Search Results

Search found 6493 results on 260 pages for 'random generator'.

Page 132/260 | < Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >

  • Benchmarking MySQL Replication with Multi-Threaded Slaves

    - by Mat Keep
    0 0 1 1145 6530 Homework 54 15 7660 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} The objective of this benchmark is to measure the performance improvement achieved when enabling the Multi-Threaded Slave enhancement delivered as a part MySQL 5.6. As the results demonstrate, Multi-Threaded Slaves delivers 5x higher replication performance based on a configuration with 10 databases/schemas. For real-world deployments, higher replication performance directly translates to: · Improved consistency of reads from slaves (i.e. reduced risk of reading "stale" data) · Reduced risk of data loss should the master fail before replicating all events in its binary log (binlog) The multi-threaded slave splits processing between worker threads based on schema, allowing updates to be applied in parallel, rather than sequentially. This delivers benefits to those workloads that isolate application data using databases - e.g. multi-tenant systems deployed in cloud environments. Multi-Threaded Slaves are just one of many enhancements to replication previewed as part of the MySQL 5.6 Development Release, which include: · Global Transaction Identifiers coupled with MySQL utilities for automatic failover / switchover and slave promotion · Crash Safe Slaves and Binlog · Optimized Row Based Replication · Replication Event Checksums · Time Delayed Replication These and many more are discussed in the “MySQL 5.6 Replication: Enabling the Next Generation of Web & Cloud Services” Developer Zone article  Back to the benchmark - details are as follows. Environment The test environment consisted of two Linux servers: · one running the replication master · one running the replication slave. Only the slave was involved in the actual measurements, and was based on the following configuration: - Hardware: Oracle Sun Fire X4170 M2 Server - CPU: 2 sockets, 6 cores with hyper-threading, 2930 MHz. - OS: 64-bit Oracle Enterprise Linux 6.1 - Memory: 48 GB Test Procedure Initial Setup: Two MySQL servers were started on two different hosts, configured as replication master and slave. 10 sysbench schemas were created, each with a single table: CREATE TABLE `sbtest` (    `id` int(10) unsigned NOT NULL AUTO_INCREMENT,    `k` int(10) unsigned NOT NULL DEFAULT '0',    `c` char(120) NOT NULL DEFAULT '',    `pad` char(60) NOT NULL DEFAULT '',    PRIMARY KEY (`id`),    KEY `k` (`k`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 10,000 rows were inserted in each of the 10 tables, for a total of 100,000 rows. When the inserts had replicated to the slave, the slave threads were stopped. The slave data directory was copied to a backup location and the slave threads position in the master binlog noted. 10 sysbench clients, each configured with 10 threads, were spawned at the same time to generate a random schema load against each of the 10 schemas on the master. Each sysbench client executed 10,000 "update key" statements: UPDATE sbtest set k=k+1 WHERE id = <random row> In total, this generated 100,000 update statements to later replicate during the test itself. Test Methodology: The number of slave workers to test with was configured using: SET GLOBAL slave_parallel_workers=<workers> Then the slave IO thread was started and the test waited for all the update queries to be copied over to the relay log on the slave. The benchmark clock was started and then the slave SQL thread was started. The test waited for the slave SQL thread to finish executing the 100k update queries, doing "select master_pos_wait()". When master_pos_wait() returned, the benchmark clock was stopped and the duration calculated. The calculated duration from the benchmark clock should be close to the time it took for the SQL thread to execute the 100,000 update queries. The 100k queries divided by this duration gave the benchmark metric, reported as Queries Per Second (QPS). Test Reset: The test-reset cycle was implemented as follows: · the slave was stopped · the slave data directory replaced with the previous backup · the slave restarted with the slave threads replication pointer repositioned to the point before the update queries in the binlog. The test could then be repeated with identical set of queries but a different number of slave worker threads, enabling a fair comparison. The Test-Reset cycle was repeated 3 times for 0-24 number of workers and the QPS metric calculated and averaged for each worker count. MySQL Configuration The relevant configuration settings used for MySQL are as follows: binlog-format=STATEMENT relay-log-info-repository=TABLE master-info-repository=TABLE As described in the test procedure, the slave_parallel_workers setting was modified as part of the test logic. The consequence of changing this setting is: 0 worker threads:    - current (i.e. single threaded) sequential mode    - 1 x IO thread and 1 x SQL thread    - SQL thread both reads and executes the events 1 worker thread:    - sequential mode    - 1 x IO thread, 1 x Coordinator SQL thread and 1 x Worker thread    - coordinator reads the event and hands it to the worker who executes 2+ worker threads:    - parallel execution    - 1 x IO thread, 1 x Coordinator SQL thread and 2+ Worker threads    - coordinator reads events and hands them to the workers who execute them Results Figure 1 below shows that Multi-Threaded Slaves deliver ~5x higher replication performance when configured with 10 worker threads, with the load evenly distributed across our 10 x schemas. This result is compared to the current replication implementation which is based on a single SQL thread only (i.e. zero worker threads). Figure 1: 5x Higher Performance with Multi-Threaded Slaves The following figure shows more detailed results, with QPS sampled and reported as the worker threads are incremented. The raw numbers behind this graph are reported in the Appendix section of this post. Figure 2: Detailed Results As the results above show, the configuration does not scale noticably from 5 to 9 worker threads. When configured with 10 worker threads however, scalability increases significantly. The conclusion therefore is that it is desirable to configure the same number of worker threads as schemas. Other conclusions from the results: · Running with 1 worker compared to zero workers just introduces overhead without the benefit of parallel execution. · As expected, having more workers than schemas adds no visible benefit. Aside from what is shown in the results above, testing also demonstrated that the following settings had a very positive effect on slave performance: relay-log-info-repository=TABLE master-info-repository=TABLE For 5+ workers, it was up to 2.3 times as fast to run with TABLE compared to FILE. Conclusion As the results demonstrate, Multi-Threaded Slaves deliver significant performance increases to MySQL replication when handling multiple schemas. This, and the other replication enhancements introduced in MySQL 5.6 are fully available for you to download and evaluate now from the MySQL Developer site (select Development Release tab). You can learn more about MySQL 5.6 from the documentation  Please don’t hesitate to comment on this or other replication blogs with feedback and questions. Appendix – Detailed Results

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • A star algorithm implementation problems

    - by bryan226
    I’m having some trouble implementing the A* algorithm in a 2D tile based game. The problem is basically that the algorithm gets stuck when something gets in its direct way (e.g. walls) Note that it only allows Horizontal and Vertical movement. Here's a picture as it works fine across the map without something in its direct way: (Green tile = destination, Blue = In closed list, Green = in open list) This is what happens if I try to walk 'around' a wall: I calculate costs with the F = G + H formula: G = 1 Cost per Step H = 10 Cost per Step //Count how many tiles are between current-tile & destination-tile The functions: short c_astar::GuessH(short Startx,short Starty,short Destinationx,short Destinationy) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Destinationx; Destination.y = Destinationy; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b)*10; } short c_astar::GuessG(short Startx,short Starty,short Currentx,short Currenty) { hgeVector Start, Destination; Start.x = Startx; Start.y = Starty; Destination.x = Currentx; Destination.y = Currenty; short a = 0; short b = 0; if(Start.x > Destination.x) a = Start.x - Destination.x; else a = Destination.x - Start.x; if(Start.y > Destination.y) b = Start.y - Destination.y; else b = Destination.y - Start.y; return (a+b); } At the end of the loop I check which tile is the cheapest to go according to its F value: Then some quick checks are done for each tile (UP,DOWN,LEFT,RIGHT): //...CX are holding the F value of the TILE specified // Info: C0 = Center (Current) // C1 = UP // C2 = DOWN // C3 = LEFT // C4 = RIGHT //Quick checks if(((C1 < C2) && (C1 < C3) && (C1 < C4))) { Current.y -= 1; bSimilar = false; if(DEBUG) hge->System_Log("C1 < ALL"); } //.. same for C2,C3 & C4 If there are multiple tiles with the same F value: It’s actually a switch for DOWNLEFT,UPRIGHT.. etc. Here’s one of it: case UPRIGHT: { //UP Temporary = Current; Temporary.y -= 1; bTileStatus[0] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[0]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[0] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[0] = true; //RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { //Proceed normal we are OK & walkable Tilex.Tile = map.at(Temporary.y).at(Temporary.x); //Search in lists if(SearchInClosedList(Tilex.Tile.ID,C0)) bFoundInClosedList[1] = true; if(SearchInOpenList(Tilex.Tile.ID,C0)) bFoundInOpenList[1] = true; //************************************************* // Purpose: ClosedList behavior //************************************************* if(bFoundInClosedList[0] && !bFoundInClosedList[1]) { //UP found in ClosedList. Go RIGHT return RIGHT; } if(!bFoundInClosedList[0] && bFoundInClosedList[1]) { //RIGHT found in ClosedList. Go UP return UP; } if(bFoundInClosedList[0] && bFoundInClosedList[1]) { //Both found in ClosedList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } //************************************************* // Purpose: OpenList behavior //************************************************* if(bFoundInOpenList[0] && !bFoundInOpenList[1]) { //UP found in OpenList. Go RIGHT return RIGHT; } if(!bFoundInOpenList[0] && bFoundInOpenList[1]) { //RIGHT found in OpenList. Go UP return UP; } if(bFoundInOpenList[0] && bFoundInOpenList[1]) { //Both found in OpenList. Random value switch(hge->Random_Int(8,9)) { case 8: return UP; break; case 9: return RIGHT; break; } } } else if(!bTileStatus[1]) { //RIGHT is not walkable OR out of range //Choose UP return UP; } } else if(!bTileStatus[0]) { //UP is not walkable OR out of range //Fast check RIGHT Temporary = Current; Temporary.x += 1; bTileStatus[1] = IsTileWalkable(Temporary.x,Temporary.y); if(bTileStatus[1]) { return RIGHT; } else return FAILED; //Failed, no valid path found! } } break; A log for the second picture: (Cut down to ten passes, because it’s just repeating itself) ----------------------------------------------------- PASS: 1 | C1: 211 | C2: 191 | C3: 211 | C4: 191 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 2 | C1: 200 | C2: 182 | C3: 202 | C4: 182 DOWN + RIGHT SIMILAR Going DOWN ----------------------------------------------------- PASS: 3 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 4 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 5 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 6 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going UP Tile(12.000000,5.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 7 | C1: 191 | C2: 173 | C3: 191 | C4: 999 C2 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 8 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- PASS: 9 | C1: 191 | C2: 193 | C3: 193 | C4: 173 C4 < ALL Tile(12.000000,6.000000) not walkable. MAX_F_VALUE set. ----------------------------------------------------- PASS: 10 | C1: 182 | C2: 184 | C3: 182 | C4: 999 UP + LEFT SIMILAR Going LEFT ----------------------------------------------------- Its always going after the cheapest F value, which seems to be wrong. If someone could point me to the right direction I'd be thankful. Regards, bryan226

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • What are the arguments against parsing the Cthulhu way?

    - by smarmy53
    I have been assigned the task of implementing a Domain Specific Language for a tool that may become quite important for the company. The language is simple but not trivial, it already allows nested loops, string concatenation, etc. and it is practically sure that other constructs will be added as the project advances. I know by experience that writing a lexer/parser by hand -unless the grammar is trivial- is a time consuming and error prone process. So I was left with two options: a parser generator à la yacc or a combinator library like Parsec. The former was good as well but I picked the latter for various reasons, and implemented the solution in a functional language. The result is pretty spectacular to my eyes, the code is very concise, elegant and readable/fluent. I concede it may look a bit weird if you never programmed in anything other than java/c#, but then this would be true of anything not written in java/c#. At some point however, I've been literally attacked by a co-worker. After a quick glance at my screen he declared that the code is uncomprehensible and that I should not reinvent parsing but just use a stack and String.Split like everybody does. He made a lot of noise, and I could not convince him, partially because I've been taken by surprise and had no clear explanation, partially because his opinion was immutable (no pun intended). I even offered to explain him the language, but to no avail. I'm positive the discussion is going to re-surface in front of management, so I'm preparing some solid arguments. These are the first few reasons that come to my mind to avoid a String.Split-based solution: you need lot of ifs to handle special cases and things quickly spiral out of control lots of hardcoded array indexes makes maintenance painful extremely difficult to handle things like a function call as a method argument (ex. add( (add a, b), c) very difficult to provide meaningful error messages in case of syntax errors (very likely to happen) I'm all for simplicity, clarity and avoiding unnecessary smart-cryptic stuff, but I also believe it's a mistake to dumb down every part of the codebase so that even a burger flipper can understand it. It's the same argument I hear for not using interfaces, not adopting separation of concerns, copying-pasting code around, etc. A minimum of technical competence and willingness to learn is required to work on a software project after all. (I won't use this argument as it will probably sound offensive, and starting a war is not going to help anybody) What are your favorite arguments against parsing the Cthulhu way?* *of course if you can convince me he's right I'll be perfectly happy as well

    Read the article

  • Height Map Mapping to "Chunked" Quadrilateralized Spherical Cube

    - by user3684950
    I have been working on a procedural spherical terrain generator for a few months which has a quadtree LOD system. The system splits the six faces of a quadrilateralized spherical cube into smaller "quads" or "patches" as the player approaches those faces. What I can't figure out is how to generate height maps for these patches. To generate the heights I am using a 3D ridged multi fractals algorithm. For now I can only displace the vertices of the patches directly using the output from the ridged multi fractals. I don't understand how I generate height maps that allow the vertices of a terrain patch to be mapped to pixels in the height map. The only thing I can think of is taking each vertex in a patch, plug that into the RMF and take that position and translate into u,v coordinates then determine the pixel position directly from the u,v coordinates and determine the grayscale color based on the height. I feel as if this is the right approach but there are a few other things that may further complicate my problem. First of all I intend to use "height maps" with a pixel resolution of 192x192 while the vertex "resolution" of each terrain patch is only 16x16 - meaning that I don't have any vertices to sample for the RMF for most of the pixels. The main reason the height map resolution is higher so that I can use it to generate a normal map (otherwise the height maps serve little purpose as I can just directly displace vertices as I currently am). I am pretty much following this paper very closely. This is, essentially, the part I am having trouble with. Using the cube-to-sphere mapping and the ridged multifractal algorithm previously described, a normalized height value ([0, 1]) is calculated. Using this height value, the terrain position is calculated and stored in the first three channels of the positionmap (RGB) – this will be used to calculate the normalmap. The fourth channel (A) is used to store the height value itself, to be used in the heightmap. The steps in the first sentence are my primary problem. I don't understand how the pixel positions correspond to positions on the sphere and what positions are sampled for the RMF to generate the pixels if only vertices cannot be used.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • ArchBeat Link-o-Rama for November 16, 2012

    - by Bob Rhubart
    X.509 Certificate Revocation Checking Using OCSP protocol with Oracle WebLogic Server 12c | Abhijit Patil Abhijit Patil's article focuses on how to use X.509 Certificate Revocation Checking Functionality with the OCSP protocol to validate in-bound certificates. Although this article focuses on inbound OCSP validation using OCSP, Oracle WebLogic Server 12c also supports outbound OCSP validation. Leveraging Oracle Scorecard and Strategy Management for Everyday BI Needs "Oracle Scorecard and Strategy Management (OSSM) is built-upon the premise that a scorecard system should not be separate from the BI system, like many comparable tools are today," says author Kevin McGinely. "Instead of a separate application with its own data, its own data definitions, and its own front-end, Oracle made the choice to integrate OSSM directly into OBIEE." Applying BI for personal productivity recognition and gamification | Capgemini Oracle Blog "It is quite obvious that if you want people to participate you need an appealing and intuitive user interface," says Capgemini's Henk Vermeulen in this interesting exploration of gamification in the enterprise. Build and release OSB projects with Maven | Edwin Biemond "With Maven we are able to build and deploy OSB projects," says Oracle ACE Edwin Biemond. "The artifacts generated by Maven called snaphosts and releases can be automatically uploaded to a software repository. These versioned OSB jars can then be downloaded by the OSB Servers and deployed." Biemond shows you how in this detailed technical post. ADF Generator for Dynamic ADF BC and ADF UI | Andrejus Baranovskis Oracle ACE Director Andrejus Baranovskis' post is an extension of his OOW12 presentation, "Oracle ADF Implementations Around the Globe: Best Practices," and includes the sample application he promised to share. Service-oriented organizations have a head start in the cloud race | ZDNet ZDNet SOA blogger Joe McKendrick offers a snapshot of a recent report Forrester analyst James Staten. Oracle Fusion Middleware Security: X509 Fallback to Form | Debasish BhattacharyaOracle Fusion Middleware A-Team architect Debasish Bhattacharya shares a solution that resulted from brainstorming with colleagues Chris Johnson and Brian Eidelman. "The solution is not very difficult," says Bhattacharya, "though it needs some additional configurations and coding." It's all presented in this detailed post. Agile Architecture | David Sprott "There is ample evidence that Agile Architecture is a primary contributor to business agility, yet we do not have a well understood architecture management system that integrates with Agile methods," observes David Sprott in this extensive post. Thought for the Day "Operating systems are like underwear — nobody really wants to look at them." — Bill Joy Source: SoftwareQuotes.com

    Read the article

  • Multiple setInterval in a HTML5 Canvas game

    - by kushsolitary
    I'm trying to achieve multiple animations in a game that I am creating using Canvas (it is a simple ping-pong game). This is my first game and I am new to canvas but have created a few experiments before so I have a good knowledge about how canvas work. First, take a look at the game here. The problem is, when the ball hits the paddle, I want a burst of n particles at the point of contact but that doesn't came right. Even if I set the particles number to 1, they just keep coming from the point of contact and then hides automatically after some time. Also, I want to have the burst on every collision but it occurs on first collision only. I am pasting the code here: //Initialize canvas var canvas = document.getElementById("canvas"), ctx = canvas.getContext("2d"), W = window.innerWidth, H = window.innerHeight, particles = [], ball = {}, paddles = [2], mouse = {}, points = 0, fps = 60, particlesCount = 50, flag = 0, particlePos = {}; canvas.addEventListener("mousemove", trackPosition, true); //Set it's height and width to full screen canvas.width = W; canvas.height = H; //Function to paint canvas function paintCanvas() { ctx.globalCompositeOperation = "source-over"; ctx.fillStyle = "black"; ctx.fillRect(0, 0, W, H); } //Create two paddles function createPaddle(pos) { //Height and width this.h = 10; this.w = 100; this.x = W/2 - this.w/2; this.y = (pos == "top") ? 0 : H - this.h; } //Push two paddles into the paddles array paddles.push(new createPaddle("bottom")); paddles.push(new createPaddle("top")); //Setting up the parameters of ball ball = { x: 2, y: 2, r: 5, c: "white", vx: 4, vy: 8, draw: function() { ctx.beginPath(); ctx.fillStyle = this.c; ctx.arc(this.x, this.y, this.r, 0, Math.PI*2, false); ctx.fill(); } }; //Function for creating particles function createParticles(x, y) { this.x = x || 0; this.y = y || 0; this.radius = 0.8; this.vx = -1.5 + Math.random()*3; this.vy = -1.5 + Math.random()*3; } //Draw everything on canvas function draw() { paintCanvas(); for(var i = 0; i < paddles.length; i++) { p = paddles[i]; ctx.fillStyle = "white"; ctx.fillRect(p.x, p.y, p.w, p.h); } ball.draw(); update(); } //Mouse Position track function trackPosition(e) { mouse.x = e.pageX; mouse.y = e.pageY; } //function to increase speed after every 5 points function increaseSpd() { if(points % 4 == 0) { ball.vx += (ball.vx < 0) ? -1 : 1; ball.vy += (ball.vy < 0) ? -2 : 2; } } //function to update positions function update() { //Move the paddles on mouse move if(mouse.x && mouse.y) { for(var i = 1; i < paddles.length; i++) { p = paddles[i]; p.x = mouse.x - p.w/2; } } //Move the ball ball.x += ball.vx; ball.y += ball.vy; //Collision with paddles p1 = paddles[1]; p2 = paddles[2]; if(ball.y >= p1.y - p1.h) { if(ball.x >= p1.x && ball.x <= (p1.x - 2) + (p1.w + 2)){ ball.vy = -ball.vy; points++; increaseSpd(); particlePos.x = ball.x, particlePos.y = ball.y; flag = 1; } } else if(ball.y <= p2.y + 2*p2.h) { if(ball.x >= p2.x && ball.x <= (p2.x - 2) + (p2.w + 2)){ ball.vy = -ball.vy; points++; increaseSpd(); particlePos.x = ball.x, particlePos.y = ball.y; flag = 1; } } //Collide with walls if(ball.x >= W || ball.x <= 0) ball.vx = -ball.vx; if(ball.y > H || ball.y < 0) { clearInterval(int); } if(flag == 1) { setInterval(emitParticles(particlePos.x, particlePos.y), 1000/fps); } } function emitParticles(x, y) { for(var k = 0; k < particlesCount; k++) { particles.push(new createParticles(x, y)); } counter = particles.length; for(var j = 0; j < particles.length; j++) { par = particles[j]; ctx.beginPath(); ctx.fillStyle = "white"; ctx.arc(par.x, par.y, par.radius, 0, Math.PI*2, false); ctx.fill(); par.x += par.vx; par.y += par.vy; par.radius -= 0.02; if(par.radius < 0) { counter--; if(counter < 0) particles = []; } } } var int = setInterval(draw, 1000/fps); Now, my function for emitting particles is on line 156, and I have called this function on line 151. The problem here can be because of I am not resetting the flag variable but I tried doing that and got more weird results. You can check that out here. By resetting the flag variable, the problem of infinite particles gets resolved but now they only animate and appear when the ball collides with the paddles. So, I am now out of any solution.

    Read the article

  • Building an MVC application using QuickBooks

    - by dataintegration
    RSSBus ADO.NET Providers can be used from many tools and IDEs. In this article we show how to connect to QuickBooks from an MVC3 project using the RSSBus ADO.NET Provider for QuickBooks. Although this example uses the QuickBooks Data Provider, the same process can be used with any of our ADO.NET Providers. Creating the Model Step 1: Download and install the QuickBooks Data Provider from RSSBus. Step 2: Create a new MVC3 project in Visual Studio. Add a data model to the Models folder using the ADO.NET Entity Data Model wizard. Step 3: Create a new RSSBus QuickBooks Data Source by clicking "New Connection", specify the connection string options, and click Next. Step 4: Select all the tables and views you need, and click Finish to create the data model. Step 5: Right click on the entity diagram and select 'Add Code Generation Item'. Choose the 'ADO.NET DbContext Generator'. Creating the Controller and the Views Step 6: Add a new controller to the Controllers folder. Give it a meaningful name, such as ReceivePaymentsController. Also, make sure the template selected is 'Controller with empty read/write actions'. Before adding new methods to the Controller, create views for your model. We will add the List, Create, and Delete views. Step 7: Right click on the Views folder and go to Add -> View. Here create a new view for each: List, Create, and Delete templates. Make sure to also associate your Model with the new views. Step 10: Now that the views are ready, go back and edit the RecievePayment controller. Update your code to handle the Index, Create, and Delete methods. Sample Project We are including a sample project that shows how to use the QuickBooks Data Provider in an MVC3 application. You may download the C# project here or download the VB.NET project here. You will also need to install the QuickBooks ADO.NET Data Provider to run the demo. You can download a free trial here. To use this demo, you will also need to modify the connection string in the 'web.config'.

    Read the article

  • Google search results are invalid

    - by Rufus
    I'm writing a program that lets a user perform a Google search. When the result comes back, all of the links in the search results are links not to other sites but to Google, and if the user clicks on one, the page is fetched not from the other site but from Google. Can anyone explain how to fix this problem? My Google URL consists of this: http://google.com/search?q=gargle But this is what I get back when the user clicks on the Wikipedia search result, which was http://www.google.com/url?q=http://en.wikipedia.org/wiki/Gargling&sa=U&ei=_4vkT5y555Wh6gGBeOzECg&ved=0CBMQejAe&usg=AFQjeNHd1eRV8Xef3LGeH6AvGxt-AF-Yjw <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html lang="en" dir="ltr" class="client-nojs" xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Gargling - Wikipedia, the free encyclopedia</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta http-equiv="Content-Style-Type" content="text/css" /> <meta name="generator" content="MediaWiki 1.20wmf5" /> <meta http-equiv="last-modified" content="Fri, 09 Mar 2012 12:34:19 +0000" /> <meta name="last-modified-timestamp" content="1331296459" /> <meta name="last-modified-range" content="0" /> <link rel="alternate" type="application/x-wiki" title="Edit this page" > <link rel="edit" title="Edit this page" > <link rel="apple-touch-icon" > <link rel="shortcut icon" > <link rel="search" type="application/opensearchdescription+xml" > <link rel="EditURI" type="application/rsd+xml" > <link rel="copyright" > <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" > <link rel="stylesheet" href="//bits.wikimedia.org/en.wikipedia.org/load.php?debug=false&amp;lang=en&amp;modules=ext.gadget.teahouse%7Cext.wikihiero%7Cmediawiki.legacy.commonPrint%2Cshared%7Cskins.vector&amp;only=styles&amp;skin=vector&amp;*" type="text/css" media="all" /> <style type="text/css" media="all">#mwe-lastmodified { display: none; }</style><meta name="ResourceLoaderDynamicStyles" content="" /> <link rel="stylesheet" href="//bits.wikimedia.org/en.wikipedia.org/load.php?debug=false&amp;lang=en&amp;modules=site&amp;only=styles&amp;skin=vector&amp;*" type="text/css" media="all" /> <style type="text/css" media="all">a:lang(ar),a:lang(ckb),a:lang(fa),a:lang(kk-arab),a:lang(mzn),a:lang(ps),a:lang(ur){text-decoration:none} /* cache key: enwiki:resourceloader:filter:minify-css:7:d5a1bf6cbd05fc6cc2705e47f52062dc */</style>

    Read the article

  • EBS Accounts Payables Customer Advisory

    - by cwarticki
    Blogging to let you know of an important set of Oracle Payables patches that were released for R12.1 customers.  Accounts Payable Customer Advisory: Dear Valued Oracle Support Customer, Since the release of R12.1.3 a number of recommended Payables patches have been made available as standalone patches, to help address important business process incidents. Adoption of these patches is highly recommended. To further facilitate adoption of these Payables patches Oracle has consolidated them into a single Recommended Patch Collection (RPC). The RPC is a collection of recommended Payables patches created with the following goals in mind: Stability: Help address issues that are identified by Oracle Development and Oracle Software Support that may interfere with the normal completion of important business processes such as period close. Root Cause Fixes: Help make available root cause fix for data integrity that may delay period close, normal invoice flow and other business actions. Compact: Keep the file footprint as small as possible to help facilitate the install process and minimize testing. Granular: Collection of patches based on functional area that allows customer to apply, based on their individual needs and goals, all three RPC’s at once or in phases. Payables: -          New AP RPC (14273383:R12.AP.B) has all data corruption root cause fixes known to date plus tons of other crucial fixes (Note: 1397581.1). -          Companion must have RPCs: o   Note: 1481221.1: R12.1: Payments Recommended Patch Collection (IBY RPC), August 2012 o   Note: 1481235.1: R12.1: E-Business Tax Recommended Patch Collection (ZX RPC), August 2012 o   Note: 1481222.1: R12.1: Sub Ledger Accounting (SLA) Recommended Patch Collection (XLA RPC), August 2012 -          This time we beat the system far harder on testing and it held up remarkably well. We could not get any data corruption events in the Invoice Cancel/Discard flow (that is the #1 generator) neither we could cause Orphan Events in the system. Therefore this is very good code. Financials: -          ALL FIN modules now have RPCs: full listing is in (Note: 954704.1)

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Help writing server script to ban IP's from a list

    - by Chev_603
    I have a VPS that I use as an openvpn and web server. For some reason, my apache log files are filled with thousands of these hack attempts: "POST /xmlrpc.php HTTP/1.0" 404 395 These attack attempts fill up 90% of my logs. I think it's a WordPress vulnerability they're looking for. Obviously they are not successful (I don't even have Wordpress on my server), but it's annoying and probably resource consuming as well. I am trying to write a bash script that will do the following: Search the apache logs and grab the offending IP's (even if they try it once), Sort them into a list with each unique IP on a seperate line, And then block them using the IP table rules. I am a bash newb, and so far my script does everything except Step 3. I can manually block the IP's, but that's tedious and besides, this is Linux and it's perfectly capable of doing it for me. I also want the script to be customizable so that I (or anyone else who wants to use it) can change the variables to suit whatever situation I/they may deal with in the future. Here is the script so far: #!/bin/bash ##IP LIST GENERATOR ##Author Chev Young ##Script to search Apache logs and list IP's based on custom filters ## ##Define our variables: DIRECT=~/Script ##Location of script&where to put results/temp files LOGFILE=/var/log/apache2/access.log ## Logfile to search for offenders TEMPLIST=xml_temp ## Temporary file name IP_LIST=ipstoban ## Name of results file FILTER1=xmlrpc ## What are we looking for? (Requests we want to ban) cd $DIRECT if [ ! -f $TEMPLIST ];then touch $TEMPLIST ##Create temp file fi cat $LOGFILE | grep $FILTER1 >> $DIRECT/$TEMPLIST ## Only interested in the IP's, so: sed -e 's/\([0-9]\+\.[0-9]\+\.[0-9]\+\.[0-9]\+\).*$/\1/' -e t -e d $DIRECT/$TEMPLIST | sort | uniq > $DIRECT/$IP_LIST rm $TEMPLIST ## Clean temp file echo "Done. Results located at $DIRECT/$IP_LIST" So I need help with the next part of the script, which should ban the IP's (incoming and perhaps outgoing too) from the resulting $IP_LIST file. I don't care if it utilizes UFW or IPTables directly, as long as it bans the IP's. I'd probably run it as a cron task. What I'm having trouble with is understanding how to use line of the result file as a seperate variable to do something like: ufw deny $IP1 $IP2 $IP3, ect Any ideas? Thanks.

    Read the article

  • Is this an effective monetization method for an Android game? [on hold]

    - by Matthew Page
    The short version: I plan to make an Android puzzle game where the user tries to get 3-6 numbers to their predetermined goal numbers. The free version of the app will have three predetermined levels (easy, medium, hard). The full version ($0.99, probably) will have a level generator where there will be unlimited easy, medium, or hard levels, as well as a custom difficulty option where users can set specific vales to the number of numbers to equate to their goal, the number of buttons to use, etc. Users will also have the option to get a one-time "hint" for a fee of $0.49, or unlimited hints for a one-time fee of $2.99. The long version: Mechanics of Game and Victory The application is a number puzzle. When the user begins a new game, depending on the input by the user, between 3 and 6 numbers show up on the top of the screen, and between 3 and 6 buttons show up on the bottom of the screen. The buttons all have two options: to increase every number the same way, or decrease every number the same way. The buttons either use addition / subtraction, multiplication / division, or exponents / roots, all depending on the number displayed on the button. Addition buttons are green, multiplication buttons are blue, and exponential buttons are red. The user wins when all of the numbers displayed on the screen equate to their goal number, displayed below each number. Monetization If the user is playing the full (priced) version of the app, upon the start of the game, the user will be confronted with a dialogue asking for the number of buttons and the number of numbers to equate in the game. Then, based on the user input, a random puzzle will be generated. If the user is playing the free version of the app, the user will be asked to either play an “easy”, “hard”, or “expert” puzzle. A pre-determined puzzle from each category will be used in the game. If the user has played that puzzle before, a dialogue will show saying this to the user and advertising the full version of the app. The full version of the app will also be advertised upon the successful or in successful completion of a puzzle. Upon exiting this advertisement, another full screen advertisement will appear from a third party. Also, the solution to the puzzle should be stored by the program, and if the user pays a small fee, he/she can see a hint to the solution to the program. In the free version of the app, the user may use their first hint for free. Also, the user can use unlimited hints for a slightly larger fee. Is this an effective monetization method?

    Read the article

  • Problem Implementing Texture on Libgdx Mesh of Randomized Terrain

    - by BrotherJack
    I'm having problems understanding how to apply a texture to a non-rectangular object. The following code creates textures such as this: from the debug renderer I think I've got the physical shape of the "earth" correct. However, I don't know how to apply a texture to it. I have a 50x50 pixel image (in the environment constructor as "dirt.png"), that I want to apply to the hills. I have a vague idea that this seems to involve the mesh class and possibly a ShapeRenderer, but the little i'm finding online is just confusing me. Bellow is code from the class that makes and regulates the terrain and the code in a separate file that is supposed to render it (but crashes on the mesh.render() call). Any pointers would be appreciated. public class Environment extends Actor{ Pixmap sky; public Texture groundTexture; Texture skyTexture; double tankypos; //TODO delete, temp public Tank etank; //TODO delete, temp int destructionRes; // how wide is a static pixel private final float viewWidth; private final float viewHeight; private ChainShape terrain; public Texture dirtTexture; private World world; public Mesh terrainMesh; private static final String LOG = Environment.class.getSimpleName(); // Constructor public Environment(Tank tank, FileHandle sfileHandle, float w, float h, int destructionRes) { world = new World(new Vector2(0, -10), true); this.destructionRes = destructionRes; sky = new Pixmap(sfileHandle); viewWidth = w; viewHeight = h; skyTexture = new Texture(sky); terrain = new ChainShape(); genTerrain((int)w, (int)h, 6); Texture tankSprite = new Texture(Gdx.files.internal("TankSpriteBase.png")); Texture turretSprite = new Texture(Gdx.files.internal("TankSpriteTurret.png")); tank = new Tank(0, true, tankSprite, turretSprite); Rectangle tankrect = new Rectangle(300, (int)tankypos, 44, 45); tank.setRect(tankrect); BodyDef terrainDef = new BodyDef(); terrainDef.type = BodyType.StaticBody; terrainDef.position.set(0, 0); Body terrainBody = world.createBody(terrainDef); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = terrain; terrainBody.createFixture(fixtureDef); BodyDef tankDef = new BodyDef(); Rectangle rect = tank.getRect(); tankDef.type = BodyType.DynamicBody; tankDef.position.set(0,0); tankDef.position.x = rect.x; tankDef.position.y = rect.y; Body tankBody = world.createBody(tankDef); FixtureDef tankFixture = new FixtureDef(); PolygonShape shape = new PolygonShape(); shape.setAsBox(rect.width*WORLD_TO_BOX, rect.height*WORLD_TO_BOX); fixtureDef.shape = shape; dirtTexture = new Texture(Gdx.files.internal("dirt.png")); etank = tank; } private void genTerrain(int w, int h, int hillnessFactor){ int width = w; int height = h; Random rand = new Random(); //min and max bracket the freq's of the sin/cos series //The higher the max the hillier the environment int min = 1; //allocating horizon for screen width Vector2[] horizon = new Vector2[width+2]; horizon[0] = new Vector2(0,0); double[] skyline = new double[width]; //TODO skyline necessary as an array? //ratio of amplitude of screen height to landscape variation double r = (int) 2.0/5.0; //number of terms to be used in sine/cosine series int n = 4; int[] f = new int[n*2]; //calculating omegas for sine series for(int i = 0; i < n*2 ; i ++){ f[i] = rand.nextInt(hillnessFactor - min + 1) + min; } //amp is the amplitude of the series int amp = (int) (r*height); double lastPoint = 0.0; for(int i = 0 ; i < width; i ++){ skyline[i] = 0; for(int j = 0; j < n; j++){ skyline[i] += ( Math.sin( (f[j]*Math.PI*i/height) ) + Math.cos(f[j+n]*Math.PI*i/height) ); } skyline[i] *= amp/(n*2); skyline[i] += (height/2); skyline[i] = (int)skyline[i]; //TODO Possible un-necessary float to int to float conversions tankypos = skyline[i]; horizon[i+1] = new Vector2((float)i, (float)skyline[i]); if(i == width) lastPoint = skyline[i]; } horizon[width+1] = new Vector2(800, (float)lastPoint); terrain.createChain(horizon); terrain.createLoop(horizon); //I have no idea if the following does anything useful :( terrainMesh = new Mesh(true, (width+2)*2, (width+2)*2, new VertexAttribute(Usage.Position, (width+2)*2, "a_position")); float[] vertices = new float[(width+2)*2]; short[] indices = new short[(width+2)*2]; for(int i=0; i < (width+2); i+=2){ vertices[i] = horizon[i].x; vertices[i+1] = horizon[i].y; indices[i] = (short)i; indices[i+1] = (short)(i+1); } terrainMesh.setVertices(vertices); terrainMesh.setIndices(indices); } Here is the code that is (supposed to) render the terrain. @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); // tell the camera to update its matrices. camera.update(); // tell the SpriteBatch to render in the // coordinate system specified by the camera. backgroundStage.draw(); backgroundStage.act(delta); uistage.draw(); uistage.act(delta); batch.begin(); debugRenderer.render(this.ground.getWorld(), camera.combined); batch.end(); //Gdx.graphics.getGL10().glEnable(GL10.GL_TEXTURE_2D); ground.dirtTexture.bind(); ground.terrainMesh.render(GL10.GL_TRIANGLE_FAN); //I'm particularly lost on this ground.step(); }

    Read the article

  • A Simple Entity Tagger

    - by Elton Stoneman
    In the REST world, ETags are your gateway to performance boosts by letting clients cache responses. In the non-REST world, you may also want to add an ETag to an entity definition inside a traditional service contract – think of a scenario where a consumer persists its own representation of your entity, and wants to keep it in sync. Rather than load every entity by ID and check for changes, the consumer can send in a set of linked IDs and ETags, and you can return only the entities where the current ETag is different from the consumer’s version.  If your entity is a projection from various sources, you may not have a persistent ETag, so you need an efficient way to generate an ETag which is deterministic, so an entity with the same state always generates the same ETag. I have an implementation for a generic ETag generator on GitHub here: EntityTagger code sample. The essence is simple - we get the entity, serialize it and build a hash from the serialized value. Any changes to either the state or the structure of the entity will result in a different hash. To use it, just call SetETag, passing your populated object and a Func<> which acts as an accessor to the ETag property: EntityTagger.SetETag(user, x => x.ETag); The implementation is all in at 80 lines of code, which is all pretty straightforward: var eTagProperty = AsPropertyInfo(eTagPropertyAccessor); var originalETag = eTagProperty.GetValue(entity, null); try { ResetETag(entity, eTagPropertyAccessor); string json; var serializer = new DataContractJsonSerializer(entity.GetType()); using (var stream = new MemoryStream()) { serializer.WriteObject(stream, entity); json = Encoding.UTF8.GetString(stream.GetBuffer(), 0, (int)stream.Length); } var guid = GetDeterministicGuid(json); eTagProperty.SetValue(entity, guid.ToString(), null); //... There are a couple of helper methods to check if the object has changed since the ETag value was last set, and to reset the ETag. This implementation uses JSON to do the serializing rather than XML. Benefit - should be marginally more efficient as your hashing a much smaller serialized string; downside, JSON doesn't include namespaces or class names at the root level, so if you have two classes with the exact same structure but different names, then instances which have the same content will have the same ETag. You may want that behaviour, but change to use the XML DataContractSerializer if you think that will be an issue. If you can persist the ETag somewhere, it will save you server processing to load up the entity, but that will only apply to scenarios where you can reliably invalidate your ETag (e.g. if you control all the entry points where entity contents can be updated, then you can calculate and persist the new ETag with each update).

    Read the article

  • Error "Input length must be multiple of 8 when decrypting with padded cipher"

    - by Ross Peoples
    I am trying to move a project from C# to Java for a learning exercise. I am still very new to Java, but I have a TripleDES class in C# that encrypts strings and returns a string value of the encrypted byte array. Here is my C# code: using System; using System.IO; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace tDocc.Classes { /// <summary> /// Triple DES encryption class /// </summary> public static class TripleDES { private static byte[] key = { 110, 32, 73, 24, 125, 66, 75, 18, 79, 150, 211, 122, 213, 14, 156, 136, 171, 218, 119, 240, 81, 142, 23, 4 }; private static byte[] iv = { 25, 117, 68, 23, 99, 78, 231, 219 }; /// <summary> /// Encrypt a string to an encrypted byte array /// </summary> /// <param name="plainText">Text to encrypt</param> /// <returns>Encrypted byte array</returns> public static byte[] Encrypt(string plainText) { UTF8Encoding utf8encoder = new UTF8Encoding(); byte[] inputInBytes = utf8encoder.GetBytes(plainText); TripleDESCryptoServiceProvider tdesProvider = new TripleDESCryptoServiceProvider(); ICryptoTransform cryptoTransform = tdesProvider.CreateEncryptor(key, iv); MemoryStream encryptedStream = new MemoryStream(); CryptoStream cryptStream = new CryptoStream(encryptedStream, cryptoTransform, CryptoStreamMode.Write); cryptStream.Write(inputInBytes, 0, inputInBytes.Length); cryptStream.FlushFinalBlock(); encryptedStream.Position = 0; byte[] result = new byte[encryptedStream.Length]; encryptedStream.Read(result, 0, (int)encryptedStream.Length); cryptStream.Close(); return result; } /// <summary> /// Decrypt a byte array to a string /// </summary> /// <param name="inputInBytes">Encrypted byte array</param> /// <returns>Decrypted string</returns> public static string Decrypt(byte[] inputInBytes) { UTF8Encoding utf8encoder = new UTF8Encoding(); TripleDESCryptoServiceProvider tdesProvider = new TripleDESCryptoServiceProvider(); ICryptoTransform cryptoTransform = tdesProvider.CreateDecryptor(key, iv); MemoryStream decryptedStream = new MemoryStream(); CryptoStream cryptStream = new CryptoStream(decryptedStream, cryptoTransform, CryptoStreamMode.Write); cryptStream.Write(inputInBytes, 0, inputInBytes.Length); cryptStream.FlushFinalBlock(); decryptedStream.Position = 0; byte[] result = new byte[decryptedStream.Length]; decryptedStream.Read(result, 0, (int)decryptedStream.Length); cryptStream.Close(); UTF8Encoding myutf = new UTF8Encoding(); return myutf.GetString(result); } /// <summary> /// Decrypt an encrypted string /// </summary> /// <param name="text">Encrypted text</param> /// <returns>Decrypted string</returns> public static string DecryptText(string text) { if (text == "") { return text; } return Decrypt(Convert.FromBase64String(text)); } /// <summary> /// Encrypt a string /// </summary> /// <param name="text">Unencrypted text</param> /// <returns>Encrypted string</returns> public static string EncryptText(string text) { if (text == "") { return text; } return Convert.ToBase64String(Encrypt(text)); } } /// <summary> /// Random number generator /// </summary> public static class RandomGenerator { /// <summary> /// Generate random number /// </summary> /// <param name="length">Number of randomizations</param> /// <returns>Random number</returns> public static int GenerateNumber(int length) { byte[] randomSeq = new byte[length]; new RNGCryptoServiceProvider().GetBytes(randomSeq); int code = Environment.TickCount; foreach (byte b in randomSeq) { code += (int)b; } return code; } } /// <summary> /// Hash generator class /// </summary> public static class Hasher { /// <summary> /// Hash type /// </summary> public enum eHashType { /// <summary> /// MD5 hash. Quick but collisions are more likely. This should not be used for anything important /// </summary> MD5 = 0, /// <summary> /// SHA1 hash. Quick and secure. This is a popular method for hashing passwords /// </summary> SHA1 = 1, /// <summary> /// SHA256 hash. Slower than SHA1, but more secure. Used for encryption keys /// </summary> SHA256 = 2, /// <summary> /// SHA348 hash. Even slower than SHA256, but offers more security /// </summary> SHA348 = 3, /// <summary> /// SHA512 hash. Slowest but most secure. Probably overkill for most applications /// </summary> SHA512 = 4, /// <summary> /// Derrived from MD5, but only returns 12 digits /// </summary> Digit12 = 5 } /// <summary> /// Hashes text using a specific hashing method /// </summary> /// <param name="text">Input text</param> /// <param name="hash">Hash method</param> /// <returns>Hashed text</returns> public static string GetHash(string text, eHashType hash) { if (text == "") { return text; } if (hash == eHashType.MD5) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA1) { SHA1Managed hasher = new SHA1Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA256) { SHA256Managed hasher = new SHA256Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA348) { SHA384Managed hasher = new SHA384Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA512) { SHA512Managed hasher = new SHA512Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.Digit12) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); string newHash = ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); return newHash.Substring(0, 12); } return ""; } /// <summary> /// Generates a hash based on a file's contents. Used for detecting changes to a file and testing for duplicate files /// </summary> /// <param name="info">FileInfo object for the file to be hashed</param> /// <param name="hash">Hash method</param> /// <returns>Hash string representing the contents of the file</returns> public static string GetHash(FileInfo info, eHashType hash) { FileStream hashStream = new FileStream(info.FullName, FileMode.Open, FileAccess.Read); string hashString = ""; if (hash == eHashType.MD5) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA1) { SHA1Managed hasher = new SHA1Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA256) { SHA256Managed hasher = new SHA256Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA348) { SHA384Managed hasher = new SHA384Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA512) { SHA512Managed hasher = new SHA512Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } hashStream.Close(); hashStream.Dispose(); hashStream = null; return hashString; } /// <summary> /// Converts a byte array to a hex string /// </summary> /// <param name="data">Byte array</param> /// <returns>Hex string</returns> public static string ByteToHex(byte[] data) { StringBuilder builder = new StringBuilder(); foreach (byte hashByte in data) { builder.Append(string.Format("{0:X1}", hashByte)); } return builder.ToString(); } /// <summary> /// Converts a hex string to a byte array /// </summary> /// <param name="hexString">Hex string</param> /// <returns>Byte array</returns> public static byte[] HexToByte(string hexString) { byte[] returnBytes = new byte[hexString.Length / 2]; for (int i = 0; i <= returnBytes.Length - 1; i++) { returnBytes[i] = byte.Parse(hexString.Substring(i * 2, 2), System.Globalization.NumberStyles.HexNumber); } return returnBytes; } } } And her is what I've got for Java code so far, but I'm getting the error "Input length must be multiple of 8 when decrypting with padded cipher" when I run the test on this: import java.security.InvalidAlgorithmParameterException; import java.security.InvalidKeyException; import javax.crypto.Cipher; import javax.crypto.NoSuchPaddingException; import javax.crypto.SecretKey; import javax.crypto.spec.IvParameterSpec; import javax.crypto.spec.SecretKeySpec; import com.tdocc.utils.Base64; public class TripleDES { private static byte[] keyBytes = { 110, 32, 73, 24, 125, 66, 75, 18, 79, (byte)150, (byte)211, 122, (byte)213, 14, (byte)156, (byte)136, (byte)171, (byte)218, 119, (byte)240, 81, (byte)142, 23, 4 }; private static byte[] ivBytes = { 25, 117, 68, 23, 99, 78, (byte)231, (byte)219 }; public static String encryptText(String plainText) { try { if (plainText.isEmpty()) return plainText; return Base64.decode(TripleDES.encrypt(plainText)).toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public static byte[] encrypt(String plainText) throws InvalidKeyException, InvalidAlgorithmParameterException, NoSuchPaddingException { try { final SecretKey key = new SecretKeySpec(keyBytes, "DESede"); final IvParameterSpec iv = new IvParameterSpec(ivBytes); final Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, key, iv); final byte[] plainTextBytes = plainText.getBytes("utf-8"); final byte[] cipherText = cipher.doFinal(plainTextBytes); return cipherText; } catch (Exception e) { e.printStackTrace(); } return null; } public static String decryptText(String message) { try { if (message.isEmpty()) return message; else return TripleDES.decrypt(message.getBytes()); } catch (Exception e) { e.printStackTrace(); } return null; } public static String decrypt(byte[] message) { try { final SecretKey key = new SecretKeySpec(keyBytes, "DESede"); final IvParameterSpec iv = new IvParameterSpec(ivBytes); final Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, key, iv); final byte[] plainText = cipher.doFinal(message); return plainText.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } }

    Read the article

  • Gui problem after rewriting to MVC

    - by trevor_nise
    I'm practicing MVC style programming. I have a Mastermind game in a single file, working with no problems (maybe apart of the fact that "Check" button is invisible at start). http://paste.pocoo.org/show/226726/ But when I've rewritten it to model, view, controller files - when I click on empty Pin (that should be updated, and repainted with new color) - noting happens. Can anybody see any problems here ? I've tried placing repaint() in different places, but it simply does not work at all :/ Main : public class Main { public static void main(String[] args){ Model model = new Model(); View view = new View("Mastermind", 400, 590, model); Controller controller = new Controller(model, view); view.setVisible(true); } } Model : import java.util.Random; public class Model{ static final int LINE = 5, SCORE = 10, OPTIONS = 20; Pin pins[][] = new Pin[21][LINE]; int combination[] = new int[LINE]; int curPin = 0; int turn = 1; Random generator = new Random(); int repaintPin; boolean pinsRepaint=false; int pinsToRepaint; boolean isUpdate = true, isPlaying = true, isRowFull = false; static final int HIT_X[] = {270,290,310,290,310}, HIT_Y[] = {506,496,496,516,516}; public Model(){ for ( int i=0; i < SCORE; i++ ){ for ( int j = 0; j < LINE; j++ ){ pins[i][j] = new Pin(20,0); pins[i][j].setPosition(j*50+30,510-i*50); pins[i+SCORE][j] = new Pin(8,0); pins[i+SCORE][j].setPosition(HIT_X[j],HIT_Y[j]-i*50); } } for ( int i=0; i < LINE; i++ ){ pins[OPTIONS][i] = new Pin( 20, i+2 ); pins[OPTIONS][i].setPosition( 370,i * 50 + 56); } } void fillHole(int color) { pins[turn-1][curPin].setColor(color+1); pinsRepaint = true; pinsToRepaint = turn; curPin = (curPin+1) % LINE; if (curPin == 0){ isRowFull = true; } pinsRepaint = false; pinsToRepaint = 0; } void check() { int junkPins[] = new int[LINE], junkCode[] = new int[LINE]; int pinCount = 0, pico = 0; for ( int i = 0; i < LINE; i++ ) { junkPins[i] = pins[turn-1][i].getColor(); junkCode[i] = combination[i]; } for ( int i = 0; i < LINE; i++ ){ if (junkPins[i]==junkCode[i]) { pins[turn+SCORE][pinCount].setColor(1); pinCount++; pico++; junkPins[i] = 98; junkCode[i] = 99; } } for ( int i = 0; i < LINE; i++ ){ for ( int j = 0; j < LINE; j++ ) if (junkPins[i]==junkCode[j]) { pins[turn+SCORE][pinCount].setColor(2); pinCount++; junkPins[i] = 98; junkCode[j] = 99; j = LINE; } } pinsRepaint = true; pinsToRepaint = turn + SCORE; pinsRepaint = false; pinsToRepaint=0; if ( pico == LINE ){ isPlaying = false; } else if ( turn >= 10 ){ isPlaying = false; } else{ curPin = 0; isRowFull = false; turn++; } } void combination() { for ( int i = 0; i < LINE; i++ ){ combination[i] = generator.nextInt(6) + 1; } } } class Pin{ private int color, X, Y, radius; public Pin(){ X = 0; Y = 0; radius = 0; color = 0; } public Pin( int r,int c ){ X = 0; Y = 0; radius = r; color = c; } public int getX(){ return X; } public int getY(){ return Y; } public int getRadius(){ return radius; } public void setRadius(int r){ radius = r; } public void setPosition( int x,int y ){ this.X = x ; this.Y = y ; } public void setColor( int c ){ color = c; } public int getColor() { return color; } } View: import java.awt.*; import javax.swing.*; public class View extends Frame{ Model model; JButton checkAnswer; private JPanel button; private static final Color COLORS[] = {Color.black, Color.white, Color.red, Color.yellow, Color.green, Color.blue, new Color(7, 254, 250)}; public View(String name, int w, int h, Model m){ model = m; setTitle( name ); setSize( w,h ); setResizable( false ); this.setLayout(new BorderLayout()); button = new JPanel(); button.setSize( new Dimension(400, 100)); button.setVisible(true); checkAnswer = new JButton("Check"); checkAnswer.setSize( new Dimension(200, 30)); button.add( checkAnswer ); this.add( button, BorderLayout.SOUTH); button.setVisible(true); } @Override public void paint( Graphics g ) { g.setColor( new Color(238, 238, 238)); g.fillRect( 0,0,400,590); for ( int i=0; i < model.pins.length; i++ ) { paintPins(model.pins[i][0],g); paintPins(model.pins[i][1],g); paintPins(model.pins[i][2],g); paintPins(model.pins[i][3],g); paintPins(model.pins[i][4],g); } } @Override public void update( Graphics g ) { if ( model.isUpdate ) { paint(g); } else { model.isUpdate = true; paintPins(model.pins[model.repaintPin-1][0],g); paintPins(model.pins[model.repaintPin-1][1],g); paintPins(model.pins[model.repaintPin-1][2],g); paintPins(model.pins[model.repaintPin-1][3],g); paintPins(model.pins[model.repaintPin-1][4],g); } } void repaintPins( int pin ) { model.repaintPin = pin; model.isUpdate = false; repaint(); } public void paintPins(Pin p, Graphics g ){ int X = p.getX(); int Y = p.getY(); int color = p.getColor(); int radius = p.getRadius(); int x = X-radius; int y = Y-radius; if (color > 0){ g.setColor( COLORS[color]); g.fillOval( x,y,2*radius,2*radius ); } else{ g.setColor( new Color(238, 238, 238) ); g.drawOval( x,y,2*radius-1,2*radius-1 ); } g.setColor( Color.black ); g.drawOval( x,y,2*radius,2*radius ); } } Controller: import java.awt.*; import java.awt.event.*; public class Controller implements MouseListener, ActionListener { private Model model; private View view; public Controller(Model m, View v){ model = m; view = v; view.addWindowListener( new WindowAdapter(){ public void windowClosing(WindowEvent e){ System.exit(0); } }); view.addMouseListener(this); view.checkAnswer.addActionListener(this); model.combination(); } public void actionPerformed( ActionEvent e ) { if(e.getSource() == view.checkAnswer){ if(model.isRowFull){ model.check(); } } } public void mousePressed(MouseEvent e) { Point mouse = new Point(); mouse = e.getPoint(); if (model.isPlaying){ if (mouse.x > 350) { int button = 1 + (int)((mouse.y - 32) / 50); if ((button >= 1) && (button <= 5)){ model.fillHole(button); if(model.pinsRepaint){ view.repaintPins( model.pinsToRepaint ); } } } } } public void mouseClicked(MouseEvent e) {} public void mouseReleased(MouseEvent e){} public void mouseEntered(MouseEvent e) {} public void mouseExited(MouseEvent e) {} }

    Read the article

  • o write a C++ program to encrypt and decrypt certain codes.

    - by Amber
    Step 1: Write a function int GetText(char[],int); which fills a character array from a requested file. That is, the function should prompt the user to input the filename, and then read up to the number of characters given as the second argument, terminating when the number has been reached or when the end of file is encountered. The file should then be closed. The number of characters placed in the array is then returned as the value of the function. Every character in the file should be transferred to the array. Whitespace should not be removed. When testing, assume that no more than 5000 characters will be read. The function should be placed in a file called coding.cpp while the main will be in ass5.cpp. To enable the prototypes to be accessible, the file coding.h contains the prototypes for all the functions that are to be written in coding.cpp for this assignment. (You may write other functions. If they are called from any of the functions in coding.h, they must appear in coding.cpp where their prototypes should also appear. Do not alter coding.h. Any other functions written for this assignment should be placed, along with their prototypes, with the main function.) Step 2: Write a function int SimplifyText(char[],int); which simplifies the text in the first argument, an array containing the number of characters as given in the second argument, by converting all alphabetic characters to lower case, removing all non-alpha characters, and replacing multiple whitespace by one blank. Any leading whitespace at the beginning of the array should be removed completely. The resulting number of characters should be returned as the value of the function. Note that another array cannot appear in the function (as the file does not contain one). For example, if the array contained the 29 characters "The 39 Steps" by John Buchan (with the " appearing in the array), the simplified text would be the steps by john buchan of length 24. The array should not contain a null character at the end. Step 3: Using the file test.txt, test your program so far. You will need to write a function void PrintText(const char[],int,int); that prints out the contents of the array, whose length is the second argument, breaking the lines to exactly the number of characters in the third argument. Be warned that, if the array contains newlines (as it would when read from a file), lines will be broken earlier than the specified length. Step 4: Write a function void Caesar(const char[],int,char[],int); which takes the first argument array, with length given by the second argument and codes it into the third argument array, using the shift given in the fourth argument. The shift must be performed cyclicly and must also be able to handle negative shifts. Shifts exceeding 26 can be reduced by modulo arithmetic. (Is C++'s modulo operations on negative numbers a problem here?) Demonstrate that the test file, as simplified, can be coded and decoded using a given shift by listing the original input text, the simplified text (indicating the new length), the coded text and finally the decoded text. Step 5: The permutation cypher does not limit the character substitution to just a shift. In fact, each of the 26 characters is coded to one of the others in an arbitrary way. So, for example, a might become f, b become q, c become d, but a letter never remains the same. How the letters are rearranged can be specified using a seed to the random number generator. The code can then be decoded, if the decoder has the same random number generator and knows the seed. Write the function void Permute(const char[],int,char[],unsigned long); with the same first three arguments as Caesar above, with the fourth argument being the seed. The function will have to make up a permutation table as follows: To find what a is coded as, generate a random number from 1 to 25. Add that to a to get the coded letter. Mark that letter as used. For b, generate 1 to 24, then step that many letters after b, ignoring the used letter if encountered. For c, generate 1 to 23, ignoring a or b's codes if encountered. Wrap around at z. Here's an example, for only the 6 letters a, b, c, d, e, f. For the letter a, generate, from 1-5, a 2. Then a - c. c is marked as used. For the letter b, generate, from 1-4, a 3. So count 3 from b, skipping c (since it is marked as used) yielding the coding of b - f. Mark f as used. For c, generate, from 1-3, a 3. So count 3 from c, skipping f, giving a. Note the wrap at the last letter back to the first. And so on, yielding a - c b - f c - a d - b (it got a 2) e - d f - e Thus, for a given seed, a translation table is required. To decode a piece of text, we need the table generated to be re-arranged so that the right hand column is in order. In fact you can just store the table in the reverse way (e.g., if a gets encoded to c, put a opposite c is the table). Write a function called void DePermute(const char[],int,char[], unsigned long); to reverse the permutation cypher. Again, test your functions using the test file. At this point, any main program used to test these functions will not be required as part of the assignment. The remainder of the assignment uses some of these functions, and needs its own main function. When submitted, all the above functions will be tested by the marker's own main function. Step 6: If the seed number is unknown, decoding is difficult. Write a main program which: (i) reads in a piece of text using GetText; (ii) simplifies the text using SimplifyText; (iii) prints the text using PrintText; (iv) requests two letters to swap. If we think 'a' in the text should be 'q' we would type aq as input. The text would be modified by swapping the a's and q's, and the text reprinted. Repeat this last step until the user considers the text is decoded, when the input of the same letter twice (requesting a letter to be swapped with itself) terminates the program. Step 7: If we have a large enough sample of coded text, we can use knowledge of English to aid in finding the permutation. The first clue is in the frequency of occurrence of each letter. Write a function void LetterFreq(const char[],int,freq[]); which takes the piece of text given as the first two arguments (same as above) and returns in the 26 long array of structs (the third argument), the table of the frequency of the 26 letters. This frequency table should be in decreasing order of popularity. A simple Selection Sort will suffice. (This will be described in lectures.) When printed, this summary would look something like v x r s z j p t n c l h u o i b w d g e a q y k f m 168106 68 66 59 54 48 45 44 35 26 24 22 20 20 20 17 13 12 12 4 4 1 0 0 0 The formatting will require the use of input/output manipulators. See the header file for the definition of the struct called freq. Modify the program so that, before each swap is requested, the current frequency of the letters is printed. This does not require further calls to LetterFreq, however. You may use the traditional order of regular letter frequencies (E T A I O N S H R D L U) as a guide when deciding what characters to exchange. Step 8: The decoding process can be made more difficult if blank is also coded. That is, consider the alphabet to be 27 letters. Rewrite LetterFreq and your main program to handle blank as another character to code. In the above frequency order, space usually comes first.

    Read the article

  • Write a C++ program to encrypt and decrypt certain codes.

    - by Amber
    Step 1: Write a function int GetText(char[],int); which fills a character array from a requested file. That is, the function should prompt the user to input the filename, and then read up to the number of characters given as the second argument, terminating when the number has been reached or when the end of file is encountered. The file should then be closed. The number of characters placed in the array is then returned as the value of the function. Every character in the file should be transferred to the array. Whitespace should not be removed. When testing, assume that no more than 5000 characters will be read. The function should be placed in a file called coding.cpp while the main will be in ass5.cpp. To enable the prototypes to be accessible, the file coding.h contains the prototypes for all the functions that are to be written in coding.cpp for this assignment. (You may write other functions. If they are called from any of the functions in coding.h, they must appear in coding.cpp where their prototypes should also appear. Do not alter coding.h. Any other functions written for this assignment should be placed, along with their prototypes, with the main function.) Step 2: Write a function int SimplifyText(char[],int); which simplifies the text in the first argument, an array containing the number of characters as given in the second argument, by converting all alphabetic characters to lower case, removing all non-alpha characters, and replacing multiple whitespace by one blank. Any leading whitespace at the beginning of the array should be removed completely. The resulting number of characters should be returned as the value of the function. Note that another array cannot appear in the function (as the file does not contain one). For example, if the array contained the 29 characters "The 39 Steps" by John Buchan (with the " appearing in the array), the simplified text would be the steps by john buchan of length 24. The array should not contain a null character at the end. Step 3: Using the file test.txt, test your program so far. You will need to write a function void PrintText(const char[],int,int); that prints out the contents of the array, whose length is the second argument, breaking the lines to exactly the number of characters in the third argument. Be warned that, if the array contains newlines (as it would when read from a file), lines will be broken earlier than the specified length. Step 4: Write a function void Caesar(const char[],int,char[],int); which takes the first argument array, with length given by the second argument and codes it into the third argument array, using the shift given in the fourth argument. The shift must be performed cyclicly and must also be able to handle negative shifts. Shifts exceeding 26 can be reduced by modulo arithmetic. (Is C++'s modulo operations on negative numbers a problem here?) Demonstrate that the test file, as simplified, can be coded and decoded using a given shift by listing the original input text, the simplified text (indicating the new length), the coded text and finally the decoded text. Step 5: The permutation cypher does not limit the character substitution to just a shift. In fact, each of the 26 characters is coded to one of the others in an arbitrary way. So, for example, a might become f, b become q, c become d, but a letter never remains the same. How the letters are rearranged can be specified using a seed to the random number generator. The code can then be decoded, if the decoder has the same random number generator and knows the seed. Write the function void Permute(const char[],int,char[],unsigned long); with the same first three arguments as Caesar above, with the fourth argument being the seed. The function will have to make up a permutation table as follows: To find what a is coded as, generate a random number from 1 to 25. Add that to a to get the coded letter. Mark that letter as used. For b, generate 1 to 24, then step that many letters after b, ignoring the used letter if encountered. For c, generate 1 to 23, ignoring a or b's codes if encountered. Wrap around at z. Here's an example, for only the 6 letters a, b, c, d, e, f. For the letter a, generate, from 1-5, a 2. Then a - c. c is marked as used. For the letter b, generate, from 1-4, a 3. So count 3 from b, skipping c (since it is marked as used) yielding the coding of b - f. Mark f as used. For c, generate, from 1-3, a 3. So count 3 from c, skipping f, giving a. Note the wrap at the last letter back to the first. And so on, yielding a - c b - f c - a d - b (it got a 2) e - d f - e Thus, for a given seed, a translation table is required. To decode a piece of text, we need the table generated to be re-arranged so that the right hand column is in order. In fact you can just store the table in the reverse way (e.g., if a gets encoded to c, put a opposite c is the table). Write a function called void DePermute(const char[],int,char[], unsigned long); to reverse the permutation cypher. Again, test your functions using the test file. At this point, any main program used to test these functions will not be required as part of the assignment. The remainder of the assignment uses some of these functions, and needs its own main function. When submitted, all the above functions will be tested by the marker's own main function. Step 6: If the seed number is unknown, decoding is difficult. Write a main program which: (i) reads in a piece of text using GetText; (ii) simplifies the text using SimplifyText; (iii) prints the text using PrintText; (iv) requests two letters to swap. If we think 'a' in the text should be 'q' we would type aq as input. The text would be modified by swapping the a's and q's, and the text reprinted. Repeat this last step until the user considers the text is decoded, when the input of the same letter twice (requesting a letter to be swapped with itself) terminates the program. Step 7: If we have a large enough sample of coded text, we can use knowledge of English to aid in finding the permutation. The first clue is in the frequency of occurrence of each letter. Write a function void LetterFreq(const char[],int,freq[]); which takes the piece of text given as the first two arguments (same as above) and returns in the 26 long array of structs (the third argument), the table of the frequency of the 26 letters. This frequency table should be in decreasing order of popularity. A simple Selection Sort will suffice. (This will be described in lectures.) When printed, this summary would look something like v x r s z j p t n c l h u o i b w d g e a q y k f m 168106 68 66 59 54 48 45 44 35 26 24 22 20 20 20 17 13 12 12 4 4 1 0 0 0 The formatting will require the use of input/output manipulators. See the header file for the definition of the struct called freq. Modify the program so that, before each swap is requested, the current frequency of the letters is printed. This does not require further calls to LetterFreq, however. You may use the traditional order of regular letter frequencies (E T A I O N S H R D L U) as a guide when deciding what characters to exchange. Step 8: The decoding process can be made more difficult if blank is also coded. That is, consider the alphabet to be 27 letters. Rewrite LetterFreq and your main program to handle blank as another character to code. In the above frequency order, space usually comes first.

    Read the article

  • repaint problem

    - by user357816
    I have a problem with my repaint in the method move. I dont know what to doo, the code is below import java.awt.*; import java.io.*; import java.text.*; import java.util.*; import javax.sound.sampled.*; import javax.swing.*; import javax.swing.Timer; import java.awt.event.*; import java.lang.*; public class bbb extends JPanel { public Stack<Integer> stacks[]; public JButton auto,jugar,nojugar; public JButton ok,ok2; public JLabel info=new JLabel("Numero de Discos: "); public JLabel instruc=new JLabel("Presiona la base de las torres para mover las fichas"); public JLabel instruc2=new JLabel("No puedes poner una pieza grande sobre una pequenia!"); public JComboBox numeros=new JComboBox(); public JComboBox velocidad=new JComboBox(); public boolean seguir=false,parar=false,primera=true; public int n1,n2,n3; public int click1=0; public int opcion=1,tiempo=50; public int op=1,continuar=0,cont=0; public int piezas=0; public int posx,posy; public int no; public bbb() throws IOException { stacks = new Stack[3]; stacks[0]=new Stack<Integer>(); stacks[1]=new Stack<Integer>(); stacks[2]=new Stack<Integer>(); setPreferredSize(new Dimension(1366,768)); ok=new JButton("OK"); ok.setBounds(new Rectangle(270,50,70,25)); ok.addActionListener(new okiz()); ok2=new JButton("OK"); ok2.setBounds(new Rectangle(270,50,70,25)); ok2.addActionListener(new vel()); add(ok2);ok2.setVisible(false); auto=new JButton("Automatico"); auto.setBounds(new Rectangle(50,80,100,25)); auto.addActionListener(new a()); jugar=new JButton("PLAY"); jugar.setBounds(new Rectangle(100,100,70,25)); jugar.addActionListener(new play()); nojugar=new JButton("PAUSE"); nojugar.setBounds(new Rectangle(100,150,70,25)); nojugar.addActionListener(new stop()); setLayout(null); info.setBounds(new Rectangle(50,50,170,25)); info.setForeground(Color.white); instruc.setBounds(new Rectangle(970,50,570,25)); instruc.setForeground(Color.white); instruc2.setBounds(new Rectangle(970,70,570,25)); instruc2.setForeground(Color.white); add(instruc);add(instruc2); add(jugar);add(nojugar);jugar.setVisible(false);nojugar.setVisible(false); add(info); info.setVisible(false); add(ok); ok.setVisible(false); add(auto); numeros.setBounds(new Rectangle(210,50,50,25)); numeros.addItem(1);numeros.addItem(2);numeros.addItem(3);numeros.addItem(4);numeros.addItem(5); numeros.addItem(6);numeros.addItem(7);numeros.addItem(8);numeros.addItem(9);numeros.addItem(10); add(numeros); numeros.setVisible(false); velocidad.setBounds(new Rectangle(150,50,100,25)); velocidad.addItem("Lenta"); velocidad.addItem("Intermedia"); velocidad.addItem("Rapida"); add(velocidad); velocidad.setVisible(false); } public void Mover(int origen, int destino) { for (int i=0;i<3;i++) { System.out.print("stack "+i+": "); for(int n : stacks[i]) System.out.print(n+";"); System.out.println(""); } System.out.println("de <"+origen+"> a <"+destino+">"); stacks[destino].push(stacks[origen].pop()); System.out.println(""); this.validate(); this.repaint( ); } public void hanoi(int origen, int destino, int cuantas) { while (parar) {} if (cuantas <= 1) Mover(origen,destino); else { hanoi(origen,3 - (origen+destino),cuantas-1); Mover(origen,destino); hanoi(3 - (origen+destino),destino,cuantas-1); } } public void paintComponent(Graphics g) { ImageIcon fondo= new ImageIcon("fondo.jpg"); g.drawImage(fondo.getImage(),0, 0,1366,768,null); g.setColor(new Color((int)(Math.random() * 254), (int)(Math.random() *255), (int)(Math.random() * 255))); g.fillRect(0,0,100,100); g.setColor(Color.white); g.fillRect(150,600,250,25); g.fillRect(550,600,250,25); g.fillRect(950,600,250,25); g.setColor(Color.red); g.fillRect(270,325,10,275); g.fillRect(270+400,325,10,275); g.fillRect(270+800,325,10,275); int x, y,top=0; g.setColor(Color.yellow); x=150;y=580; for(int ii:stacks[0]) { g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} x=550;y=580; for(int ii:stacks[1]) {g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} x=950;y=580; for(int ii:stacks[2]) {g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} System.out.println("ENTRO"); setOpaque(false); } private class play implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { parar=false; if(primera=true) { hanoi(0,2,no); primera=false; } } } private class stop implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { parar=true; } } private class vel implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { if (velocidad.getSelectedItem()=="Lenta") {tiempo=150;} else if (velocidad.getSelectedItem()=="Intermedia") {tiempo=75;} else tiempo=50; ok2.setVisible(false); jugar.setVisible(true); nojugar.setVisible(true); } } private class a implements ActionListener //auto { public void actionPerformed(ActionEvent algo) { auto.setVisible(false); info.setVisible(true); numeros.setVisible(true); ok.setVisible(true); op=3; } } private class okiz implements ActionListener //ok { public void actionPerformed(ActionEvent algo) { no=Integer.parseInt(numeros.getSelectedItem().toString()); piezas=no; if (no>0 && no<11) { info.setVisible(false); numeros.setVisible(false); ok.setVisible(false); for (int i=no;i>0;i--) stacks[0].push(i); opcion=2; if (op==3) { info.setText("Velocidad: ");info.setVisible(true); velocidad.setVisible(true); ok2.setVisible(true); } } else { } repaint(); } } } the code of the other class that calls the one up is below: import java.awt.*; import java.io.*; import java.net.URL; import javax.imageio.*; import javax.swing.*; import javax.swing.border.*; import java.lang.*; import java.awt.event.*; public class aaa extends JPanel { private ImageIcon Background; private JLabel fondo; public static void main(String[] args) throws IOException { JFrame.setDefaultLookAndFeelDecorated(true); final JPanel cp = new JPanel(new BorderLayout()); JFrame frame = new JFrame ("Torres de Hanoi"); frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE); frame.setSize(550,550); frame.setVisible(true); bbb panel = new bbb(); frame.getContentPane().add(panel); frame.pack(); frame.setVisible(true); } }

    Read the article

  • Squid on an Azure VM

    - by LantisGaius
    I can't get it to work. Here's exactly what I did: Create a new Azure VM, Windows Server 2012. RDP to the new VM Download & Extract Squid for Windows (2.7.STABLE8) Rename the conf files (squid, mime & cachemgr) Add the following lines on the end of squid.conf auth_param basic program c:/squid/libexec/ncsa_auth.exe c:/squid/etc/passwd.txt auth_param basic children 5 auth_param basic realm Welcome to http://abcde.fg Squid Proxy! auth_param basic credentialsttl 12 hours auth_param basic casesensitive off acl ncsa_users proxy_auth REQUIRED http_access allow ncsa_users Use http://www.htaccesstools.com/htpasswd-generator-windows/ to create passwd.txt Test passwd.txt via c:/squid/libexec/ncsa_auth.exe c:/squid/etc/passwd.txt (success) squid -z squid -i net start squid (No errors so far). go to https://manage.windowsazure.com, Virtual Machines - myVM - Endpoints Add Endpoint: Name: Squid Protocol: TCP Public Port: 80 Private Port: 3128 That's it. Unfortunately, it doesn't work. I think I screwed something up at the endpoint? I'm not sure.. help? EDIT: I'm testing it via Firefox - Options - Advanced - Network, and the exact error is "The Proxy Server is refusing connections." I'm using my DNS as the Proxy server "abcdef.cloudapp.net" and port 80 (since that's my public endpoint).

    Read the article

  • Logs show failed password for invalid user root from <IP Address> port 2924 ssh2

    - by Chris Hanson
    I'm getting a constant flow of these messages in my logs. The port is variable (seemingly between 1024 and 65535). I can simulate it myself by running sftp root@<my ip> I've commented out the sftp subsystem line in my sshd_config. These ports should be closed by provider's firewall. I don't understand: Why sftp would be selecting a random port like that. It seems to be behaving like FTP in passive mode, but I can't make any sense of why that would be. Why it can even hit my server in the first place if these ports are closed.

    Read the article

  • Fetching e-mails into Redmine via IMAP

    - by Danilo Bargen
    I'm trying to fetch e-mails into Redmine via IMAP. The e-mails I'm generating look like this: FooBar Ltd 123456 http://example.com/Foobar-Ltd-123456.html Project: backend Tracker: Dataerror Beschreibung: This is the description =========================== CLIENT_IP: 192.168.1.215 HTTP_USER_AGENT: mozilla/asdfjköl I try to fetch them into Redmine via this command: rake -f /var/www/projects/redmine/Rakefile redmine:email:receive_imap \ RAILS_ENV="production" host=example.com port=993 ssl=true username=redmine \ password=1234 project=myproject tracker=other \ allow_override=project,tracker,category,priority \ move_on_success=read move_on_failure=failed But the e-mails get moved into the failed folder. I had this setup running some time ago with a different e-mail generator but pretty much the same template, and I can't figure out why it's not working. The permissions seem to be OK too. In order to further debug this issue, I need some logfiles. Are there any logfiles written by this command? Or are there any other suggestions to solve this issue? My environment: danilo@jabba:/var/www/projects/redmine$ RAILS_ENV=production script/about About your application's environment Ruby version 1.8.7 (i486-linux) RubyGems version 1.3.5 Rack version 1.0 Rails version 2.3.5 Active Record version 2.3.5 Active Resource version 2.3.5 Action Mailer version 2.3.5 Active Support version 2.3.5 Application root /var/www/projects/redmine Environment production Database adapter mysql Database schema version 20100819172912

    Read the article

< Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >