Search Results

Search found 10244 results on 410 pages for 'space complexity'.

Page 130/410 | < Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >

  • A format for storing personal contacts in a database

    - by Gart
    I'm thinking of the best way to store personal contacts in a database for a business application. The traditional and straightforward approach would be to create a table with columns for each element, i.e. Name, Telephone Number, Job title, Address, etc... However, there are known industry standards for this kind of data, like for example vCard, or hCard, or vCard-RDF/XML or even Windows Contacts XML Schema. Utilizing an standard format would offer some benefits, like inter-operablilty with other systems. But how can I decide which method to use? The requirements are mainly to store the data. Search and ordering queries are highly unlikely but possible. The volume of the data is 100,000 records at maximum. My database engine supports native XML columns. I have been thinking to use some XML-based format to store the personal contacts. Then it will be possible to utilize XML indexes on this data, if searching and ordering is needed. Is this a good approach? Which contacts format and schema would you recommend for this? Edited after first answers Here is why I think the straightforward approach is bad. This is due to the nature of this kind of data - it is not that simple. The personal contacts it is not well-structured data, it may be called semi-structured. Each contact may have different data fields, maybe even such fields which I cannot anticipate. In my opinion, each piece of this data should be treated as important information, i.e. no piece of data could be discarded just because there was no relevant column in the database. If we took it further, assuming that no data may be lost, then we could create a big text column named Comment or Description or Other and put there everything which cannot be fitted well into table columns. But then again - the data would lose structure - this might be bad. If we wanted structured data then - according to the database design principles - the data should be decomposed into entities, and relations should be established between the entities. But this adds complexity - there are just too many entities, and lots of design desicions should be made, like "How do we store Address? Personal Name? Phone number? How do we encode home phone numbers and mobile phone numbers? How about other contact info?.." The relations between entities are complex and multiple, and each relation is a table in the database. Each relation needs to be documented in the design papers. That is a lot of work to do. But it is possible to avoid the complexity entirely - just document that the data is stored according to such and such standard schema, period. Then anybody who would be reading that document should easily understand what it was all about. Finally, this is all about using an industry standard. The standard is, hopefully, designed by some clever people who anticipated and described the structure of personal contacts information much better than I ever could. Why should we all reinvent the wheel?? It's much easier to use a standard schema. The problem is, there are just too many standards - it's not easy to decide which one to use!

    Read the article

  • XML to CSV using XSLT help.

    - by Adam Kahtava
    I'd like to convert XML into CSV using an XSLT, but when applying the XSL from the SO thread titled XML To CSV XSLT against my input: <WhoisRecord> <DomainName>127.0.0.1</DomainName> <RegistryData> <AbuseContact> <Email>[email protected]</Email> <Name>Internet Corporation for Assigned Names and Number</Name> <Phone>+1-310-301-5820</Phone> </AbuseContact> <AdministrativeContact i:nil="true"/> <BillingContact i:nil="true"/> <CreatedDate/> <RawText>...</RawText> <Registrant> <Address>4676 Admiralty Way, Suite 330</Address> <City>Marina del Rey</City> <Country>US</Country> <Name>Internet Assigned Numbers Authority</Name> <PostalCode>90292-6695</PostalCode> <StateProv>CA</StateProv> </Registrant> <TechnicalContact> <Email>[email protected]</Email> <Name>Internet Corporation for Assigned Names and Number</Name> <Phone>+1-310-301-5820</Phone> </TechnicalContact> <UpdatedDate>2010-04-14</UpdatedDate> <ZoneContact i:nil="true"/> </RegistryData> </WhoisRecord> I end up with: [email protected] Corporation for Assigned Names and Number+1-310-301-5820, , , , ..., 4676 Admiralty Way, Suite 330Marina del ReyUSInternet Assigned Numbers Authority90292-6695CA, [email protected] Corporation for Assigned Names and Number+1-310-301-5820, 2010-04-14, My problem is that, the resulting transformation is missing nodes (like the DomainName element containing the IP address) and some child nodes are concatenated without commas (like the children of AbuseContact). I'd like to see all the XML output in CVS form, and strings like: "[email protected] Corporation for Assigned Names and Number+1-310-301-5820," delimited by commas. My XSL is pretty rusty. Your help is appreciated. :) Here's the XSL I'm using: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="text" encoding="iso-8859-1"/> <xsl:strip-space elements="*" /> <xsl:template match="/*/child::*"> <xsl:for-each select="child::*"> <xsl:if test="position() != last()"><xsl:value-of select="normalize-space(.)"/>, </xsl:if> <xsl:if test="position() = last()"><xsl:value-of select="normalize-space(.)"/><xsl:text> </xsl:text> </xsl:if> </xsl:for-each> </xsl:template> </xsl:stylesheet>

    Read the article

  • Trouble Percent-Encoding Spaces in Java

    - by behrk2
    Hi Everyone, I am using the URLUTF8Encoder.java class from W3C (www.w3.org/International/URLUTF8Encoder.java). Currently, it will encode any blank spaces ' ' into plus signs '+'. I am having difficulty modifying the code to percent-encode the blank space into '%20'. Unfortunately, I am not too familiar with hex. Can anyone help me out? I need to modify this snippet... else if (ch == ' ') { // space sbuf.append('+'); in the following code: final static String[] hex = { "%00", "%01", "%02", "%03", "%04", "%05", "%06", "%07", "%08", "%09", "%0A", "%0B", "%0C", "%0D", "%0E", "%0F", "%10", "%11", "%12", "%13", "%14", "%15", "%16", "%17", "%18", "%19", "%1A", "%1B", "%1C", "%1D", "%1E", "%1F", "%20", "%21", "%22", "%23", "%24", "%25", "%26", "%27", "%28", "%29", "%2A", "%2B", "%2C", "%2D", "%2E", "%2F", "%30", "%31", "%32", "%33", "%34", "%35", "%36", "%37", "%38", "%39", "%3A", "%3B", "%3C", "%3D", "%3E", "%3F", "%40", "%41", "%42", "%43", "%44", "%45", "%46", "%47", "%48", "%49", "%4A", "%4B", "%4C", "%4D", "%4E", "%4F", "%50", "%51", "%52", "%53", "%54", "%55", "%56", "%57", "%58", "%59", "%5A", "%5B", "%5C", "%5D", "%5E", "%5F", "%60", "%61", "%62", "%63", "%64", "%65", "%66", "%67", "%68", "%69", "%6A", "%6B", "%6C", "%6D", "%6E", "%6F", "%70", "%71", "%72", "%73", "%74", "%75", "%76", "%77", "%78", "%79", "%7A", "%7B", "%7C", "%7D", "%7E", "%7F", "%80", "%81", "%82", "%83", "%84", "%85", "%86", "%87", "%88", "%89", "%8A", "%8B", "%8C", "%8D", "%8E", "%8F", "%90", "%91", "%92", "%93", "%94", "%95", "%96", "%97", "%98", "%99", "%9A", "%9B", "%9C", "%9D", "%9E", "%9F", "%A0", "%A1", "%A2", "%A3", "%A4", "%A5", "%A6", "%A7", "%A8", "%A9", "%AA", "%AB", "%AC", "%AD", "%AE", "%AF", "%B0", "%B1", "%B2", "%B3", "%B4", "%B5", "%B6", "%B7", "%B8", "%B9", "%BA", "%BB", "%BC", "%BD", "%BE", "%BF", "%C0", "%C1", "%C2", "%C3", "%C4", "%C5", "%C6", "%C7", "%C8", "%C9", "%CA", "%CB", "%CC", "%CD", "%CE", "%CF", "%D0", "%D1", "%D2", "%D3", "%D4", "%D5", "%D6", "%D7", "%D8", "%D9", "%DA", "%DB", "%DC", "%DD", "%DE", "%DF", "%E0", "%E1", "%E2", "%E3", "%E4", "%E5", "%E6", "%E7", "%E8", "%E9", "%EA", "%EB", "%EC", "%ED", "%EE", "%EF", "%F0", "%F1", "%F2", "%F3", "%F4", "%F5", "%F6", "%F7", "%F8", "%F9", "%FA", "%FB", "%FC", "%FD", "%FE", "%FF" }; public static String encode(String s) { StringBuffer sbuf = new StringBuffer(); int len = s.length(); for (int i = 0; i < len; i++) { int ch = s.charAt(i); if ('A' <= ch && ch <= 'Z') { // 'A'..'Z' sbuf.append((char) ch); } else if ('a' <= ch && ch <= 'z') { // 'a'..'z' sbuf.append((char) ch); } else if ('0' <= ch && ch <= '9') { // '0'..'9' sbuf.append((char) ch); } else if (ch == ' ') { // space sbuf.append('+'); } else if (ch == '-' || ch == '_' // unreserved || ch == '.' || ch == '!' || ch == '~' || ch == '*' || ch == '\'' || ch == '(' || ch == ')') { sbuf.append((char) ch); } else if (ch <= 0x007f) { // other ASCII sbuf.append(hex[ch]); } else if (ch <= 0x07FF) { // non-ASCII <= 0x7FF sbuf.append(hex[0xc0 | (ch >> 6)]); sbuf.append(hex[0x80 | (ch & 0x3F)]); } else { // 0x7FF < ch <= 0xFFFF sbuf.append(hex[0xe0 | (ch >> 12)]); sbuf.append(hex[0x80 | ((ch >> 6) & 0x3F)]); sbuf.append(hex[0x80 | (ch & 0x3F)]); } } return sbuf.toString(); } Thanks!

    Read the article

  • Soft keyboard "del" key fails in EditText on Gallery widget

    - by droidful
    Hi, I am developing an application in Eclipse build ID 20090920-1017 using android SDK 2.2 and testing on a Google Nexus One. For the purposes of the tests below I am using the IME "Android keyboard" on a non-rooted phone. I have an EditText widget which exhibits some very strange behavior. I can type text, and then press the "del" key to delete that text; but after I enter a 'space' character, the "del" key will no longer remove characters before that space character. An example speaks a thousand words, so consider the following two incredibly simple applications... Example 1: An EditText in a LinearLayout widget: package com.example.linear.edit; import android.app.Activity; import android.os.Bundle; import android.view.ViewGroup.LayoutParams; import android.widget.EditText; import android.widget.Gallery; import android.widget.LinearLayout; public class LinearEdit extends Activity { @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); LinearLayout layout = new LinearLayout(getApplicationContext()); layout.setLayoutParams(new Gallery.LayoutParams(Gallery.LayoutParams.MATCH_PARENT, Gallery.LayoutParams.MATCH_PARENT)); EditText edit = new EditText(getApplicationContext()); layout.addView(edit, new LinearLayout.LayoutParams(LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT)); setContentView(layout); } } Run the above application, enter text "edit example", then press the "del" key several times until the entire sentence is deleted. Everything Works fine. Now consider example 2: An EditText in a Gallery widget: package com.example.gallery.edit; import android.app.Activity; import android.os.Bundle; import android.view.View; import android.view.ViewGroup; import android.view.ViewGroup.LayoutParams; import android.widget.ArrayAdapter; import android.widget.EditText; import android.widget.Gallery; import android.widget.LinearLayout; public class GalleryEdit extends Activity { private final String[] galleryData = {"string1", "string2", "string3"}; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); Gallery gallery = new Gallery(getApplicationContext()); gallery.setAdapter(new ArrayAdapter(getApplicationContext(), android.R.layout.simple_list_item_1, galleryData) { @Override public View getView(int position, View convertView, ViewGroup parent) { LinearLayout layout = new LinearLayout(getApplicationContext()); layout.setLayoutParams(new Gallery.LayoutParams(Gallery.LayoutParams.MATCH_PARENT, Gallery.LayoutParams.MATCH_PARENT)); EditText edit = new EditText(getApplicationContext()); layout.addView(edit, new LinearLayout.LayoutParams(LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT)); return layout; } }); setContentView(gallery); } } Run the above application, enter text "edit example", then press the "del" key several times. If you are getting the same problem as me then you will find that you can't deleted past the 'space' character. All is not well. If anyone could shed some light on this issue I would be most appreciative. Regards

    Read the article

  • Have suggestions for these assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Are their any suggestions for this new assembly language?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller exit End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Are there any suggestions for these new assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • How to design a C / C++ library to be usable in many client languages?

    - by Brian Schimmel
    I'm planning to code a library that should be usable by a large number of people in on a wide spectrum of platforms. What do I have to consider to design it right? To make this questions more specific, there are four "subquestions" at the end. Choice of language Considering all the known requirements and details, I concluded that a library written in C or C++ was the way to go. I think the primary usage of my library will be in programs written in C, C++ and Java SE, but I can also think of reasons to use it from Java ME, PHP, .NET, Objective C, Python, Ruby, bash scrips, etc... Maybe I cannot target all of them, but if it's possible, I'll do it. Requirements It would be to much to describe the full purpose of my library here, but there are some aspects that might be important to this question: The library itself will start out small, but definitely will grow to enormous complexity, so it is not an option to maintain several versions in parallel. Most of the complexity will be hidden inside the library, though The library will construct an object graph that is used heavily inside. Some clients of the library will only be interested in specific attributes of specific objects, while other clients must traverse the object graph in some way Clients may change the objects, and the library must be notified thereof The library may change the objects, and the client must be notified thereof, if it already has a handle to that object The library must be multi-threaded, because it will maintain network connections to several other hosts While some requests to the library may be handled synchronously, many of them will take too long and must be processed in the background, and notify the client on success (or failure) Of course, answers are welcome no matter if they address my specific requirements, or if they answer the question in a general way that matters to a wider audience! My assumptions, so far So here are some of my assumptions and conclusions, which I gathered in the past months: Internally I can use whatever I want, e.g. C++ with operator overloading, multiple inheritance, template meta programming... as long as there is a portable compiler which handles it (think of gcc / g++) But my interface has to be a clean C interface that does not involve name mangling Also, I think my interface should only consist of functions, with basic/primitive data types (and maybe pointers) passed as parameters and return values If I use pointers, I think I should only use them to pass them back to the library, not to operate directly on the referenced memory For usage in a C++ application, I might also offer an object oriented interface (Which is also prone to name mangling, so the App must either use the same compiler, or include the library in source form) Is this also true for usage in C# ? For usage in Java SE / Java EE, the Java native interface (JNI) applies. I have some basic knowledge about it, but I should definitely double check it. Not all client languages handle multithreading well, so there should be a single thread talking to the client For usage on Java ME, there is no such thing as JNI, but I might go with Nested VM For usage in Bash scripts, there must be an executable with a command line interface For the other client languages, I have no idea For most client languages, it would be nice to have kind of an adapter interface written in that language. I think there are tools to automatically generate this for Java and some others For object oriented languages, it might be possible to create an object oriented adapter which hides the fact that the interface to the library is function based - but I don't know if its worth the effort Possible subquestions is this possible with manageable effort, or is it just too much portability? are there any good books / websites about this kind of design criteria? are any of my assumptions wrong? which open source libraries are worth studying to learn from their design / interface / souce? meta: This question is rather long, do you see any way to split it into several smaller ones? (If you reply to this, do it as a comment, not as an answer)

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • Do you have suggestions for these assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Linked Lists in Java - Help with assignment

    - by doron2010
    I have been trying to solve this assignment all day, please help me. I'm completely lost. Representation of a string in linked lists In every intersection in the list there will be 3 fields : The letter itself. The number of times it appears consecutively. A pointer to the next intersection in the list. The following class CharNode represents a intersection in the list : public class CharNode { private char _data; private int _value; private charNode _next; public CharNode (char c, int val, charNode n) { _data = c; _value = val; _next = n; } public charNode getNext() { return _next; } public void setNext (charNode node) { _next = node; } public int getValue() { return _value; } public void setValue (int v) { value = v; } public char getData() { return _data; } public void setData (char c) { _data = c; } } The class StringList represents the whole list : public class StringList { private charNode _head; public StringList() { _head = null; } public StringList (CharNode node) { _head = node; } } Add methods to the class StringList according to the details : (Pay attention, these are methods from the class String and we want to fulfill them by the representation of a string by a list as explained above) public char charAt (int i) - returns the char in the place i in the string. Assume that the value of i is in the right range. public StringList concat (String str) - returns a string that consists of the string that it is operated on and in its end the string "str" is concatenated. public int indexOf (int ch) - returns the index in the string it is operated on of the first appeareance of the char "ch". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex isn't in the range, returns -1. public int indexOf (int ch, int fromIndex) - returns the index in the string it is operated on of the first appeareance of the char "ch", as the search begins in the index "fromIndex". If the char "ch" doesn't appear in the string, returns -1. public boolean equals (String str) - returns true if the string that it is operated on is equal to the string str. Otherwise returns false. This method must be written in recursion, without using loops at all. public int compareTo (String str) - compares between the string that the method is operated on to the string "str" that is in the parameter. The method returns 0 if the strings are equal. If the string in the object is smaller lexicographic from the string "str" in the paramater, a negative number will be returned. And if the string in the object is bigger lexicographic from the string "str", a positive number will be returned. public StringList substring (int i) - returns the list of the substring that starts in the place i in the string on which it operates. Meaning, the sub-string from the place i until the end of the string. Assume the value of i is in the right range. public StringList substring (int i, int j) - returns the list of the substring that begins in the place i and ends in the place j (not included) in the string it operates on. Assume the values of i, j are in the right range. public int length() - will return the length of the string on which it operates. Pay attention to all the possible error cases. Write what is the time complexity and space complexity of every method that you wrote. Make sure the methods you wrote are effective. It is NOT allowed to use ready classes of Java. It is NOT allowed to move to string and use string operations.

    Read the article

  • Stopping the animation after you let go of a key

    - by Michael Zeuner
    What I have right now is an animation that starts when I press space: if(input.isKeyDown(Input.KEY_SPACE)) player = movingRightSwingingSword; However when I stop clicking space my animation continues. until I move my player, how do I make it so it stops the animation right when you let go of space? A few lines Animation player, movingUp, movingDown, movingLeft, movingRight, movingRightSwingingSword; int[] duration = {200,200}; public void init(GameContainer gc, StateBasedGame sbg) throws SlickException { Image[] attackRight = {new Image("res/buckysRightSword1.png"), new Image("res/buckysRightSword2.png")}; movingRightSwingingSword = new Animation(attackRight, duration, true); } public void update(GameContainer gc, StateBasedGame sbg, int delta) throws SlickException { if(input.isKeyDown(Input.KEY_SPACE)) player = movingRightSwingingSword; } Full Code package javagame; import org.newdawn.slick.*; import org.newdawn.slick.state.*; public class Play extends BasicGameState { Animation player, movingUp, movingDown, movingLeft, movingRight, movingRightSwingingSword; Image worldMap; boolean quit = false; int[] duration = {200,200}; float playerPositionX = 0; float playerPositionY = 0; float shiftX = playerPositionX + 320; float shiftY = playerPositionY + 160; public Play(int state) { } public void init(GameContainer gc, StateBasedGame sbg) throws SlickException { worldMap = new Image("res/world.png"); Image[] walkUp = {new Image("res/buckysBack.png"), new Image("res/buckysBack.png")}; Image[] walkDown = {new Image("res/buckysFront.png"), new Image("res/buckysFront.png")}; Image[] walkLeft = {new Image("res/buckysLeft.png"), new Image("res/buckysLeft.png")}; Image[] walkRight = {new Image("res/buckysRight.png"), new Image("res/buckysRight.png")}; Image[] attackRight = {new Image("res/buckysRightSword1.png"), new Image("res/buckysRightSword2.png")}; movingUp = new Animation(walkUp, duration, false); movingDown = new Animation(walkDown, duration, false); movingLeft = new Animation(walkLeft, duration, false); movingRight = new Animation(walkRight, duration, false); //doesnt work! vvv movingRightSwingingSword = new Animation(attackRight, duration, true); player = movingDown; } public void render(GameContainer gc, StateBasedGame sbg, Graphics g) throws SlickException { worldMap.draw(playerPositionX, playerPositionY); player.draw(shiftX, shiftY); g.drawString("Player X: " + playerPositionX + "\nPlayer Y: " + playerPositionY, 400, 20); if (quit == true) { g.drawString("Resume (R)", 250, 100); g.drawString("MainMenu (M)", 250, 150); g.drawString("Quit Game (Q)", 250, 200); if (quit==false) { g.clear(); } } } public void update(GameContainer gc, StateBasedGame sbg, int delta) throws SlickException { Input input = gc.getInput(); if(input.isKeyDown(Input.KEY_UP)) { player = movingUp; playerPositionY += delta * .1f; if(playerPositionY>162) playerPositionY -= delta * .1f; } if(input.isKeyDown(Input.KEY_DOWN)) { player = movingDown; playerPositionY -= delta * .1f; if(playerPositionY<-600) playerPositionY += delta * .1f; } if(input.isKeyDown(Input.KEY_RIGHT)) { player = movingRight; playerPositionX -= delta * .1f; if(playerPositionX<-840) playerPositionX += delta * .1f; } if(input.isKeyDown(Input.KEY_LEFT)) { player = movingLeft; playerPositionX += delta * .1f; if(playerPositionX>318) playerPositionX -= delta * .1f; } if(input.isKeyDown(Input.KEY_SPACE)) player = movingRightSwingingSword; if(input.isKeyDown(Input.KEY_ESCAPE)) quit = true; if(input.isKeyDown(Input.KEY_R)) if (quit == true) quit = false; if(input.isKeyDown(Input.KEY_M)) if (quit == true) {sbg.enterState(0); quit = false;} if(input.isKeyDown(Input.KEY_Q)) if (quit == true) System.exit(0); } public int getID() { return 1; } }

    Read the article

  • New line (in the code) after <li> element breaking layout

    - by BT643
    Weirdly, I've never come across this issue before, but I've just started making a site and the top navigation isn't playing nicely. I want a small amount of white space between each menu item, but when I have new lines between my <li> elements and my <a> elements in my IDE (Netbeans), the white space disappears, yet it looks fine if I have <li><a></a></li> all on the same line. I was always under the impression html ignored white space in the code. I've checked for any weird characters causing problems in other text editors and can't find anything. Here's the code... Like this the menu looks correct but code looks ugly (I know it looks fine when it's this simple, but I'm going be adding more complexity in which makes it look awful all on one line): <ul id="menu"> <li><a href="#">About</a></li> <li class="active"><a href="<?php echo site_url("tracklist"); ?>">Track List</a></li> <li><a href="<?php echo site_url("stats"); ?>">Stats</a></li> <li><a href="#">Stats</a></li> </ul> Like this the menu looks wrong but code looks fine: <ul id="menu"> <li> <a href="#">About</a> </li> <li class="active"> <a href="<?php echo site_url("tracklist"); ?>">Track List</a> </li> <li> <a href="<?php echo site_url("stats"); ?>">Stats</a> </li> <li> <a href="#">Stats</a> </li> </ul> Here's the css: #menu { float: right; } #menu li { display: inline-block; padding: 5px; background-color: #932996; border-bottom: solid 1px #932996; } #menu li:hover { border-bottom: solid 3px #FF0000; } #menu li.active { background-color: #58065e; } I'm sure it's something simple I'm doing wrong... but can someone shed some light on this for me? Sorry for the lengthy post (my first on stackoverflow).

    Read the article

  • How does java.util.Collections.contains() perform faster than a linear search?

    - by The111
    I've been fooling around with a bunch of different ways of searching collections, collections of collections, etc. Doing lots of stupid little tests to verify my understanding. Here is one which boggles me (source code further below). In short, I am generating N random integers and adding them to a list. The list is NOT sorted. I then use Collections.contains() to look for a value in the list. I intentionally look for a value that I know won't be there, because I want to ensure that the entire list space is probed. I time this search. I then do another linear search manually, iterating through each element of the list and checking if it matches my target. I also time this search. On average, the second search takes 33% longer than the first one. By my logic, the first search must also be linear, because the list is unsorted. The only possibility I could think of (which I immediately discard) is that Java is making a sorted copy of my list just for the search, but (1) I did not authorize that usage of memory space and (2) I would think that would result in MUCH more significant time savings with such a large N. So if both searches are linear, they should both take the same amount of time. Somehow the Collections class has optimized this search, but I can't figure out how. So... what am I missing? import java.util.*; public class ListSearch { public static void main(String[] args) { int N = 10000000; // number of ints to add to the list int high = 100; // upper limit for random int generation List<Integer> ints; int target = -1; // target will not be found, forces search of entire list space long start; long end; ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 1)... "); if (ints.contains(target)) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); System.out.println(); ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 2)... "); for (Integer i : ints) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); } }

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • MySQL at Mobile World Congress (on Valentine's Day...)

    - by mat.keep(at)oracle.com
    It is that time of year again when the mobile communications industry converges on Barcelona for what many regard as the premier telecommunications show of the year.Starting on February 14th, what better way for a Brit like me to spend Valentines Day with 50,000 mobile industry leaders (my wife doesn't tend to read this blog, so I'm reasonably safe with that statement).As ever, Oracle has an extensive presence at the show, and part of that presence this year includes MySQL.We will be running a live demonstration of the MySQL Cluster database on Booth 7C18 in the App Planet.The demonstration will show how the MySQL Cluster Connector for Java is implemented to provide native connectivity to the carrier grade MySQL Cluster database from Java ME clients via Java SE virtual machines and Java EE servers.  The demonstration will show how end-to-end Java services remain continuously available during both catastrophic failures and scheduled maintenance activities.The MySQL Cluster Connector for Java provides both a native Java API and JPA plug-in that directly maps Java objects to relational tables stored in the MySQL Cluster database, without the overhead and complexity of having to transform objects to JDBC, and then SQL  The result is 10x higher throughput, and a simpler development model for Java engineers.Stop by the stand for a demonstration, and an opportunity to speak with the MySQL telecoms team who will share experiences on how MySQL is being used to bring the innovation of the web to the carrier network.Of course, if you can't make it to Barcelona, you can still learn more about the MySQL Cluster Connector for Java from this whitepaper and are free to download it as part of MySQL Cluster Community Edition  Let us know via the comments if you have Java applications that you think will benefit from the MySQL Cluster Connector for JavaI can't promise that Valentines Day at MWC will be the time you fall in love with MySQL Cluster...but I'm confident you will at least develop a healthy respect for it  

    Read the article

  • Technical Article: Oracle Magazine Java Developer of the Year Adam Bien on Java EE 6 Simplicity by Design

    - by janice.heiss(at)oracle.com
    Java Champion and Oracle Magazine Java Developer of the Year, Adam Bien, offers his unique perspective on how to leverage new Java EE 6 features to build simple and maintainable applications in a new article in Oracle Magazine. Bien examines different Java EE 6 architectures and design approaches in an effort to help developers build efficient, simple, and maintainable applications.From the article: "Java EE 6 consists of a set of independent APIs released together under the Java EE name. Although these APIs are independent, they fit together surprisingly well. For a given application, you could use only JavaServer Faces (JSF) 2.0, you could use Enterprise JavaBeans (EJB) 3.1 for transactional services, or you could use Contexts and Dependency Injection (CDI) with Java Persistence API (JPA) 2.0 and the Bean Validation model to implement transactions.""With a pragmatic mix of available Java EE 6 APIs, you can entirely eliminate the need to implement infrastructure services such as transactions, threading, throttling, or monitoring in your application. The real challenge is in selecting the right subset of APIs that minimizes overhead and complexity while making sure you don't have to reinvent the wheel with custom code. As a general rule, you should strive to use existing Java SE and Java EE services before expanding your search to find alternatives." Read the entire article here.

    Read the article

  • AutoVue Integrates with Primavera P6

    - by celine.beck
    Oracle's Primavera P6 Enterprise Project Portfolio Management is an integrated project portfolio management (PPM) application that helps select the right strategic mix of projects, balance resource capacity, manage project risk and complete projects on time and within budget. AutoVue 19.3 and later versions (release 20.0) now integrate out of the box with the Web version of Oracle Primavera P6 release 7. The integration between the two products, which was announced during Oracle Open World 2009, provides project teams with ready access to any project documents directly from within the context of P6 in support for project scope definition and project planning and execution. You can learn more about the integration between AutoVue and Primavera P6 by: Listening to the Oracle Appcast entitled Enhance Primavera Project Document Collaboration with AutoVue Enterprise Visualization Watching an Oracle Webcast about how to improve project success with document visualization and collaboration Watching a recorded demo of the integrated solution Teams involved in complex projects like construction or plant shutdown activities are highly interdependent: the decisions of one affecting the actions of many others. This coupled with increasing project complexity, a vast array of players and heavy engineering and document-intensive workflows makes it more challenging to complete jobs on time and within budget. Organizations need complete visibility into project information, as well as robust project planning, risk analysis and resource balancing capabilities similar to those featured in Primavera P6 ; they also need to make sure that all project stakeholders, even those who neither understand engineering drawings nor are interested in engineering details that go beyond their specific needs, have ready access to technically advanced project information. This is exactly what the integration between AutoVue and Primavera delivers: ready access to any project information attached to Primavera projects, tasks or activities via AutoVue. There is no need for users to waste time searching for project-related documents or disrupting engineers for printouts, users have all the context they need to make sound decisions right from within Primavera P6 with a single click of a button. We are very excited about this new integration. If you are using Primavera and / or Primavera tied with AutoVue, we would be interested in getting your feedback on this integration! Please do not hesitate to post your comments / reactions on the blog!

    Read the article

  • Free Oracle Special Edition eBook - Server Virtualization for Dummies

    - by Thanos
    Oracle has released a quick and easy-to-read guide on Oracle Virtualization. Now available is "Server Virtualization for Dummies," an Oracle Special Edition eBook. Need to virtualize, but not sure where to start? Virtualization should make things simpler, not more complex. To learn more about how Oracle’s server virtualization solutions can help you eliminate complexity, reduce costs, and respond rapidly to changing needs, download Server Virtualization for Dummies, an Oracle Special Edition eBook. Simply discover how virtualization can make things simpler, from server consolidation to application deployment. This eBook guides you through a range of server virtualization topics, including Why virtualization is critical to transforming today's IT to tomorrow's cloud computing environment. How different types of virtualization are suited to different business needs How application-driven virtualization dramatically accelerates application deployment Oracle Virtualization delivers the most complete and integrated solution for building, flexible IT infrastructures—beyond just server virtualization consolidation. Learn how Oracle Virtualization's unique application-driven approach and integrated management offering helps to accelerate enterprise application deployment and simplify management of data center from disk to apps. All our Customers, prospects, and partners are welcome to follow this link to download an exclusive copy of Server Virtualization for Dummies, Oracle Special Edition today.

    Read the article

  • Agile PLM on Developing Agile PLM: Software Lifecycle Management

    - by Kerrie Foy
    Change is constant.  That saying couldn’t be truer when applied to software development.   And with all that change comes extensive product complexity.  How do you manage it all?  As software developers ourselves, we can certainly empathize with the challenge. On April 3, 2012 Stephen Van Lare, VP of PLM Product Development, hosted a webcast to share how Oracle uses Agile to develop Agile – a PLM solution for managing a PLM solution!   Stephen passionately shared his unique insight based on 10 years of using Agile PLM to manage the development process, as well as customer use cases.  He shared our time-proven view of the software’s relationship to the product record, while pointing out that PLM is not source control.  He began with the challenges of software development, which boiled down to the deduction that “despite many great tools in the software development industry, it takes a lot more than good source control, more than good bug tracking, to get to an on-time, on-budget and quality release in your marketplace.   It requires defining the right things you want to do, managing the scope, managing your schedule, and, most importantly, managing the change to all those things over the lifecycle of the process. And this is the definition of PLM.”   Stephen then defined the relationship of PLM to the software development process by detailing the two main use cases –  Product Lifecycle and Mechatronics – which can be used simultaneously and in fact are already used in most industries today.  The Product Lifecycle use case is used to manage artifacts and change throughout product development, while the Mechatronics use case involves the software, hardware and electrical design in the BOM.  In essence, PLM is just as relevant to software as the rest of the BOM when trying to maximize profits during any phase of the lifecycle. Please take the opportunity to watch Stephen Van Lare as he details how and why based on his own experience developing Agile with Agile, as well as a lively Q&A session, in the Software PLM Webcast Replay.

    Read the article

  • Learn Domain-Driven Design

    - by Ben Griswold
    I just wrote about how I like to present on unfamiliar topics. With this said, Domain-Driven Design (DDD) is no exception. This is yet another area I knew enough about to be dangerous but I certainly was no expert.  As it turns out, researching this topic wasn’t easy. I could be wrong, but it is as if DDD is a secret to which few are privy. If you search the Interwebs, you will likely find little information about DDD until you start rolling over rocks to find that one great write-up, a handful of podcasts and videos and the Readers’ Digest version of the Blue Book which apparently you must read if you really want to get the complete, unabridged skinny on DDD.  Even Wikipedia’s write-up is skimpy which I didn’t know was possible…   Here’s a list of valuable resources.  If you, too, are interested in DDD, this is a good starting place.  Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans Domain-Driven Design Quickly, by Abel Avram & Floyd Marinescu An Introduction to Domain-Driven Design by David Laribee Talking Domain-Driven Design with David Laribee Part 1, Deep Fried Bytes Talking Domain-Driven Design with David Laribee Part 2, Deep Fried Bytes Eric Evans on Domain Driven Design, .NET Rocks Domain-Driven Design Community Eric Evans on Domain Driven Design Jimmy Nilsson on Domain Driven Design Domain-Driven Design Wikipedia What I’ve Learned About DDD Since the Book, Eric Evans Domain Driven Design, Alt.Net Podcast Applying Domain-Driven Design and Patterns: With Examples in C# and .NET, Jimmy Nilsson Domain-Driven Design Discussion Group DDD: Putting the Model to Work by Eric Evans The Official DDD Site

    Read the article

  • SQL Server – Learning SQL Server Performance: Indexing Basics – Interview of Vinod Kumar by Pinal Dave

    - by pinaldave
    Recently I just wrote a blog post on about Learning SQL Server Performance: Indexing Basics and I received lots of request that if we can share some insight into the course. Every single time when Performance is discussed, Indexes are mentioned along with it. In recent times, data and application complexity is continuously growing.  The demand for faster query response, performance, and scalability by organizations is increasing and developers and DBAs need to now write efficient code to achieve this. When we developed the course – we made sure that this course remains practical and demo heavy instead of just theories on this subject. Vinod Kumar and myself we often thought about this and realized that practical understanding of the indexes is very important. One can not master every single aspects of the index. However there are some minimum expertise one should gain if performance is one of the concern. Here is 200 seconds interview of Vinod Kumar I took right after completing the course. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology, Video

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • Automated unit testing, integration testing or acceptance testing

    - by bjarkef
    TDD and unit testing seems to be the big rave at the moment. But it is really that useful compared to other forms of automated testing? Intuitively I would guess that automated integration testing is way more useful than unit testing. In my experience the most bugs seems to be in the interaction between modules, and not so much the actual (usual limited) logic of each unit. Also regressions often happened because of changing interfaces between modules (and changed pre and post-conditions.) Am I misunderstanding something, or why are unit testing getting so much focus compared to integration testing? It is simply because it is assumed that integration testing is something you have, and unit testing is the next thing we need to learn to apply as developers? Or maybe unit testing simply yields the highest gain compared to the complexity of automating it? What are you experience with automated unit testing, automated integration testing, and automated acceptance testing, and in your experience what has yielded the highest ROI? and why? If you had to pick just one form of testing to be automated on your next project, which would it be? Thanks in advance.

    Read the article

  • Is functional intellisense and code browsing more beneficial than the use of dependency injection containers

    - by Gavin Howden
    This question is really based on PHP, but could be valid for other dynamically typed, interpreted languages and specifically the methods of generating code insight and object browsing in development environments. We use PHPStorm, and find intellisense invaluable, but it is provided by some limited static analysis and parsing of doc comments. Obviously this does not lend well to obtaining dependencies through a container, as the IDE has no idea of the type returned, so the developer loses out on a plethora of (in the case of our framework anyway) rich documentation provided through the doc comments. So we start to see stuff like this: $widget = $dic->YieldInstance('WidgetA', $arg1, $arg2, $arg3, $arg4...)); /** * @var $widget WidgetA */ So that code insight works. In effect the comments are tightly bound, but worse they come out of sync when code is modified but not the comments: $widget = $dic->YieldInstance('WidgetB', $arg1, $arg2, $arg3, $arg4...)); /** * @var $widget WidgetA */ Obviously the comment could be improved by referencing a Widget interface, but then we might as well use a factory and avoid the requirement for the extra typing hints in the comments, and dic complexity / boiler plating. Which is more important to the average developer, code insight / intellisense or 'nirvana' decouplement?

    Read the article

< Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >