how to fix that problem without resorting to the rounding trick I do currently?

    Read the article

  • What should I worry about when changing OpenGL origin to upper left of screen?

    - by derivative
    For self education, I'm writing a 2D platformer engine in C++ using SDL / OpenGL. I initially began with pure SDL using the tutorials on sdltutorials.com and lazyfoo.net, but I'm now rendering in an OpenGL context (specifically immediate mode but I'm learning about VAOs/VBOs) and using SDL for interface, audio, etc. SDL uses a coordinate system with the origin in the upper left of the screen and the positive y-axis pointing down. It's easy to set up my orthographic projection in OpenGL to mirror this. I know that texture coordinates are a right-hand system with values from 0 to 1 -- flipping the texture vertically before rendering (well, flip the file before loading) yields textures that render correctly... which is fine if I'm drawing the entire texture, but ultimately I'll be using tilesets and can imagine problems. What should I be concerned about in terms of rendering when I do this? If anybody has any advice or they've done this themselves and can point out future pitfalls, that would be great, but really any thoughts would be appreciated.

    Read the article

  • View space lighting in deferred shading

    - by kochol
    I implemented a simple deferred shading renderer. I use 3 G-Buffer for storing position (R32F), normal (G16R16F) and albedo (ARGB8). I use sphere map algorithm to store normals in world space. Currently I use inverse of view * projection matrix to calculate the position of each pixel from stored depth value. First I want to avoid per pixel matrix multiplication for calculating the position. Is there another way to store and calculate position in G-Buffer without the need of matrix multiplication Store the normal in view space Every lighting in my engine is in world space and I want do the lighting in view space to speed up my lighting pass. I want an optimized lighting pass for my deferred engine.

    Read the article

  • Android opengles 2.0 :different resolutions rendering and input

    - by kkan
    I'm currently developing a sprite based 2D game for android using opengles 2.0. I've got some basic rendering done that mimics the spritebatch functionality of xna (draw sprite, rotation, color). But all of this works for a fixed projection matrix, but android has a lot of screen sizes. Q1)Would this be an okay method to scale up/down the drawing? 1)Draw the whole screen to a texture. 2)Draw the above texture as a quad to the device. I found the above through some searching, not sure if it's the best one, are there any alternatives? Q2)How do you handle inputs for different resolutions? I currently get the position of a touch and use it raw. Would it be okay to get the position, and then scale the position to size of the texture used for rendering, and the perform calculations on it? Thanks.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >