Search Results

Search found 15087 results on 604 pages for 'python multithreading'.

Page 133/604 | < Previous Page | 129 130 131 132 133 134 135 136 137 138 139 140  | Next Page >

  • I am trying to use user-defined functions to print out an inputted letter out of stars, but i need h

    - by lm
    def horizline(col): for col in range (col): print("*", end='') print() def vertline(rows, col): for rows in range (rows-2): print ("*", end='') for col in range (col-2): print(' ', end='') print("*") def functionA(width): horizline(width) vereline(width) horizline(width) vertline(width) print() #def funtionB(width): #def functionC(width): #def functionE(width): def main(): width=int(input("Please enter a width for the letter: ")) lenght=int(input("Please enter a lenght for the letter: ")) letter=input("Enter one of the capital letters: A,B,C,E ") if(width>=5 and width<=20): functionA functionB(width,length) functionC(width,length) functionE(width,length) else: print("You have entered an incorrect value") main()

    Read the article

  • UML Diagrams of Multi-Threaded Applications

    - by PersonalNexus
    For single-threaded applications I like to use class diagrams to get an overview of the architecture of that application. This type of diagram, however, hasn’t been very helpful when trying to understand heavily multi-threaded/concurrent applications, for instance because different instances of a class "live" on different threads (meaning accessing an instance is save only from the one thread it lives on). Consequently, associations between classes don’t necessarily mean that I can call methods on those objects, but instead I have to make that call on the target object's thread. Most literature I have dug up on the topic such as Designing Concurrent, Distributed, and Real-Time Applications with UML by Hassan Gomaa had some nice ideas, such as drawing thread boundaries into object diagrams, but overall seemed a bit too academic and wordy to be really useful. I don’t want to use these diagrams as a high-level view of the problem domain, but rather as a detailed description of my classes/objects, their interactions and the limitations due to thread-boundaries I mentioned above. I would therefore like to know: What types of diagrams have you found to be most helpful in understanding multi-threaded applications? Are there any extensions to classic UML that take into account the peculiarities of multi-threaded applications, e.g. through annotations illustrating that some objects might live in a certain thread while others have no thread-affinity; some fields of an object may be read from any thread, but written to only from one; some methods are synchronous and return a result while others are asynchronous that get requests queued up and return results for instance via a callback on a different thread.

    Read the article

  • Thread safe GUI programming

    - by James
    I have been programming Java with swing for a couple of years now, and always accepted that GUI interactions had to happen on the Event Dispatch Thread. I recently started to use GTK+ for C applications and was unsurprised to find that GUI interactions had to be called on gtk_main. Similarly, I looked at SWT to see in what ways it was different to Swing and to see if it was worth using, and again found the UI thread idea, and I am sure that these 3 are not the only toolkits to use this model. I was wondering if there is a reason for this design i.e. what is the reason for keeping UI modifications isolated to a single thread. I can see why some modifications may cause issues (like modifying a list while it is being drawn), but I do not see why these concerns pass on to the user of the API. Is there a limit imposed by an operating system? Is there a good reason these concerns are not 'hidden' (i.e. some form of synchronization that is invisible to the user)? Is there any (even purely conceptual) way of creating a thread safe graphics library, or is such a thing actually impossible? I found this http://blogs.operationaldynamics.com/andrew/software/gnome-desktop/gtk-thread-awareness which seems to describe GTK differently to how I understood it (although my understanding was the same as many people's) How does this differ to other toolkits? Is it possible to implement this in Swing (as the EDT model does not actually prevent access from other threads, it just often leads to Exceptions)

    Read the article

  • How to get a html elements with python lxml

    - by Damiano
    Hello! I have this html code: <table> <tr> <td class="test"><b><a href="">aaa</a></b></td> <td class="test">bbb</td> <td class="test">ccc</td> <td class="test"><small>ddd</small></td> </tr> <tr> <td class="test"><b><a href="">eee</a></b></td> <td class="test">fff</td> <td class="test">ggg</td> <td class="test"><small>hhh</small></td> </tr> </table> I use this Python code to extract all <td class="test"> with lxml module. import urllib2 import lxml.html code = urllib.urlopen("http://www.example.com/page.html").read() html = lxml.html.fromstring(code) result = html.xpath('//td[@class="test"][position() = 1 or position() = 4]') It works good! The result is: <td class="test"><b><a href="">aaa</a></b></td> <td class="test"><small>ddd</small></td> <td class="test"><b><a href="">eee</a></b></td> <td class="test"><small>hhh</small></td> (so the first and the fourth column of each <tr>) Now, I have to extract: aaa (the title of the link) ddd (text between <small> tag) eee (the title of the link) hhh (text between <small> tag) How could I extract these values? (the problem is that I have to remove <b> tag and get the title of the anchor on the first column and remove <small> tag on the forth column) Thank you!

    Read the article

  • How can I save state from script in a multithreaded engine?

    - by Peter Ren
    We are building a multithreaded game engine and we've encountered some problems as described below. The engine have 3 threads in total: script, render, and audio. Each frame, we update these 3 threads simultaneously. As these threads updating themselves, they produce some tasks and put them into a public storage area. As all the threads finish their update, each thread go and copy the tasks for themselves one by one. After all the threads finish their task copying, we make the threads process those tasks and update these threads simultaneously as described before. So this is the general idea of the task schedule part of our engine. Ok, well, all the task schedule part work well, but here's the problem: For the simplest, I'll take Camera as an example: local oldPos = camera:getPosition() -- ( 0, 0, 0 ) camera:setPosition( 1, 1, 1 ) -- Won't work now, cuz the render thread will process the task at the beginning of the next frame local newPos = camera:getPosition() -- Still ( 0, 0, 0 ) So that's the problem: If you intend to change a property of an object in another thread, you have to wait until that thread process this property-changing message. As a result, what you get from the object is still the information in the last frame. So, is there a way to solve this problem? Or are we build the task schedule part in a wrong way? Thanks for your answers :)

    Read the article

  • How do I communicate with an IronPython component in a C#/XNA game?

    - by Jonathan Hobbs
    My XNA game is component-oriented, and has various components for position, physics representation, rendering, etc, all of which extend a base Component class. The player and enemies also have controllers which are currently defined in C#. I'd like to turn them into Python scripts, but I'm not sure how to interact with those scripts. The examples in Embedding IronPython in a C# Application suggest I'd have to create a wrapper class (e.g. a Script component) which compiles a Python script, and call the Update methods of the component in the script Is this the most effective way of working with a Python object? I feel that I'm missing something in my research - there must be a way to load up a script, instantiate a Python object and then work directly with it from within C#. Or is the wrapper required?

    Read the article

  • Creating a spam list with a web crawler in python

    - by user313623
    Hey guys, I'm not trying to do anything malicious here, I just need to do some homework. I'm a fairly new programmer, I'm using python 3.0, and I having difficulty using recursion for problem-solving. I've been stuck on this question for quite a while. Here's the assignment: Write a recursive method spam(url, n) that takes a url of a web page as input and a non-negative integer n, collects all the email address contained in the web page and adds them to a global dictionary variable spam_dict, and then recursively calls itself on every http hyperlink contained in the web page. You will use a dictionary so only one copy of every email address is save; your dictionary will store (key,value) pairs (email, email). The recursive call should use the parameter n-1 instead of n. If n = 0, you should collect the email addresses but no recursive calls should be made. The parameter n is used to limit the recursion to at most depth n. You will need to use the solutions of the two above problems; you method spam() will call the methods links2() and emails() and possibly other functions as well. Notes: 1. running spam() directly will produce no output on the screen; to find your spam_dict, you will need to read the value of spam_dict, and you will also need to reset it to the empty dictionary before every run of spam. 2. Recall how global variables are used. Usage: spam_dict = {} spam('http://reed.cs.depaul.edu/lperkovic/csc242/test1.html',0) spam_dict.keys() dict_keys([]) spam_dict = {} spam('http://reed.cs.depaul.edu/lperkovic/csc242/test1.html',1) spam_dict.keys() dict_keys(['[email protected]', '[email protected]']) So far, I've written a function that traverses web pages and puts all the links in a nice little list, and what I wanted to do was call that functions. And why would I use recursion on a dictionary? And how? I don't understand how n ties into all of this. def links2(url): content = str(urlopen(url).read()) myparser = MyHTMLParser() myparser.feed(content) lst = myparser.get() mergelst = [] for link in lst: mergelst.append(urljoin(lst[0],link)) print(mergelst) Any input (except why spam is bad) would be greatly appreciated. Also, I realize that the above function could probably look better, if you have a way to do it, I'm all ears. However, all I need is the point is for the program to produce the proper output.

    Read the article

  • Define polynomial function

    - by user1822707
    How can I define a function - say, def polyToString(poly) - to return a string containing the polynomial poly in standard form? For example: the polynomial represented by [-1, 2, -3, 4, -5] would be returned as: "-5x**4 + 4x**3 -3x**2 + 2x**1 - 1x**0" def polyToString(poly): standard_form='' n=len(poly) - 1 while n >=0: if poly[n]>=0: if n==len(poly)-1: standard_form= standard_form + ' '+ str(poly[n]) + 'x**%d'%n else: standard_form= standard_form + ' + '+str(poly[n]) + 'x**%d'%n else: standard_form= standard_form + ' - ' + str(abs(poly[n])) + 'x**' + str(n) n=n-1 return standard_form

    Read the article

  • JUnit Testing in Multithread Application

    - by e2bady
    This is a problem me and my team faces in almost all of the projects. Testing certain parts of the application with JUnit is not easy and you need to start early and to stick to it, but that's not the question I'm asking. The actual problem is that with n-Threads, locking, possible exceptions within the threads and shared objects the task of testing is not as simple as testing the class, but testing them under endless possible situations within threading. To be more precise, let me tell you about the design of one of our applications: When a user makes a request several threads are started that each analyse a part of the data to complete the analysis, these threads run a certain time depending on the size of the chunk of data (which are endless and of uncertain quality) to analyse, or they may fail if the data was insufficient/lacking quality. After each completed its analysis they call upon a handler which decides after each thread terminates if the collected analysis-data is sufficient to deliver an answer to the request. All of these analysers share certain parts of the applications (some parts because the instances are very big and only a certain number can be loaded into memory and those instances are reusable, some parts because they have a standing connection, where connecting takes time, ex.gr. sql connections) so locking is very common (done with reentrant-locks). While the applications runs very efficient and fast, it's not very easy to test it under real-world conditions. What we do right now is test each class and it's predefined conditions, but there are no automated tests for interlocking and synchronization, which in my opionion is not very good for quality insurances. Given this example how would you handle testing the threading, interlocking and synchronization?

    Read the article

  • Having trouble with time.sleep

    - by Waterfox
    When I run, for example: print("[",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("=",end=" ") time.sleep(1) print("]",end=" ") Nothing happens for 10 seconds, then the whole [ = = = = = = = = = = ] appears. How can I prevent that so that it can act as a sort of progress bar?

    Read the article

  • What is the best way to diagrammatically represent a system threading architecture?

    - by thegreendroid
    I am yet to find the perfect way to diagrammatically represent the overall threading architecture for a system (using UML or otherwise). I am after a diagramming technique that would show all the threads in a given system and how they interact with each other. There are a few similar questions - Drawing Thread Interaction, UML Diagrams of Multithreaded Applications and Intuitive UML Approach to Depict Threads but they don't fully answer my question. What are some of the techniques that you've found useful to depict the overall threading architecture for a system?

    Read the article

  • how to change string values in dictionary to int values

    - by tom smith
    I have a dictionary such as: {'Sun': {'Satellites': 'Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Ceres,Pluto,Haumea,Makemake,Eris', 'Orbital Radius': '0', 'Object': 'Sun', 'RootObject': 'Sun', 'Radius': '20890260'}, 'Earth': {'Period': '365.256363004', 'Satellites': 'Moon', 'Orbital Radius': '77098290', 'Radius': '63710.41000.0', 'Object': 'Earth'}, 'Moon': {'Period': '27.321582', 'Orbital Radius': '18128500', 'Radius': '1737000.10', 'Object': 'Moon'}} I am wondering how to change just the number values to ints instead of strings. def read_next_object(file): obj = {} for line in file: if not line.strip(): continue line = line.strip() key, val = line.split(": ") if key in obj and key == "Object": yield obj obj = {} obj[key] = val yield obj planets = {} with open( "smallsolar.txt", 'r') as f: for obj in read_next_object(f): planets[obj["Object"]] = obj print(planets)

    Read the article

  • Loading content (meshes, textures, sounds) in the background

    - by Boreal
    In my game, I am aiming for a continuous world, that is, a world where you can go anywhere without breaking the immersion through load times and "virtual seams". My world is broken up into regions, which are nodes in a graph. A region is considered adjacent to another if it can be travelled to or seen from that region. In order to keep this continuous, I want to preload the assets needed in the adjacent regions (such as world meshes, textures, and music) before they are actually used. As for actually loading the content, I use a manager that keeps at most one copy of each asset in memory at a time, accessible by its filename. When I try to access an asset, it loads it (if necessary) and then returns it. I can then unload any asset that is currently loaded to save memory. Clearly, I want to do this in the background so there are no hiccups. I assume I have to use threads in some way, but I'm not sure how.

    Read the article

  • Producer-consumer pattern with consumer restrictions

    - by Dan
    I have a processing problem that I am thinking is a classic producer-consumer problem with the two added wrinkles that there may be a variable number of producers and there is the restriction that no more than one item per producer may be consumed at any one time. I will generally have 50-100 producers and as many consumers as CPU cores on the server. I want to maximize the throughput of the consumers while ensuring that there are never more than one work item in process from any single producer. This is more complicated than the classic producer-consumer problem which I think assumes a single producer and no restriction on which work items may be in progress at any one time. I think the problem of multiple producers is relatively easily solved by enqueuing all work items on a single work queue protected by a critical section. I think the restriction on simultaneously processing work items from any single producer is harder because I cannot think of any solution that does not require each consumer to notify some kind of work dispatcher that a particular work item has been completed so as to lift the restriction on work items from that producer. In other words, if Consumer2 has just completed WorkItem42 from Producer53, there needs to be some kind of callback or notification from Consumer2 to a work dispatcher to allow the work dispatcher to release the next work item from Producer53 to the next available consumer (whether Consumer2 or otherwise). Am I overlooking something simple here? Is there a known pattern for this problem? I would appreciate any pointers.

    Read the article

  • How to create a thread in XNA for pathfinding?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work? Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Best Creational Pattern for loggers in a multi-threaded system?

    - by Dipan Mehta
    This is a follow up question on my past questions : Concurrency pattern of logger in multithreaded application As suggested by others, I am putting this question separately. As the learning from the last question. In a multi-threaded environment, the logger should be made thread safe and probably asynchronous (where in messages are queued while a background thread does writing releasing the requesting object thread). The logger could be signleton or it can be a per-group logger which is a generalization of the above. Now, the question that arise is how does logger should be assigned to the object? There are two options I can think of: 1. Object requesting for the logger: Should each of the object call some global API such as get_logger()? Such an API returns "the" singleton or the group logger. However, I feel this involves assumption about the Application environment to implement the logger -which I think is some kind of coupling. If the same object needs to be used by other application - this new application also need to implement such a method. 2. Assign logger through some known API The other alternative approach is to create a kind of virtual class which is implemented by application based on App's own structure and assign the object sometime in the constructor. This is more generalized method. Unfortunately, when there are so many objects - and rather a tree of objects passing on the logger objects to each level is quite messy. My question is there a better way to do this? If you need to pick any one of the above, which approach is would you pick and why? Other questions remain open about how to configure them: How do objects' names or ID are assigned so that will be used for printing on the log messages (as the module names) How do these objects find the appropriate properties (such as log levels, and other such parameters) In the first approach, the central API needs to deal with all this varieties. In the second approach - there needs to be additional work. Hence, I want to understand from the real experience of people, as to how to write logger effectively in such an environment.

    Read the article

  • Help me understand a part of Java Language Specification

    - by Software Engeneering Learner
    I'm reading part 17.2.1 of Java language specification: http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.2.1 I won't copy a text, it's too long, but I would like to know, why for third step of sequence they're saying that If thread t was removed from m's wait set in step 2 due to an interrupt Thread couldn't get to step 2 it wasn't removed from wait set, because it written for the step 1: Thread t does not execute any further instructions until it has been removed from m's wait set Thus thread can't be removed from wait set in step 2 whatever it's due to, because it was already removed. Please help me understand this.

    Read the article

  • Facebook connect on Google App Engine with Django Patch

    - by yoav.aviram
    We are building a website on Google App Engine, using django patch. We would like to use Facebook connect for two purposes: Authenticate users. Access user's social data. Searching for a solution in the usual places (google, FB, SO) brigs up a lot of noise, many partial solutions and no clear answer. So the question is this: does anyone has a clear working solution? maybe even a recipe? Thanks.

    Read the article

  • Does immutability entirely eliminate the need for locks in multi-processor programming?

    - by GlenPeterson
    Part 1 Clearly Immutability minimizes the need for locks in multi-processor programming, but does it eliminate that need, or are there instances where immutability alone is not enough? It seems to me that you can only defer processing and encapsulate state so long before most programs have to actually DO something. If a program performs actions on multiple processors, something needs to collect and aggregate the results. All this involves multi-process communication before, after, and possibly during some transformations. The start and end state of the machines are different. Can this always be done with no locks just by throwing out each object and creating a new one instead of changing the original (a crude view of immutability)? What cases still require locking? I'm interested in both the theoretical/academic answer and the practical/real-world answer. I know a lot of functional programmers like to talk about "no side effect" but in the "real world" everything has a side effect. Every processor click takes time and electricity and machine resources away from other processes. So I understand that there may be more than one perspective to answer this question from. If immutability is safe, given certain bounds or assumptions, I want to know what the borders of the "safety zone" are exactly. Some examples of possible boundaries: I/O Exceptions/errors Interfaces with programs written in other languages Interfaces with other machines (physical, virtual, or theoretical) Special thanks to @JimmaHoffa for his comment which started this question! Part 2 Multi-processor programming is often used as an optimization technique - to make some code run faster. When is it faster to use locks vs. immutable objects? Given the limits set out in Amdahl's Law, when can you achieve better over-all performance (with or without the garbage collector taken into account) with immutable objects vs. locking mutable ones? Summary I'm combining these two questions into one to try to get at where the bounding box is for Immutability as a solution to threading problems.

    Read the article

  • Efficiently separating Read/Compute/Write steps for concurrent processing of entities in Entity/Component systems

    - by TravisG
    Setup I have an entity-component architecture where Entities can have a set of attributes (which are pure data with no behavior) and there exist systems that run the entity logic which act on that data. Essentially, in somewhat pseudo-code: Entity { id; map<id_type, Attribute> attributes; } System { update(); vector<Entity> entities; } A system that just moves along all entities at a constant rate might be MovementSystem extends System { update() { for each entity in entities position = entity.attributes["position"]; position += vec3(1,1,1); } } Essentially, I'm trying to parallelise update() as efficiently as possible. This can be done by running entire systems in parallel, or by giving each update() of one system a couple of components so different threads can execute the update of the same system, but for a different subset of entities registered with that system. Problem In reality, these systems sometimes require that entities interact(/read/write data from/to) each other, sometimes within the same system (e.g. an AI system that reads state from other entities surrounding the current processed entity), but sometimes between different systems that depend on each other (i.e. a movement system that requires data from a system that processes user input). Now, when trying to parallelize the update phases of entity/component systems, the phases in which data (components/attributes) from Entities are read and used to compute something, and the phase where the modified data is written back to entities need to be separated in order to avoid data races. Otherwise the only way (not taking into account just "critical section"ing everything) to avoid them is to serialize parts of the update process that depend on other parts. This seems ugly. To me it would seem more elegant to be able to (ideally) have all processing running in parallel, where a system may read data from all entities as it wishes, but doesn't write modifications to that data back until some later point. The fact that this is even possible is based on the assumption that modification write-backs are usually very small in complexity, and don't require much performance, whereas computations are very expensive (relatively). So the overhead added by a delayed-write phase might be evened out by more efficient updating of entities (by having threads work more % of the time instead of waiting). A concrete example of this might be a system that updates physics. The system needs to both read and write a lot of data to and from entities. Optimally, there would be a system in place where all available threads update a subset of all entities registered with the physics system. In the case of the physics system this isn't trivially possible because of race conditions. So without a workaround, we would have to find other systems to run in parallel (which don't modify the same data as the physics system), other wise the remaining threads are waiting and wasting time. However, that has disadvantages Practically, the L3 cache is pretty much always better utilized when updating a large system with multiple threads, as opposed to multiple systems at once, which all act on different sets of data. Finding and assembling other systems to run in parallel can be extremely time consuming to design well enough to optimize performance. Sometimes, it might even not be possible at all because a system just depends on data that is touched by all other systems. Solution? In my thinking, a possible solution would be a system where reading/updating and writing of data is separated, so that in one expensive phase, systems only read data and compute what they need to compute, and then in a separate, performance-wise cheap, write phase, attributes of entities that needed to be modified are finally written back to the entities. The Question How might such a system be implemented to achieve optimal performance, as well as making programmer life easier? What are the implementation details of such a system and what might have to be changed in the existing EC-architecture to accommodate this solution?

    Read the article

  • How do I make this rendering thread run together with the main one?

    - by funk
    I'm developing an Android game and need to show an animation of an exploding bomb. It's a spritesheet with 1 row and 13 different images. Each image should be displayed in sequence, 200 ms apart. There is one Thread running for the entire game: package com.android.testgame; import android.graphics.Canvas; public class GameLoopThread extends Thread { static final long FPS = 10; // 10 Frames per Second private final GameView view; private boolean running = false; public GameLoopThread(GameView view) { this.view = view; } public void setRunning(boolean run) { running = run; } @Override public void run() { long ticksPS = 1000 / FPS; long startTime; long sleepTime; while (running) { Canvas c = null; startTime = System.currentTimeMillis(); try { c = view.getHolder().lockCanvas(); synchronized (view.getHolder()) { view.onDraw(c); } } finally { if (c != null) { view.getHolder().unlockCanvasAndPost(c); } } sleepTime = ticksPS - (System.currentTimeMillis() - startTime); try { if (sleepTime > 0) { sleep(sleepTime); } else { sleep(10); } } catch (Exception e) {} } } } As far as I know I would have to create a second Thread for the bomb. package com.android.testgame; import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Rect; public class Bomb { private final Bitmap bmp; private final int width; private final int height; private int currentFrame = 0; private static final int BMPROWS = 1; private static final int BMPCOLUMNS = 13; private int x = 0; private int y = 0; public Bomb(GameView gameView, Bitmap bmp) { this.width = bmp.getWidth() / BMPCOLUMNS; this.height = bmp.getHeight() / BMPROWS; this.bmp = bmp; x = 250; y = 250; } private void update() { currentFrame++; new BombThread().start(); } public void onDraw(Canvas canvas) { update(); int srcX = currentFrame * width; int srcY = height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bmp, src, dst, null); } class BombThread extends Thread { @Override public void run() { try { sleep(200); } catch(InterruptedException e){ } } } } The Threads would then have to run simultaneously. How do I do this?

    Read the article

  • Multi-Threaded Pipelined Game Engine Data Synchronization Questions

    - by Douglas
    Let's say I'm setting up a worker pool based game engine with pipelining. Let's say I have 4 stages in my pipeline as such: Stage 1: Physics Stage 2: AI/Input Stage 3: Game Logic Stage 4: Rendering Now let's say that the physics detects a collision between a bullet and a character in stage 1. Two frames later the game logic may choose to remove that bullet from the simulation, however none of the other copies of the data for the other pipeline stages will get this information. How is this sort of thing and other things like it get handled? Do you generally make changes like this to every pipeline stage's data at the end of a frame?

    Read the article

  • One True Event Loop

    - by CyberShadow
    Simple programs that collect data from only one system need only one event loop. For example, Windows applications have the message loop, POSIX network programs usually have a select/epoll/etc. loop at their core, pure SDL games use SDL's event loop. But what if you need to collect events from several subsystems? Such as an SDL game which doesn't use SDL_net for networking. I can think of several solutions: Polling (ugh) Put each event loop in its own thread, and: Send messages to the main thread, which collects and processes the events, or Place the event-processing code of each thread in a critical section, so that the threads can wait for events asynchronously but process them synchronously Choose one subsystem for the main event loop, and pass events from other subsystems via that subsystem as custom messages (for example, the Windows message loop and custom messages, or a socket select() loop and passing events via a loopback connection). Option 2.1 is more interesting on platforms where message-passing is a well-developed threading primitive (e.g. in the D programming language), but 2.2 looks like the best option to me.

    Read the article

  • How can I set a time limit for a game?

    - by Haoda Fu
    I am learning the multi-threading and timer in C# now. But it seems I can't find a good solution. For example, I would like to see how many addition problems that I can solve within 1 min. I would like my program to have A digital clock to count for 60 seconds in the top of my Console. Print a math problem in the middle of my console wait for my input. When 60 seconds is done, stop the math problem challenges immediately (most of time, it is still waiting for my input, but we will stop it immediately). Count how many correct problems that I have solved. Two challenges of the program now. a) how can we make sure the print time and math problem do not mess up. b) how can we stop the math challenges part immediately after time is up

    Read the article

  • Sharing SCTP connection with multiple threads

    - by poly
    I have an application that needs to run in SCTP environment, I have a question in sharing the connection among multiple threads for packet receiving only, I've tried with the sctp_sendmsg and it worked without even locking the threads (is that been taking care of by the OS, in other words, is it thread safe to do that). I've tested many cases with the send and I can't see them out of sync. Anyway, back to the receiving, is it possible to create multiple threads and send each thread the sctp descriptor to start receiving messages? Do I need a lock here or is it ok without lock? I'm using C in linux.

    Read the article

< Previous Page | 129 130 131 132 133 134 135 136 137 138 139 140  | Next Page >