Search Results

Search found 6103 results on 245 pages for 'logical tree'.

Page 129/245 | < Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >

  • Accessing a broken mdadm raid

    - by CarstenCarsten
    Hi! I used a western digital mybookworld (SOHO NAS storage using Linux) as backup for my Linux box. Suddenly, the mybookworld does not boot up any more. So I opened the box, removed the hard disk and put the hard disk into an external USB HDD case, and connected it to my Linux box. [ 530.640301] usb 2-1: new high speed USB device using ehci_hcd and address 3 [ 530.797630] scsi7 : usb-storage 2-1:1.0 [ 531.794844] scsi 7:0:0:0: Direct-Access WDC WD75 00AAKS-00RBA0 PQ: 0 ANSI: 2 [ 531.796490] sd 7:0:0:0: Attached scsi generic sg3 type 0 [ 531.797966] sd 7:0:0:0: [sdc] 1465149168 512-byte logical blocks: (750 GB/698 GiB) [ 531.800317] sd 7:0:0:0: [sdc] Write Protect is off [ 531.800327] sd 7:0:0:0: [sdc] Mode Sense: 38 00 00 00 [ 531.800333] sd 7:0:0:0: [sdc] Assuming drive cache: write through [ 531.803821] sd 7:0:0:0: [sdc] Assuming drive cache: write through [ 531.803836] sdc: sdc1 sdc2 sdc3 sdc4 [ 531.815831] sd 7:0:0:0: [sdc] Assuming drive cache: write through [ 531.815842] sd 7:0:0:0: [sdc] Attached SCSI disk The dmesg output looks normal, but I was wondering why the hardisk was not mounted at all. And why there are 4 different partitions on it. fdisk showed the following: root@ubuntu:/home/ubuntu# fdisk /dev/sdc WARNING: DOS-compatible mode is deprecated. It's strongly recommended to switch off the mode (command 'c') and change display units to sectors (command 'u'). Command (m for help): p Disk /dev/sdc: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00007c00 Device Boot Start End Blocks Id System /dev/sdc1 4 369 2939895 fd Linux raid autodetect /dev/sdc2 370 382 104422+ fd Linux raid autodetect /dev/sdc3 383 505 987997+ fd Linux raid autodetect /dev/sdc4 506 91201 728515620 fd Linux raid autodetect Oh no! Everything seems to be created as a mdadm software raid. Calling mdadm --examine with the different partitions seems to affirm that. I think the only partition I am interested in, is /dev/sdc4 (because it is the largest). But nevertheless I called mdadm --examine with every partition. root@ubuntu:/home/ubuntu# mdadm --examine /dev/sdc1 /dev/sdc1: Magic : a92b4efc Version : 00.90.00 UUID : 5626a2d8:070ad992:ef1c8d24:cd8e13e4 Creation Time : Wed Feb 20 00:57:49 2002 Raid Level : raid1 Used Dev Size : 2939776 (2.80 GiB 3.01 GB) Array Size : 2939776 (2.80 GiB 3.01 GB) Raid Devices : 2 Total Devices : 1 Preferred Minor : 1 Update Time : Sun Nov 21 11:05:27 2010 State : clean Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Checksum : 4c90bc55 - correct Events : 16682 Number Major Minor RaidDevice State this 0 8 1 0 active sync /dev/sda1 0 0 8 1 0 active sync /dev/sda1 1 1 0 0 1 faulty removed root@ubuntu:/home/ubuntu# mdadm --examine /dev/sdc2 /dev/sdc2: Magic : a92b4efc Version : 00.90.00 UUID : 9734b3ee:2d5af206:05fe3413:585f7f26 Creation Time : Wed Feb 20 00:57:54 2002 Raid Level : raid1 Used Dev Size : 104320 (101.89 MiB 106.82 MB) Array Size : 104320 (101.89 MiB 106.82 MB) Raid Devices : 2 Total Devices : 1 Preferred Minor : 2 Update Time : Wed Oct 27 20:19:08 2010 State : clean Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Checksum : 55560b40 - correct Events : 9884 Number Major Minor RaidDevice State this 0 8 2 0 active sync /dev/sda2 0 0 8 2 0 active sync /dev/sda2 1 1 0 0 1 faulty removed root@ubuntu:/home/ubuntu# mdadm --examine /dev/sdc3 /dev/sdc3: Magic : a92b4efc Version : 00.90.00 UUID : 08f30b4f:91cca15d:2332bfef:48e67824 Creation Time : Wed Feb 20 00:57:54 2002 Raid Level : raid1 Used Dev Size : 987904 (964.91 MiB 1011.61 MB) Array Size : 987904 (964.91 MiB 1011.61 MB) Raid Devices : 2 Total Devices : 1 Preferred Minor : 3 Update Time : Sun Nov 21 11:05:27 2010 State : clean Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Checksum : 39717874 - correct Events : 73678 Number Major Minor RaidDevice State this 0 8 3 0 active sync 0 0 8 3 0 active sync 1 1 0 0 1 faulty removed root@ubuntu:/home/ubuntu# mdadm --examine /dev/sdc4 /dev/sdc4: Magic : a92b4efc Version : 00.90.00 UUID : febb75ca:e9d1ce18:f14cc006:f759419a Creation Time : Wed Feb 20 00:57:55 2002 Raid Level : raid1 Used Dev Size : 728515520 (694.77 GiB 746.00 GB) Array Size : 728515520 (694.77 GiB 746.00 GB) Raid Devices : 2 Total Devices : 1 Preferred Minor : 4 Update Time : Sun Nov 21 11:05:27 2010 State : clean Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Checksum : 2f36a392 - correct Events : 519320 Number Major Minor RaidDevice State this 0 8 4 0 active sync 0 0 8 4 0 active sync 1 1 0 0 1 faulty removed If I read the output correctly everything was removed, because it was faulty. Is there ANY way to see the contents of the largest partition? Or seeing somehow which files are broken? I see that everything is raid1 which is only mirroring, so this should be a normal partition. I am anxious to do anything with mdadm, in fear that I destroy the data on the hard disk. I would be very thankful for any help.

    Read the article

  • "net use /delete" question

    - by tinmaru
    I want to delete a network connection. When I type net use I get this: Microsoft Windows XP [version 5.1.2600] (C) Copyright 1985-2001 Microsoft Corp. C:\Documents and Settings\totonet use État Local Distant Réseau OK M: \192.168.5.138\share Réseau Microsoft Windows OK R: \192.168.2.18\tools Réseau Microsoft Windows OK \192.168.2.43\data Réseau Microsoft Windows La commande s'est terminée correctement. The syntax for deleting a network map is : net use /delete X: if I want to delete a specific connection net use /delete * * if I want to delete all connections. How can I delete the \192.168.2.43\data connection which, as you can see, is not link to any logical letter?

    Read the article

  • LVM incorrectly reported missing after power failure

    - by mensi
    We have had a major power failure in the data-center. We are using a set of servers for our storage needs. The main server has several pairs of disks mirrored with mdadm. The resulting /dev/mdX are LVM physical volumes and belong to a big volume-group with all our data. After the powerloss, we had the problem that one of the mdadm devices was not auto-detected due to a missing entry in mdadm.conf. As a consequence, the volumegroup had inactive logical volumes due to the missing PV. We were able to fix the mdadm config and reboot. pvscan shows all expected PVs but one LV still does not come up. vgdisplay shows: [...] Cur PV: 3 Act PV: 2 [...] Neither vgscan nor pvscan show any missing devices. What went wrong? How can we force LVM to activate all PVs?

    Read the article

  • Ubuntu USB flash boot drive gets spontaneous "Unhandled sense code" error and causes drive to switch to Write protected

    - by Steve
    What happens is that the system runs fine for several days or even a week and then suddenly the root file-system / goes read-only. Looking at the syslog it shows that there was an 'Unhandled sense code'. This is under Ubuntu 10.04 but I saw the same thing with Ubuntu 9 with different flash media. /dev/sdg1 on / type ext4 (rw,errors=remount-ro) Jun 26 08:50:04 host1 kernel: [926247.565090] sd 5:0:0:0: [sda] Unhandled sense code Jun 26 08:50:04 host1 kernel: [926247.565094] sd 5:0:0:0: [sda] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE Jun 26 08:50:04 host1 kernel: [926247.565098] sd 5:0:0:0: [sda] Sense Key : Data Protect [current] Jun 26 08:50:04 host1 kernel: [926247.565103] sd 5:0:0:0: [sda] Add. Sense: Write protected Jun 26 08:50:04 host1 kernel: [926247.565108] sd 5:0:0:0: [sda] CDB: Write(10): 2a 00 00 46 29 18 00 00 08 00 Jun 26 08:50:04 host1 kernel: [926247.565117] end_request: I/O error, dev sda, sector 4598040 Jun 26 08:50:04 host1 kernel: [926247.569788] Buffer I/O error on device sda1, logical block 574499 Jun 26 08:50:04 host1 kernel: [926247.574677] lost page write due to I/O error on sda1

    Read the article

  • HP MSA 1000 SAN: Can I use 1 array/shelf?

    - by CC
    Hi all, I'm planning some expansion on an HP MSA1000 SAN. My boss says that we need to have two separate arrays on the new enclosure, one for Bays 1-7, the other for Bays 8-14. Is there any reason that we need to do this? My plan was to have the entire expansion shelf be 1 array, then create RAID 6 logical drives from that. I don't understand what splitting drives into separate arrays gain us. We don't have dual controllers, so there's no benefit there. Thanks, CC

    Read the article

  • Can You Specify Where LVM Snapshots Are (Initially) Stored?

    - by bottles
    Disclaimer: this is my first time using lvm. Upon RTFM, it appears that LVM snapshots are automatically stored in the same directory as the original logical volume. In my case, that would mean the /dev directory. This isn't very nice, because there's not enough disk space in there for me to store a large snapshot. So when I run a command like lvcreate --size 1G --snapshot --name snapshot /dev/lvmData/usr, I need an additional 1G of space free in /dev? Is there any way to specify a different directory in which to store my snapshot?

    Read the article

  • NET USE LPT2: printer_port

    - by tpierzina
    This I understand: net use P: \\SOME_COMPUTER\SOME_SHARE net use P: \\1.2.3.4\SOME_SHARE (the second argument is a logical share on the given computer) This, I do NOT understand: net use LPT2: IP_1.2.3.4 (where IP_1.2.3.4 is the name of a "port" assigned to a printer; the IP is a valid and responding device, but the full string "IP_1.2.3.4" is not) Can anyone tell me, is there ever a syntax of NET USE that could operate on a printer port like that? I can't get it to work, can't find anything via Google, and am practically in tears. [Sorry if this is cheating, this is basically a re-post of http://stackoverflow.com/questions/1884235/old-school-windows-2000-printing-or-when-is-a-port-name-a-computer but with the scope narrowed just to the main issue at hand.

    Read the article

  • Hibernate - how to delete bidirectional many-to-many association

    - by slomir
    Problem: I have many-to-many association between two entities A and B. I set A entity as an owner of their relationship(inverse=true is on A's collection in b.hbm.xml). When i delete an A entity, corresponding records in join table are deleted. When i delete an B entity, corresponding records in join table are not deleted (integrity violation exception). -- Let's consider some very simple example: class A{ Set<B> bset=new HashSet<B>(); //... } class B{ Set<A> aset=new HashSet<A>(); //... } File a.hbm.xml [m-to-m mappings only]: <set name="bset" table="AB"> <key name="a_id"/> <many-to-many column="b_id" class="B"/> </set> File b.hbm.xml [m-to-m mappings only]: <set name="aset" table="AB" inverse="true"> <key name="b_id"/> <many-to-many column="a_id" class="A"/> </set> Database relations: A(id,...) B(id,...) AB(a_id,b_id) Suppose that we have some records in AB joint table. For example: AB = {(1,1),(1,2)} where AB= { (a_id , b_id) | ... ... } -- Situation 1 - works probably because A is owner of AB relationship: A a=aDao.read(1); //read A entity with id=1 aDao.delete(a); //delete 'a' entity and both relations with B-entities Situation 2 - doesn't work: B b=bDao.read(1); //read B entity with id=1 bDao.delete(b); //foreign key integrity violation On the one hand, this is somehow logical to me, because the A entity is responsible for his relation with B. But, on the other hand, it is not logical or at least it is not orm-like solution that I have to explicitly delete all records in join table where concrete B entity appears, and then to delete the B entity, as I show in situation 3: Situation 3 - works, but it is not 'elegant': B b=bDao.read(1); Set<A> aset=b.getA(); //get set with A entities Iterator i=aset.iterator(); //while removes 'b' from all related A entities //while breaks relationships on A-side of relation (A is owner) while(i.hasNext()){ A a=i.next(); a.bset.remove(b); //remove entity 'b' from related 'a' entity aDao.update(a); //key point!!! this line breaks relation in database } bDao.delete(b); //'b' is deleted because there is no related A-entities -- So, my question: is there any more convenient way to delete no-owner entity (B in my example) in bidirectional many-to-many association and all of his many-to-many relations from joint table?

    Read the article

  • The volume "filesystem root" has only 0 bytes disk space remaining?

    - by radek
    I installed 11.10 ~two weeks ago and run into some strange troubles recently. Installation was on brand new laptop with clear 128GB SSD. I opted for encrypting home directory. Apart from that I accepted defaults during the installation. There is no other OS on my laptop. I had circa 40GB in use when (for the third time) I got to see this very unpleasant window: Twice situation was pretty bad and whole system slowed down considerably. After reboot I could not login to graphical interface (with an error message informing about insufficient space) and had to remove some files from command line first. Third time I still managed to quickly delete some files and it helped. My laptop is mainly work environment: so no torrents, games, just two movies. Only media filling space are ~20GB of pictures, and bunch of pdfs. Working mostly on PostgreSQL & PostGIS, GeoServer and QGIS recently. Although I had lots of opportunities to test and practice my backups I would be extremely grateful if somebody could point me to any potential solutions to this problem. My laptop has been bought just before I installed Ubuntu, and it came without OS. Could that be hardware issue? Or is the encrypted home causing me headaches? Thanks for help! Update: As suggested by @maniat1k, here is current output of fdisk -l: WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sda1 1 312581807 156290903+ ee GPT

    Read the article

  • Wireless doesn't work on a Lenovo V570

    - by Stephen
    I've had Ubuntu installed on my HD for about 3 months but ever since I ran into this wireless issue I kinda lost my lust of Ubuntu. I have zero experience getting around with/ using the console command. I have a Lenovo V570. I got the driver update for the broadcom networking card via the Additional Drivers application but that did nothing. I love the look and feel of using Ubuntu but I have no technological experience for the matter. Any help would be awesome. When I scan for wireless connections while in Ubuntu, my computer picks up nothing, while on Win7 it will pick up the handful of wireless networks around my area. My wired connection is fine, but the use of not having wireless on a laptop is rather contradictory to it as a feature. Cheers! Also, I just installed 11.10, if that helps any. Yes, I used the search before I posted this, but again I have ZERO understanding of the command stuff and need a meat and potatoes answer(s). stephen@ubuntu:~$ sudo lshw -class network [sudo] password for stephen: *-network UNCLAIMED description: Network controller product: BCM4313 802.11b/g/n Wireless LAN Controller vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:03:00.0 version: 01 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: latency=0 resources: memory:f1900000-f1903fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: 06 serial: f0:de:f1:63:98:14 size: 100Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=192.168.1.78 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s resources: irq:41 ioport:2000(size=256) memory:f1804000-f1804fff memory:f1800000-f1803fff stephen@ubuntu:~$ rfkill list all 0: ideapad_wlan: Wireless LAN Soft blocked: yes Hard blocked: no 1: acer-wireless: Wireless LAN Soft blocked: yes Hard blocked: no

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Web application development over C++ development..

    - by learnerforever
    Hi, I am CS undergrad and CS grad. In college I used to program in C/C++/java and have pretty much stuck to the same skill set in industry with 3 years experience. I like thinking,reading,applying logic etc, designing data structures, but I have little patience with debugging large C++ code. And having to deal with low level stuff like memory fault,memory corruption,compilation/linking issues. My confidence in programming is getting down due to this, but I like being in technical field. Does web application development like LAMP suit (Linux,apache,mysql,php),CSS,scripting (AMONG OTHER WEB DEVELOPMENT RELATED SKILLS) etc need lesser patience with debugging,and understanding of low level stuff, but your analysis/logical skills also get used? Also opportunities in web application development look more. Things like scalability, most of the stuff that Google does fascinates me, but for patience needed for dealing with C++ debugging. I make blunders while coding. How does the field look like outside C++? I am beginning to wonder if as a female, by moving to web application development, I can better manage work life balance. I have seen relatively lesser females in C++ than in Java/.net. Not very sure about web related stuff though. Also, what are the other hot technologies being used in web application development? lamp,css is something I know vaguely. Not in touch with keywords going on in this area. Please help!!.

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Wireless will not connect

    - by azz0r
    Hello, I have installed Ubuntu 10.10 on the same machine as my windows setup. However, it will not connect to my wireless network. It can see its there, it can attempt to connect, yet it will never connect. It will keep bringing up the password prompt everyso often. I have tried turning my security to WEP, I ended up turning it back to WPA2. It is set to AES (noted a few threads on google about that). Can you assist? I would love to dive into Ubuntu, but without the internet its pointless. --- lshw -C network --- *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 02 serial: 00:1d:92:ea:cc:62 capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8168 driverversion=8.020.00-NAPI duplex=half latency=0 link=no multicast=yes port=twisted pair resources: irq:29 ioport:e800(size=256) memory:feaff000-feafffff memory:f8ff0000-f8ffffff(prefetchable) memory:feac0000-feadffff(prefetchable) *-network description: Wireless interface physical id: 1 logical name: wlan0 serial: 00:15:af:72:a4:38 capabilities: ethernet physical wireless configuration: broadcast=yes multicast=yes wireless=IEEE 802.11bgn --- iwconfig ---- lo no wireless extensions. eth0 no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"Wuggawoo" Mode:Managed Frequency:2.437 GHz Access Point: Not-Associated Tx-Power=9 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:on --- cat /etc/network/interfaces ---- auto lo iface lo inet loopback logs deamon.log --- Jan 19 04:17:09 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:17:09 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:09 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:11 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:11 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:11 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): association took too long. Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 5 -> 6 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): asking for new secrets Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) scheduled... Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) started... Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 6 -> 4 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) scheduled... Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) complete. Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) starting... Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): device state change: 4 -> 5 (reason 0) Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0/wireless): connection 'Wuggawoo' has security, and secrets exist. No new secrets needed. Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'ssid' value 'Wuggawoo' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'scan_ssid' value '1' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'key_mgmt' value 'WPA-PSK' Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: added 'psk' value '<omitted>' Jan 19 04:17:12 ubuntu NetworkManager: nm_setting_802_1x_get_pkcs11_engine_path: assertion `NM_IS_SETTING_802_1X (setting)' failed Jan 19 04:17:12 ubuntu NetworkManager: nm_setting_802_1x_get_pkcs11_module_path: assertion `NM_IS_SETTING_802_1X (setting)' failed Jan 19 04:17:12 ubuntu NetworkManager: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) complete. Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:12 ubuntu NetworkManager: <info> Config: set interface ap_scan to 1 Jan 19 04:17:12 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:13 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:13 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:13 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:23 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:17:23 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:17:23 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:17:24 ubuntu AptDaemon: INFO: Initializing daemon Jan 19 04:17:25 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:17:25 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:17:25 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:17:27 ubuntu NetworkManager: <info> wlan0: link timed out. --- kern.log --- Jan 19 04:18:11 ubuntu kernel: [ 142.420024] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out Jan 19 04:18:13 ubuntu kernel: [ 144.333847] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:13 ubuntu kernel: [ 144.539996] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:13 ubuntu kernel: [ 144.750027] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:14 ubuntu kernel: [ 144.940022] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out Jan 19 04:18:25 ubuntu kernel: [ 155.832995] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:25 ubuntu kernel: [ 156.030046] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:25 ubuntu kernel: [ 156.230039] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:25 ubuntu kernel: [ 156.430039] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out --- syslog --- Jan 19 04:18:46 ubuntu wpa_supplicant[1289]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 04:18:46 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 04:18:46 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 04:18:48 ubuntu wpa_supplicant[1289]: WPS-AP-AVAILABLE Jan 19 04:18:48 ubuntu wpa_supplicant[1289]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 04:18:48 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 04:18:48 ubuntu kernel: [ 178.833905] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 1) Jan 19 04:18:48 ubuntu kernel: [ 179.030035] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 2) Jan 19 04:18:48 ubuntu kernel: [ 179.230020] wlan0: direct probe to AP 94:44:52:0d:22:0d (try 3) Jan 19 04:18:48 ubuntu kernel: [ 179.433634] wlan0: direct probe to AP 94:44:52:0d:22:0d timed out lspci and lsusb lspci -- 00:00.0 Host bridge: Advanced Micro Devices [AMD] RS780 Host Bridge 00:02.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (ext gfx port 0) 00:05.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (PCIE port 1) 00:06.0 PCI bridge: Advanced Micro Devices [AMD] RS780 PCI to PCI bridge (PCIE port 2) 00:11.0 SATA controller: ATI Technologies Inc SB700/SB800 SATA Controller [AHCI mode] 00:12.0 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI0 Controller 00:12.1 USB Controller: ATI Technologies Inc SB700 USB OHCI1 Controller 00:12.2 USB Controller: ATI Technologies Inc SB700/SB800 USB EHCI Controller 00:13.0 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI0 Controller 00:13.1 USB Controller: ATI Technologies Inc SB700 USB OHCI1 Controller 00:13.2 USB Controller: ATI Technologies Inc SB700/SB800 USB EHCI Controller 00:14.0 SMBus: ATI Technologies Inc SBx00 SMBus Controller (rev 3a) 00:14.1 IDE interface: ATI Technologies Inc SB700/SB800 IDE Controller 00:14.2 Audio device: ATI Technologies Inc SBx00 Azalia (Intel HDA) 00:14.3 ISA bridge: ATI Technologies Inc SB700/SB800 LPC host controller 00:14.4 PCI bridge: ATI Technologies Inc SBx00 PCI to PCI Bridge 00:14.5 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI2 Controller 00:18.0 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] HyperTransport Configuration 00:18.1 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Address Map 00:18.2 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] DRAM Controller 00:18.3 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Miscellaneous Control 00:18.4 Host bridge: Advanced Micro Devices [AMD] K10 [Opteron, Athlon64, Sempron] Link Control 01:00.0 VGA compatible controller: nVidia Corporation G80 [GeForce 8800 GTS] (rev a2) 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 02) 03:00.0 FireWire (IEEE 1394): JMicron Technology Corp. IEEE 1394 Host Controller -- lsusb -- Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 003: ID 046d:c517 Logitech, Inc. LX710 Cordless Desktop Laser Bus 004 Device 002: ID 045e:0730 Microsoft Corp. Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 003: ID 13d3:3247 IMC Networks 802.11 n/g/b Wireless LAN Adapter Bus 002 Device 002: ID 0718:0628 Imation Corp. Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 003: ID 046d:08c2 Logitech, Inc. QuickCam PTZ Bus 001 Device 002: ID 0424:2228 Standard Microsystems Corp. 9-in-2 Card Reader Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub With no security on my router I still can't connect, I get: Jan 19 15:58:01 ubuntu wpa_supplicant[1165]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 15:58:01 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 15:58:01 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: disconnected -> scanning Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: WPS-AP-AVAILABLE Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: Trying to associate with 94:44:52:0d:22:0d (SSID='Wuggawoo' freq=2437 MHz) Jan 19 15:58:02 ubuntu wpa_supplicant[1165]: Association request to the driver failed Jan 19 15:58:02 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: scanning -> associating Jan 19 15:58:05 ubuntu NetworkManager: <info> wlan0: link timed out. Jan 19 15:58:07 ubuntu wpa_supplicant[1165]: Authentication with 94:44:52:0d:22:0d timed out. Jan 19 15:58:07 ubuntu NetworkManager: <info> (wlan0): supplicant connection state: associating -> disconnected Jan 19 15:58:07 ubuntu NetworkManager: <info> (wlan0): supplicant connec

    Read the article

  • SQL SERVER – Concurrency Basics – Guest Post by Vinod Kumar

    - by pinaldave
    This guest post is by Vinod Kumar. Vinod Kumar has worked with SQL Server extensively since joining the industry over a decade ago. Working on various versions from SQL Server 7.0, Oracle 7.3 and other database technologies – he now works with the Microsoft Technology Center (MTC) as a Technology Architect. Let us read the blog post in Vinod’s own voice. Learning is always fun when it comes to SQL Server and learning the basics again can be more fun. I did write about Transaction Logs and recovery over my blogs and the concept of simplifying the basics is a challenge. In the real world we always see checks and queues for a process – say railway reservation, banks, customer supports etc there is a process of line and queue to facilitate everyone. Shorter the queue higher is the efficiency of system (a.k.a higher is the concurrency). Every database does implement this using checks like locking, blocking mechanisms and they implement the standards in a way to facilitate higher concurrency. In this post, let us talk about the topic of Concurrency and what are the various aspects that one needs to know about concurrency inside SQL Server. Let us learn the concepts as one-liners: Concurrency can be defined as the ability of multiple processes to access or change shared data at the same time. The greater the number of concurrent user processes that can be active without interfering with each other, the greater the concurrency of the database system. Concurrency is reduced when a process that is changing data prevents other processes from reading that data or when a process that is reading data prevents other processes from changing that data. Concurrency is also affected when multiple processes are attempting to change the same data simultaneously. Two approaches to managing concurrent data access: Optimistic Concurrency Model Pessimistic Concurrency Model Concurrency Models Pessimistic Concurrency Default behavior: acquire locks to block access to data that another process is using. Assumes that enough data modification operations are in the system that any given read operation is likely affected by a data modification made by another user (assumes conflicts will occur). Avoids conflicts by acquiring a lock on data being read so no other processes can modify that data. Also acquires locks on data being modified so no other processes can access the data for either reading or modifying. Readers block writer, writers block readers and writers. Optimistic Concurrency Assumes that there are sufficiently few conflicting data modification operations in the system that any single transaction is unlikely to modify data that another transaction is modifying. Default behavior of optimistic concurrency is to use row versioning to allow data readers to see the state of the data before the modification occurs. Older versions of the data are saved so a process reading data can see the data as it was when the process started reading and not affected by any changes being made to that data. Processes modifying the data is unaffected by processes reading the data because the reader is accessing a saved version of the data rows. Readers do not block writers and writers do not block readers, but, writers can and will block writers. Transaction Processing A transaction is the basic unit of work in SQL Server. Transaction consists of SQL commands that read and update the database but the update is not considered final until a COMMIT command is issued (at least for an explicit transaction: marked with a BEGIN TRAN and the end is marked by a COMMIT TRAN or ROLLBACK TRAN). Transactions must exhibit all the ACID properties of a transaction. ACID Properties Transaction processing must guarantee the consistency and recoverability of SQL Server databases. Ensures all transactions are performed as a single unit of work regardless of hardware or system failure. A – Atomicity C – Consistency I – Isolation D- Durability Atomicity: Each transaction is treated as all or nothing – it either commits or aborts. Consistency: ensures that a transaction won’t allow the system to arrive at an incorrect logical state – the data must always be logically correct.  Consistency is honored even in the event of a system failure. Isolation: separates concurrent transactions from the updates of other incomplete transactions. SQL Server accomplishes isolation among transactions by locking data or creating row versions. Durability: After a transaction commits, the durability property ensures that the effects of the transaction persist even if a system failure occurs. If a system failure occurs while a transaction is in progress, the transaction is completely undone, leaving no partial effects on data. Transaction Dependencies In addition to supporting all four ACID properties, a transaction might exhibit few other behaviors (known as dependency problems or consistency problems). Lost Updates: Occur when two processes read the same data and both manipulate the data, changing its value and then both try to update the original data to the new value. The second process might overwrite the first update completely. Dirty Reads: Occurs when a process reads uncommitted data. If one process has changed data but not yet committed the change, another process reading the data will read it in an inconsistent state. Non-repeatable Reads: A read is non-repeatable if a process might get different values when reading the same data in two reads within the same transaction. This can happen when another process changes the data in between the reads that the first process is doing. Phantoms: Occurs when membership in a set changes. It occurs if two SELECT operations using the same predicate in the same transaction return a different number of rows. Isolation Levels SQL Server supports 5 isolation levels that control the behavior of read operations. Read Uncommitted All behaviors except for lost updates are possible. Implemented by allowing the read operations to not take any locks, and because of this, it won’t be blocked by conflicting locks acquired by other processes. The process can read data that another process has modified but not yet committed. When using the read uncommitted isolation level and scanning an entire table, SQL Server can decide to do an allocation order scan (in page-number order) instead of a logical order scan (following page pointers). If another process doing concurrent operations changes data and move rows to a new location in the table, the allocation order scan can end up reading the same row twice. Also can happen if you have read a row before it is updated and then an update moves the row to a higher page number than your scan encounters later. Performing an allocation order scan under Read Uncommitted can cause you to miss a row completely – can happen when a row on a high page number that hasn’t been read yet is updated and moved to a lower page number that has already been read. Read Committed Two varieties of read committed isolation: optimistic and pessimistic (default). Ensures that a read never reads data that another application hasn’t committed. If another transaction is updating data and has exclusive locks on data, your transaction will have to wait for the locks to be released. Your transaction must put share locks on data that are visited, which means that data might be unavailable for others to use. A share lock doesn’t prevent others from reading but prevents them from updating. Read committed (snapshot) ensures that an operation never reads uncommitted data, but not by forcing other processes to wait. SQL Server generates a version of the changed row with its previous committed values. Data being changed is still locked but other processes can see the previous versions of the data as it was before the update operation began. Repeatable Read This is a Pessimistic isolation level. Ensures that if a transaction revisits data or a query is reissued the data doesn’t change. That is, issuing the same query twice within a transaction cannot pickup any changes to data values made by another user’s transaction because no changes can be made by other transactions. However, this does allow phantom rows to appear. Preventing non-repeatable read is a desirable safeguard but cost is that all shared locks in a transaction must be held until the completion of the transaction. Snapshot Snapshot Isolation (SI) is an optimistic isolation level. Allows for processes to read older versions of committed data if the current version is locked. Difference between snapshot and read committed has to do with how old the older versions have to be. It’s possible to have two transactions executing simultaneously that give us a result that is not possible in any serial execution. Serializable This is the strongest of the pessimistic isolation level. Adds to repeatable read isolation level by ensuring that if a query is reissued rows were not added in the interim, i.e, phantoms do not appear. Preventing phantoms is another desirable safeguard, but cost of this extra safeguard is similar to that of repeatable read – all shared locks in a transaction must be held until the transaction completes. In addition serializable isolation level requires that you lock data that has been read but also data that doesn’t exist. Ex: if a SELECT returned no rows, you want it to return no. rows when the query is reissued. This is implemented in SQL Server by a special kind of lock called the key-range lock. Key-range locks require that there be an index on the column that defines the range of values. If there is no index on the column, serializable isolation requires a table lock. Gets its name from the fact that running multiple serializable transactions at the same time is equivalent of running them one at a time. Now that we understand the basics of what concurrency is, the subsequent blog posts will try to bring out the basics around locking, blocking, deadlocks because they are the fundamental blocks that make concurrency possible. Now if you are with me – let us continue learning for SQL Server Locking Basics. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Concurrency

    Read the article

  • How do I get a Dane-Elec mp3/mp4 player working?

    - by user40432
    My MP3/MP4 does not plug-in and play and therefore I can not transfer any file to the MP3/MP4 dane-elec music my touch or only dane-elec with 8 gb in memory and perhapses model zt1 with radio,..and microsdhc card slot following the above link the mp3/mp4 is there and it is MP3 Player: TOUCH MY MUSIC and the complete information is on this site http://www.danedigital.com/8-Music-Media-Players/2-music-touch.html as the Technical Specifications MP3 Player: TOUCH MY MUSIC The Mp4 player has a very classy. It allows its users to play music and view photos and video. His fluent interface, its touch-pad, his radio and RDS Micro SDHC reader makes him a very complete device will become the ideal musical companion. ubuntu i am with is ubuntu 11.10 kernel 3.0.0-14-generic the latest I tried to install many applications but nothing worked. With disk utility I can see that Ubuntu can recognize something, that as a peripheral device named rockchip usbdisk user and rockchip usbdisk sd, and i can plug and play other devices, and only this mp3/mp4 do not connect to the computer with ubuntu and the device as no problem working disconnected to computer I try to see if work on Windows and it does! I can see the device and transfer files to the MP3/MP4 dane-elec folder device and use FAT32. So why can not do on Ubuntu!? What can I do and why does not work on Ubuntu? What is wrong with it? Here are the logs: Jan 4 17:27:34 a-ubuntu kernel: [ 141.948863] init: apport pre-start process (1970) terminated with status 1 Jan 4 17:27:34 a-ubuntu kernel: [ 141.963202] init: apport post-stop process (1994) terminated with status 1 Jan 4 17:30:02 a-ubuntu kernel: [ 289.564049] usb 2-4: new high speed USB device number 3 using ehci_hcd Jan 4 17:30:02 a-ubuntu kernel: [ 289.988706] usbcore: registered new interface driver uas Jan 4 17:30:02 a-ubuntu kernel: [ 289.992056] Initializing USB Mass Storage driver... Jan 4 17:30:02 a-ubuntu kernel: [ 289.992272] scsi6 : usb-storage 2-4:1.0 Jan 4 17:30:02 a-ubuntu kernel: [ 289.993082] usbcore: registered new interface driver usb-storage Jan 4 17:30:02 a-ubuntu kernel: [ 289.993088] USB Mass Storage support registered. Jan 4 17:30:03 a-ubuntu kernel: [ 290.996887] scsi 6:0:0:0: Direct-Access RockChip USBDISK User 1.00 PQ: 0 ANSI: 0 Jan 4 17:30:03 a-ubuntu kernel: [ 290.997372] scsi 6:0:0:1: Direct-Access RockChip USBDISK SD 1.00 PQ: 0 ANSI: 0 Jan 4 17:30:03 a-ubuntu kernel: [ 290.997478] scsi: killing requests for dead queue Jan 4 17:30:03 a-ubuntu kernel: [ 291.002712] scsi: killing requests for dead queue Jan 4 17:30:03 a-ubuntu kernel: [ 291.002880] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.016249] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.032252] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.048182] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.060178] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.060357] scsi: killing requests for dead queue Jan 4 17:30:04 a-ubuntu kernel: [ 291.080381] sd 6:0:0:0: Attached scsi generic sg2 type 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.080646] sd 6:0:0:1: Attached scsi generic sg3 type 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.088381] sd 6:0:0:0: [sdb] 16015360 512-byte logical blocks: (8.19 GB/7.63 GiB) Jan 4 17:30:04 a-ubuntu kernel: [ 291.088988] sd 6:0:0:1: [sdc] Attached SCSI removable disk Jan 4 17:30:04 a-ubuntu kernel: [ 291.200050] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.448044] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.696055] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:04 a-ubuntu kernel: [ 291.832046] sd 6:0:0:0: [sdb] Test WP failed, assume Write Enabled Jan 4 17:30:04 a-ubuntu kernel: [ 291.832994] sd 6:0:0:0: [sdb] Asking for cache data failed Jan 4 17:30:04 a-ubuntu kernel: [ 291.833001] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:30:04 a-ubuntu kernel: [ 291.834378] sdb: detected capacity change from 8199864320 to 0 Jan 4 17:30:04 a-ubuntu kernel: [ 291.835367] sd 6:0:0:0: [sdb] Attached SCSI removable disk Jan 4 17:30:06 a-ubuntu kernel: [ 293.004741] sd 6:0:0:0: [sdb] 16015360 512-byte logical blocks: (8.19 GB/7.63 GiB) Jan 4 17:30:06 a-ubuntu kernel: [ 293.116051] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:21 a-ubuntu kernel: [ 308.228043] usb 2-4: device descriptor read/64, error -110 Jan 4 17:30:36 a-ubuntu kernel: [ 323.444072] usb 2-4: device descriptor read/64, error -110 Jan 4 17:30:36 a-ubuntu kernel: [ 323.660047] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:30:51 a-ubuntu kernel: [ 338.772085] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:06 a-ubuntu kernel: [ 353.988064] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:07 a-ubuntu kernel: [ 354.204058] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:31:12 a-ubuntu kernel: [ 359.224115] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:17 a-ubuntu kernel: [ 364.344136] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:17 a-ubuntu kernel: [ 364.560037] usb 2-4: reset high speed USB device number 3 using ehci_hcd Jan 4 17:31:22 a-ubuntu kernel: [ 369.580132] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:27 a-ubuntu kernel: [ 374.700126] usb 2-4: device descriptor read/8, error -110 Jan 4 17:31:27 a-ubuntu kernel: [ 374.804121] usb 2-4: USB disconnect, device number 3 Jan 4 17:31:27 a-ubuntu kernel: [ 374.804518] sd 6:0:0:0: Device offlined - not ready after error recovery Jan 4 17:31:27 a-ubuntu kernel: [ 374.804600] sd 6:0:0:0: [sdb] No Caching mode page present Jan 4 17:31:27 a-ubuntu kernel: [ 374.804606] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:31:27 a-ubuntu kernel: [ 374.804693] sd 6:0:0:0: [sdb] READ CAPACITY failed Jan 4 17:31:27 a-ubuntu kernel: [ 374.804698] sd 6:0:0:0: [sdb] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK Jan 4 17:31:27 a-ubuntu kernel: [ 374.804704] sd 6:0:0:0: [sdb] Sense not available. Jan 4 17:31:27 a-ubuntu kernel: [ 374.804744] sd 6:0:0:0: [sdb] No Caching mode page present Jan 4 17:31:27 a-ubuntu kernel: [ 374.804748] sd 6:0:0:0: [sdb] Assuming drive cache: write through Jan 4 17:31:27 a-ubuntu kernel: [ 374.804754] sdb: detected capacity change from 8199864320 to 0 Jan 4 17:31:27 a-ubuntu kernel: [ 374.820273] scsi: killing requests for dead queue Jan 4 17:31:27 a-ubuntu kernel: [ 374.852240] scsi: killing requests for dead queue Jan 4 17:31:27 a-ubuntu kernel: [ 374.980054] usb 2-4: new high speed USB device number 4 using ehci_hcd Jan 4 17:31:43 a-ubuntu kernel: [ 390.092059] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:58 a-ubuntu kernel: [ 405.308070] usb 2-4: device descriptor read/64, error -110 Jan 4 17:31:58 a-ubuntu kernel: [ 405.524078] usb 2-4: new high speed USB device number 5 using ehci_hcd and the other post is: http://pastebin.ubuntu.com/792915/ and the other bDeviceSubClass 2 ? bDeviceProtocol 1 Interface Association bMaxPacketSize0 64 idVendor 0x04f2 Chicony Electronics Co., Ltd idProduct 0xb008 USB 2.0 Camera bcdDevice 93.27 iManufacturer 2 Chicony Electronics Co., Ltd. iProduct 1 Chicony USB 2.0 Camera iSerial 3 SN0001 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 565 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0x80 (Bus Powered) MaxPower 500mA Interface Association: bLength 8 bDescriptorType 11 bFirstInterface 0 bInterfaceCount 2 bFunctionClass 14 Video bFunctionSubClass 3 Video Interface Collection bFunctionProtocol 0 iFunction 1 Chicony USB 2.0 Camera Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 1 Video Control bInterfaceProtocol 0 iInterface 1 Chicony USB 2.0 Camera VideoControl Interface Descriptor: bLength 13 bDescriptorType 36 bDescriptorSubtype 1 (HEADER) bcdUVC 1.00 wTotalLength 77 dwClockFrequency 15.000000MHz bInCollection 1 baInterfaceNr( 0) 1 VideoControl Interface Descriptor: bLength 9 bDescriptorType 36 bDescriptorSubtype 3 (OUTPUT_TERMINAL) bTerminalID 2 wTerminalType 0x0101 USB Streaming bAssocTerminal 0 bSourceID 4 iTerminal 0 VideoControl Interface Descriptor: bLength 26 bDescriptorType 36 bDescriptorSubtype 6 (EXTENSION_UNIT) bUnitID 4 guidExtensionCode {7033f028-1163-2e4a-ba2c-6890eb334016} bNumControl 1 bNrPins 1 baSourceID( 0) 3 bControlSize 1 bmControls( 0) 0x01 iExtension 0 VideoControl Interface Descriptor: bLength 18 bDescriptorType 36 bDescriptorSubtype 2 (INPUT_TERMINAL) bTerminalID 1 wTerminalType 0x0201 Camera Sensor bAssocTerminal 0 iTerminal 0 wObjectiveFocalLengthMin 0 wObjectiveFocalLengthMax 0 wOcularFocalLength 0 bControlSize 3 bmControls 0x00000000 VideoControl Interface Descriptor: bLength 11 bDescriptorType 36 bDescriptorSubtype 5 (PROCESSING_UNIT) Warning: Descriptor too short bUnitID 3 bSourceID 1 wMaxMultiplier 0 bControlSize 2 bmControls 0x0000053f Brightness Contrast Hue Saturation Sharpness Gamma Backlight Compensation Power Line Frequency iProcessing 0 bmVideoStandards 0x a NTSC - 525/60 SECAM - 625/50 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0010 1x 16 bytes bInterval 6 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 0 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 VideoStreaming Interface Descriptor: bLength 14 bDescriptorType 36 bDescriptorSubtype 1 (INPUT_HEADER) bNumFormats 1 wTotalLength 345 bEndPointAddress 129 bmInfo 0 bTerminalLink 2 bStillCaptureMethod 0 bTriggerSupport 1 bTriggerUsage 0 bControlSize 1 bmaControls( 0) 27 VideoStreaming Interface Descriptor: bLength 27 bDescriptorType 36 bDescriptorSubtype 4 (FORMAT_UNCOMPRESSED) bFormatIndex 1 bNumFrameDescriptors 7 guidFormat {59555932-0000-1000-8000-00aa00389b71} bBitsPerPixel 16 bDefaultFrameIndex 1 bAspectRatioX 0 bAspectRatioY 0 bmInterlaceFlags 0x00 Interlaced stream or variable: No Fields per frame: 2 fields Field 1 first: No Field pattern: Field 1 only bCopyProtect 0 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 1 bmCapabilities 0x00 Still image unsupported wWidth 640 wHeight 480 dwMinBitRate 614400 dwMaxBitRate 18432000 dwMaxVideoFrameBufferSize 614400 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 2 bmCapabilities 0x00 Still image unsupported wWidth 352 wHeight 288 dwMinBitRate 202752 dwMaxBitRate 6082560 dwMaxVideoFrameBufferSize 202752 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 3 bmCapabilities 0x00 Still image unsupported wWidth 320 wHeight 240 dwMinBitRate 153600 dwMaxBitRate 4608000 dwMaxVideoFrameBufferSize 153600 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 4 bmCapabilities 0x00 Still image unsupported wWidth 176 wHeight 144 dwMinBitRate 50688 dwMaxBitRate 1520640 dwMaxVideoFrameBufferSize 50688 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 46 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 5 bmCapabilities 0x00 Still image unsupported wWidth 160 wHeight 120 dwMinBitRate 38400 dwMaxBitRate 1152000 dwMaxVideoFrameBufferSize 38400 dwDefaultFrameInterval 333333 bFrameIntervalType 5 dwFrameInterval( 0) 333333 dwFrameInterval( 1) 500000 dwFrameInterval( 2) 666666 dwFrameInterval( 3) 1000000 dwFrameInterval( 4) 2000000 VideoStreaming Interface Descriptor: bLength 34 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 6 bmCapabilities 0x00 Still image unsupported wWidth 1280 wHeight 800 dwMinBitRate 2048000 dwMaxBitRate 18432000 dwMaxVideoFrameBufferSize 2048000 dwDefaultFrameInterval 1333333 bFrameIntervalType 2 dwFrameInterval( 0) 1333333 dwFrameInterval( 1) 2000000 VideoStreaming Interface Descriptor: bLength 34 bDescriptorType 36 bDescriptorSubtype 5 (FRAME_UNCOMPRESSED) bFrameIndex 7 bmCapabilities 0x00 Still image unsupported wWidth 1280 wHeight 1024 dwMinBitRate 2621440 dwMaxBitRate 23592960 dwMaxVideoFrameBufferSize 2621440 dwDefaultFrameInterval 1333333 bFrameIntervalType 2 dwFrameInterval( 0) 1333333 dwFrameInterval( 1) 2000000 VideoStreaming Interface Descriptor: bLength 6 bDescriptorType 36 bDescriptorSubtype 13 (COLORFORMAT) bColorPrimaries 1 (BT.709,sRGB) bTransferCharacteristics 1 (BT.709) bMatrixCoefficients 4 (SMPTE 170M (BT.601)) Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 1 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0080 1x 128 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 2 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0100 1x 256 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 3 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0320 1x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 4 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x0b20 2x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 5 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x1320 3x 800 bytes bInterval 1 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 6 bNumEndpoints 1 bInterfaceClass 14 Video bInterfaceSubClass 2 Video Streaming bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 5 Transfer Type Isochronous Synch Type Asynchronous Usage Type Data wMaxPacketSize 0x13e8 3x 1000 bytes bInterval 1 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 239 Miscellaneous Device bDeviceSubClass 2 ? bDeviceProtocol 1 Interface Association bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0000 (Bus Powered) Bus 006 Device 002: ID 04d9:1503 Holtek Semiconductor, Inc. Shortboard Lefty Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x04d9 Holtek Semiconductor, Inc. idProduct 0x1503 Shortboard Lefty bcdDevice 3.10 iManufacturer 1 iProduct 2 USB Keyboard iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 100mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 62 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 0 No Subclass bInterfaceProtocol 0 None iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 101 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered)

    Read the article

  • Consolidating and Virtualizing with Oracle&rsquo;s Network Fabric

    - by Ferhat Hatay
    Server, storage and operating system virtualization technologies are already widely  deployed within datacenters, and are considered an integral component to drive cost  savings and agility. These technologies are now being combined with network  virtualization to usher in a new era of cloud computing. Oracle provides a networking fabric that delivers cloud-ready network services based on  Ethernet or InfiniBand fabrics that are tightly integrated with application infrastructure. Oracle’s network fabric provides the performance and manageability required for any  Oracle application environment or private cloud infrastructure. Logical architecture of Oracle’s network fabric. Oracle’s unique ability to deliver extreme performance and scale by tightly integrating  network services across application infrastructure is demonstrated in the Oracle Exalogic  Elastic Cloud and the Oracle Exadata Database Machine. These engineered solutions  offer up to 5X and 10X performance gains respectively compared to traditional multivendor architectures where the offerings are not engineered to work together. By integrating advanced networking capabilities across the entire hardware and software  stack, Oracle’s network fabric can help maximize application performance and scale,  reduce the number of network components, and simplify datacenter operations through  integrated network management and orchestration. The resulting business benefits are: Reduced acquisition costs Lower power and cooling costs Reduced management costs Faster deployment Greater agility in meeting changing business needs For more information see the whitepaper: Consolidating and Virtualizing Datacenter Networks with Oracle's Network Fabric.

    Read the article

  • SQLAuthority News – Fast Track Data Warehouse 3.0 Reference Guide

    - by pinaldave
    http://msdn.microsoft.com/en-us/library/gg605238.aspx I am very excited that Fast Track Data Warehouse 3.0 reference guide has been announced. As a consultant I have always enjoyed working with Fast Track Data Warehouse project as it truly expresses the potential of the SQL Server Engine. Here is few details of the enhancement of the Fast Track Data Warehouse 3.0 reference architecture. The SQL Server Fast Track Data Warehouse initiative provides a basic methodology and concrete examples for the deployment of balanced hardware and database configuration for a data warehousing workload. Balance is measured across the key components of a SQL Server installation; storage, server, application settings, and configuration settings for each component are evaluated. Description Note FTDW 3.0 Architecture Basic component architecture for FT 3.0 based systems. New Memory Guidelines Minimum and maximum tested memory configurations by server socket count. Additional Startup Options Notes for T-834 and setting for Lock Pages in Memory. Storage Configuration RAID1+0 now standard (RAID1 was used in FT 2.0). Evaluating Fragmentation Query provided for evaluating logical fragmentation. Loading Data Additional options for CI table loads. MCR Additional detail and explanation of FTDW MCR Rating. Read white paper on fast track data warehousing. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • SQL SERVER – Reduce the Virtual Log Files (VLFs) from LDF file

    - by pinaldave
    Earlier, I wrote a quite note on SQL SERVER – Detect Virtual Log Files (VLF) in LDF. Because of this I got responses suggesting too many VLFs are bad for log file. This prompts to a simple question: “How many is ‘too many’ VLFs?” I suggest that you go and read an article written by Kimberly over here. I am sure that you are going to have a clear understanding of what a good number for your VLFs is from that article. If you have lots of VLFs, you can reduce them right away using the following method: (I am just attempting to write a working script over here.) USE AdventureWorks GO BACKUP LOG AdventureWorks TO DISK='d:\adtlog.bak' GO -- Get Logical file name of the log file sp_helpfile GO DBCC SHRINKFILE(AdventureWorks_Log,TRUNCATEONLY) GO ALTER DATABASE AdventureWorks MODIFY FILE (NAME = AdventureWorks_Log,SIZE = 1GB) GO DBCC LOGINFO GO Again, here I have assumed that your initial log size is 1 GB, but in reality you should select the number based on your own ideal size of the log file. If your log file grows to 10 GB every day, you may want to put the value as 10 GB. For accuracy, read what Kimberly’s original article says over here. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Disk Space Monitoring – Detecting Low Disk Space on Server

    - by Pinal Dave
    A very common question I often receive is how to detect if the disk space is running low on SQL Server. There are two different ways to do the same. I personally prefer method 2 as that is very easy to use and I can use it creatively along with database name. Method 1: EXEC MASTER..xp_fixeddrives GO Above query will return us two columns, drive name and MB free. If we want to use this data in our query, we will have to create a temporary table and insert the data from this stored procedure into the temporary table and use it. Method 2: SELECT DISTINCT dovs.logical_volume_name AS LogicalName, dovs.volume_mount_point AS Drive, CONVERT(INT,dovs.available_bytes/1048576.0) AS FreeSpaceInMB FROM sys.master_files mf CROSS APPLY sys.dm_os_volume_stats(mf.database_id, mf.FILE_ID) dovs ORDER BY FreeSpaceInMB ASC GO The above query will give us three columns: drive logical name, drive letter and free space in MB. We can further modify above query to also include database name in the query as well. SELECT DISTINCT DB_NAME(dovs.database_id) DBName, dovs.logical_volume_name AS LogicalName, dovs.volume_mount_point AS Drive, CONVERT(INT,dovs.available_bytes/1048576.0) AS FreeSpaceInMB FROM sys.master_files mf CROSS APPLY sys.dm_os_volume_stats(mf.database_id, mf.FILE_ID) dovs ORDER BY FreeSpaceInMB ASC GO This will give us additional data about which database is placed on which drive. If you see a database name multiple times, it is because your database has multiple files and they are on different drives. You can modify above query one more time to even include the details of actual file location. SELECT DISTINCT DB_NAME(dovs.database_id) DBName, mf.physical_name PhysicalFileLocation, dovs.logical_volume_name AS LogicalName, dovs.volume_mount_point AS Drive, CONVERT(INT,dovs.available_bytes/1048576.0) AS FreeSpaceInMB FROM sys.master_files mf CROSS APPLY sys.dm_os_volume_stats(mf.database_id, mf.FILE_ID) dovs ORDER BY FreeSpaceInMB ASC GO The above query will now additionally include the physical file location as well. As I mentioned earlier, I prefer method 2 as I can creatively use it as per the business need. Let me know which method are you using in your production server. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Keep basic game physics separate from basic game object? [on hold]

    - by metamorphosis
    If anybody has dealt with a similar situation I'd be interested in your experience/wisdom, I'm developing a 2D game library in C++, I have game objects which have very basic physics, they also have movement classes attached to differing states, for example, a different movement type based on whether the character is jumping, on ice, whatever. In terms of storing velocity and acceleration impulses, are they best held by the object? Or by the associated movement class? The reason I ask is that I can see advantages to both approaches- if you store physics data in the movement class, you have to pass physics information between class instances when a state change occurs (ie. impulses, gravity etc) but the class has total control over whether those physics are updated or not. An obvious example of how this would be useful was if an object was affected by something which caused it to ignore gravity, or something like that. on the other hand if you store the physics data in the object class, it feels more logical, you don't have to go around passing physics impulses and gravity etc, however the control that the movement class has over the object's physics becomes more convoluted. Basically the difference is between: object->physics stacks (acceleration impulses etc) ->physics functions ->movement type <-movement type makes physics function calls through object and object->movement type->physics stacks ->physics functions ->object forwards external physics calls onto movement type ->object transfers physics stacks between movement types when state change occurs Are there best practices here?

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Twitter status id conundrum

    - by jamiet
    I have an interest, a slightly perverse one some might say, in using online services and trying to figure out what the underlying (logical) data model is and in this day and age Twitter is one that lends itself very well to scrutiny. Consider this recent tweet of mine: The URL that enables you to see that tweet is http://twitter.com/jamiet/status/12154647354. We can interpret that URL to mean "a tweet by jamiet with an id of 12154647354" and hence we might further assume that the unique identifier for the tweet is {jamiet,12154647354}. However, its well-known that Twitter gives each status a unique ID regardless of who tweeted it so we might expect we could reach that tweet just by using a URL of http://twitter.com/status/12154647354 however (at the time of writing) that only redirects to Twitter's homepage. That seems strange to me especially given that we can use Twitter's API to access information about that tweet using only the id of the status. Witness http://api.twitter.com/1/statuses/show/12154647354.xml: [We can also access a JSON version of that information using http://api.twitter.com/1/statuses/show/12154647354.json] I'm puzzled as to why a tweet can't be accessed using on the main twitter website using the id alone. Anyone have any suggestions? @jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Expanding the Oracle Enterprise Repository with functional documentation by Marc Kuijpers

    - by JuergenKress
    Introduction Have you ever experienced the challenge to map both your functional and technical assets in one software package? Finding a software package that is able to describe the metadata about these assets and their mutual relationships? And if you found the correct software package, was it maintainable? The Oracle Enterprise Repository (OER) is a powerful SOA repository. Its core task is to map and visualize the interaction between technical assets generated by the SOA Suite and OSB. However, OER can be configured to not only contain these technical assets, but also to contain functional assets, i.e.: functional designs, use cases and a logical data model. Now that’s interesting! OER is able to show all the assets in your system and, if necessary, zoom in on one of the assets and their mutual relationships (Figure 1). This opens a set of doors to powerful features, e.g.: Impact analsysis If a functional design is adjusted, which other functional designs and use cases do I need to adjust? Traceability If a web service generates an error, in which functional and technical designs is the web service described This sounds great, but how do we get all the functional and technical documents in OER, and how are we going to keep this repository up-to-date? Read the full article. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: OER,SOA Governance,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • SQL SERVER – Cleaning Up SQL Server Indexes – Defragmentation, Fillfactor – Video

    - by pinaldave
    Storing data non-contiguously on disk is known as fragmentation. Before learning to eliminate fragmentation, you should have a clear understanding of the types of fragmentation. When records are stored non-contiguously inside the page, then it is called internal fragmentation. When on disk, the physical storage of pages and extents is not contiguous. We can get both types of fragmentation using the DMV: sys.dm_db_index_physical_stats. Here is the generic advice for reducing the fragmentation. If avg_fragmentation_in_percent > 5% and < 30%, then use ALTER INDEX REORGANIZE: This statement is replacement for DBCC INDEXDEFRAG to reorder the leaf level pages of the index in a logical order. As this is an online operation, the index is available while the statement is running. If avg_fragmentation_in_percent > 30%, then use ALTER INDEX REBUILD: This is replacement for DBCC DBREINDEX to rebuild the index online or offline. In such case, we can also use the drop and re-create index method.(Ref: MSDN) Here is quick video which covers many of the above mentioned topics. While Vinod and I were planning about Indexing course, we had plenty of fun and learning. We often recording few of our statement and just left it aside. Afterwords we thought it will be really funny Here is funny video shot by Vinod and Myself on the same subject: Here is the link to the SQL Server Performance:  Indexing Basics. Here is the additional reading material on the same subject: SQL SERVER – Fragmentation – Detect Fragmentation and Eliminate Fragmentation SQL SERVER – 2005 – Display Fragmentation Information of Data and Indexes of Database Table SQL SERVER – De-fragmentation of Database at Operating System to Improve Performance Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

< Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >