Search Results

Search found 34765 results on 1391 pages for 'alias method chain'.

Page 134/1391 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • Javascript inheritance: call super-constructor or use prototype chain?

    - by Jeremy S.
    Hi folks, quite recently I read about javascript call usage in MDC https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call one linke of the example shown below, I still don't understand. Why are they using inheritance here like this Prod_dept.prototype = new Product(); is this necessary? Because there is a call to the super-constructor in Prod_dept() anyway, like this Product.call is this just out of common behaviour? When is it better to use call for the super-constructor or use the prototype chain? function Product(name, value){ this.name = name; if(value >= 1000) this.value = 999; else this.value = value; } function Prod_dept(name, value, dept){ this.dept = dept; Product.call(this, name, value); } Prod_dept.prototype = new Product(); // since 5 is less than 1000, value is set cheese = new Prod_dept("feta", 5, "food"); // since 5000 is above 1000, value will be 999 car = new Prod_dept("honda", 5000, "auto"); Thanks for making things clearer

    Read the article

  • Is it okay to define a [] method in ruby's NilClass?

    - by Silasj
    Ruby by default does not include the method [] for NilClass For example, to check if foo["bar"] exists when foo may be nil, I have to do: foo = something_that_may_or_may_not_return_nil if foo && foo["bar"] # do something with foo["bar"] here end If I define this method: class NilClass def [](arg) nil end end Something like that would make this possible, even if foo is nil: if foo["bar"] # do something with foo["bar"] end Or even: if foo["bar"]["baz"] # do something with foo["bar"]["baz"] here end Question: Is this a good idea or is there some reason ruby doesn't include this functionality by default?

    Read the article

  • "Unsupported compression method 98" error when unzipping a file. What tools support it, other than W

    - by Chris W. Rea
    I'm getting an error message: "unsupported compression method 98" when unzipping a file somebody sent to me. I've tried both an older version of WinZip, and 7-Zip 4.65. I've already asked the person to avoid using a non-standard compression method and re-send the file. I know WinZip (of which they are using a newer version) has compatibility options. But, I'm wondering: What archiving utilities, other than WinZip, support this "compression method 98"? In particular, is there a free and/or open source tool that supports that method? If not, why not? Is the method strictly proprietary to WinZip?

    Read the article

  • [iptables] Why do 'iptables -A OUTPUT -j REJECT' at the end of the chain OUTPUT override the previous rules??

    - by Serge
    Those are my IPTABLES rules: iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A OUTPUT -p tcp --dport 22 -j ACCEPT iptables -A OUTPUT -p udp --dport 22 -j ACCEPT iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT iptables -A OUTPUT -p udp --dport 53 -j ACCEPT iptables -A OUTPUT -p tcp --dport 53 -j ACCEPT iptables -A INPUT -p tcp --dport 80 -j ACCEPT iptables -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -m recent --set --name DEFAULT --rsource iptables -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -m recent --update --seconds 180 --hitcount 4 --name DEFAULT --rsource -j DROP iptables -A INPUT -p tcp -m state --state NEW --dport 22 -j ACCEPT iptables -A OUTPUT -j REJECT iptables -A INPUT -j REJECT iptables -A FORWARD -j REJECT Im using a remote ssh conetion to set them up, but after i set: iptables -A OUTPUT -j REJECT My connection get lost. I have read all the documentation for Iptables and i can figure out anything, the global Rejects for INPUT work well because i can access to the web page but i get a timeout for ssh. Any idea? Thanks

    Read the article

  • Linux service --status-all shows "Firewall is stopped." what service does firewall refer to?

    - by codewaggle
    I have a development server with the lamp stack running CentOS: [Prompt]# cat /etc/redhat-release CentOS release 5.8 (Final) [Prompt]# cat /proc/version Linux version 2.6.18-308.16.1.el5xen ([email protected]) (gcc version 4.1.2 20080704 (Red Hat 4.1.2-52)) #1 SMP Tue Oct 2 22:50:05 EDT 2012 [Prompt]# yum info iptables Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * base: mirror.anl.gov * extras: centos.mirrors.tds.net * rpmfusion-free-updates: mirror.us.leaseweb.net * rpmfusion-nonfree-updates: mirror.us.leaseweb.net * updates: mirror.steadfast.net Installed Packages Name : iptables Arch : x86_64 Version : 1.3.5 Release : 9.1.el5 Size : 661 k Repo : installed .... Snip.... When I run: service --status-all Part of the output looks like this: .... Snip.... httpd (pid xxxxx) is running... Firewall is stopped. Table: filter Chain INPUT (policy DROP) num target prot opt source destination 1 RH-Firewall-1-INPUT all -- 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy DROP) num target prot opt source destination 1 RH-Firewall-1-INPUT all -- 0.0.0.0/0 0.0.0.0/0 Chain OUTPUT (policy ACCEPT) num target prot opt source destination Chain RH-Firewall-1-INPUT (2 references) ....Snip.... iptables has been loaded to the kernel and is active as represented by the rules being displayed. Checking just the iptables returns the rules just like status all does: [Prompt]# service iptables status Table: filter Chain INPUT (policy DROP) num target prot opt source destination 1 RH-Firewall-1-INPUT all -- 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy DROP) num target prot opt source destination 1 RH-Firewall-1-INPUT all -- 0.0.0.0/0 0.0.0.0/0 Chain OUTPUT (policy ACCEPT) num target prot opt source destination Chain RH-Firewall-1-INPUT (2 references) .... Snip.... Starting or restarting iptables indicates that the iptables have been loaded to the kernel successfully: [Prompt]# service iptables restart Flushing firewall rules: [ OK ] Setting chains to policy ACCEPT: filter [ OK ] Unloading iptables modules: [ OK ] Applying iptables firewall rules: [ OK ] Loading additional iptables modules: ip_conntrack_netbios_n[ OK ] [Prompt]# service iptables start Flushing firewall rules: [ OK ] Setting chains to policy ACCEPT: filter [ OK ] Unloading iptables modules: [ OK ] Applying iptables firewall rules: [ OK ] Loading additional iptables modules: ip_conntrack_netbios_n[ OK ] I've googled "Firewall is stopped." and read a number of iptables guides as well as the RHEL documentation, but no luck. As far as I can tell, there isn't a "Firewall" service, so what is the line "Firewall is stopped." referring to?

    Read the article

  • How to chain GRUB2 for Ubuntu 10.04 from Truecrypt & its bootloader (multi boot alongside Windows XP partition)?

    - by Rob
    I want Truecrypt to ask for password for Windows XP as usual but with the standard [ESC] option, on selecting that, i.e via Escape key, I want it to find the grub for the (unencrypted) Ubuntu install. I've installed Windows XP on the 120Gb hard drive of a Toshiba NB100 netbook then partitioned to make room for Ubuntu 10.04 and installed that after the Windows XP install. When I encrypt Windows XP, Truecrypt will overwrite the grub entry in the master boot record (MBR), I believe (?) and I won't be able to choose between XP and Ubuntu anymore. So I need to restore it back. I've searched fairly extensively for answers on Ubuntu forums and elsewhere but have not yet found a complete answer that covers all eventualities, scenarios and error messages, or otherwise they talk of legacy GRUB and not GRUB2. Ubuntu 10.04 uses GRUB2. My setup: Partitions: Windows XP, NTFS (to be encrypted with Truecrypt), 40Gb /boot (Ext4, 1Gb) Ubuntu swap, 4Gb Ubuntu / (root) - main filesystem (20gb) NTFS share, 55Gb I know that the Truecrypt boot loader replaces the GRUB when boot up because I've already tried it on another laptop. I want boot loader screen to look something like the usual: Truecrypt Enter password: (or [ESC] to skip) password is for WindowsXP and on pressing [ESC] for it to find the Ubuntu grub to boot from Thanks in advance for your help. The key area of the problem is how to instruct Truecrypt when escape key is pressed, and how the Grub/Ubuntu can be made visible to the truecrypt bootloader to find it, when the esc key is pressed. Also knowing as chaining.

    Read the article

  • What functionality should a (basic) mock framework have?

    - by user1175327
    If i would start on writing a simple Mock framework, then what are the things that a basic mock framework MUST have? Obviously mocking any object, but what about assertions and perhaps other things? When I think of how I would write my own mock framework then I realise how much I really know (or don't know) and what I would trip up on. So this is more for educational purposes. Of course I did research and this is what i've come up with that a minimal mocking framework should be able to do. Now my question in this whole thing is, am I missing some important details in my ideas? Mocking Mocking a class: Should be able to mock any class. The Mock should preserve the properties and their original values as they were set in the original class. All method implementations are empty. Calls to methods of Mock: The Mock framework must be able to define what a mocked method must return. IE: $MockObj->CallTo('SomeMethod')->Returns('some value'); Assertions To my understanding mocking frameworks also have a set of assertions. These are the ones I think are most important (taken from SimpleTest). expect($method, $args) Arguments must match if called expectAt($timing, $method, $args) Arguments must match when called on the $timing'th time expectCallCount($method, $count) The method must be called exactly this many times expectMaximumCallCount($method, $count) Call this method no more than $count times expectMinimumCallCount($method, $count) Must be called at least $count times expectNever($method) Must never be called expectOnce($method, $args) Must be called once and with the expected arguments if supplied expectAtLeastOnce($method, $args) Must be called at least once, and always with any expected arguments And that's basically, as far as I understand, what a mock framework should be able to do. But is this really everything? Because it currently doesn't seem like a big deal to build something like this. But that's also the reason why I have the feeling that i'm missing some important details about such a framework. So is my understanding right about a mock framework? Or am i missing alot of details?

    Read the article

  • .NET Reflection: How to call method of interface without creating instance?

    - by jitm
    I have situation where I have to call method of interface using reflection, like this object x = null; MethodInfo method = interfaceExists.GetMethod("ShutDown"); method.Invoke(x, new object[] { 4 }) As you can see I do not create instance of object! And, as I can supposed, I receive exception Non-static method requires a target And Question, Can I call method of interface using reflection without creating instance of interface and if YES, How I can do it ?

    Read the article

  • C# Reflection: How to call method of interface without creating instance?

    - by jitm
    Hello, I have situation where I have to call method of interface using reflection, like this object x = null; MethodInfo method = interfaceExists.GetMethod("ShutDown"); method.Invoke(x, new object[] { 4 }) As you can see I do not create instance of object! And, as I can supposed, I receive exception Non-static method requires a target And Question, Can I call method of interface using reflection without creating instance of interface and if YES, How I can do it ? Thank you.

    Read the article

  • C# 4.0: Named And Optional Arguments

    - by Paulo Morgado
    As part of the co-evolution effort of C# and Visual Basic, C# 4.0 introduces Named and Optional Arguments. First of all, let’s clarify what are arguments and parameters: Method definition parameters are the input variables of the method. Method call arguments are the values provided to the method parameters. In fact, the C# Language Specification states the following on §7.5: The argument list (§7.5.1) of a function member invocation provides actual values or variable references for the parameters of the function member. Given the above definitions, we can state that: Parameters have always been named and still are. Parameters have never been optional and still aren’t. Named Arguments Until now, the way the C# compiler matched method call definition arguments with method parameters was by position. The first argument provides the value for the first parameter, the second argument provides the value for the second parameter, and so on and so on, regardless of the name of the parameters. If a parameter was missing a corresponding argument to provide its value, the compiler would emit a compilation error. For this call: Greeting("Mr.", "Morgado", 42); this method: public void Greeting(string title, string name, int age) will receive as parameters: title: “Mr.” name: “Morgado” age: 42 What this new feature allows is to use the names of the parameters to identify the corresponding arguments in the form: name:value Not all arguments in the argument list must be named. However, all named arguments must be at the end of the argument list. The matching between arguments (and the evaluation of its value) and parameters will be done first by name for the named arguments and than by position for the unnamed arguments. This means that, for this method definition: public static void Method(int first, int second, int third) this call declaration: int i = 0; Method(i, third: i++, second: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = i++; int CS$0$0001 = ++i; Method(i, CS$0$0001, CS$0$0000); which will give the method the following parameter values: first: 2 second: 2 third: 0 Notice the variable names. Although invalid being invalid C# identifiers, they are valid .NET identifiers and thus avoiding collision between user written and compiler generated code. Besides allowing to re-order of the argument list, this feature is very useful for auto-documenting the code, for example, when the argument list is very long or not clear, from the call site, what the arguments are. Optional Arguments Parameters can now have default values: public static void Method(int first, int second = 2, int third = 3) Parameters with default values must be the last in the parameter list and its value is used as the value of the parameter if the corresponding argument is missing from the method call declaration. For this call declaration: int i = 0; Method(i, third: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = ++i; Method(i, 2, CS$0$0000); which will give the method the following parameter values: first: 1 second: 2 third: 1 Because, when method parameters have default values, arguments can be omitted from the call declaration, this might seem like method overloading or a good replacement for it, but it isn’t. Although methods like this: public static StreamReader OpenTextFile( string path, Encoding encoding = null, bool detectEncoding = true, int bufferSize = 1024) allow to have its calls written like this: OpenTextFile("foo.txt", Encoding.UTF8); OpenTextFile("foo.txt", Encoding.UTF8, bufferSize: 4096); OpenTextFile( bufferSize: 4096, path: "foo.txt", detectEncoding: false); The complier handles default values like constant fields taking the value and useing it instead of a reference to the value. So, like with constant fields, methods with parameters with default values are exposed publicly (and remember that internal members might be publicly accessible – InternalsVisibleToAttribute). If such methods are publicly accessible and used by another assembly, those values will be hard coded in the calling code and, if the called assembly has its default values changed, they won’t be assumed by already compiled code. At the first glance, I though that using optional arguments for “bad” written code was great, but the ability to write code like that was just pure evil. But than I realized that, since I use private constant fields, it’s OK to use default parameter values on privately accessed methods.

    Read the article

  • parse Linq To Xml with attribute nodes

    - by Manoj
    I am having xml with following structure <ruleDefinition appId="3" customerId = "acf"> <node alias="element1" id="1" name="department"> <node alias="element2" id="101" name="mike" /> <node alias="element2" id="102" name="ricky" /> <node alias="element2" id="103" name="jim" /> </node> </ruleDefinition> Here nodes are differentiated using alias and not with node tag. As you can see top level node element1 has same node name "node" as element2. I want to parse this XML based on attribute alias. What should be the Linq-To-Xml code (using C#)to acheive this?

    Read the article

  • user defined Copy ctor, and copy-ctors further down the chain - compiler bug ? programmers brainbug

    - by J.Colmsee
    Hi. i have a little problem, and I am not sure if it's a compiler bug, or stupidity on my side. I have this struct : struct BulletFXData { int time_next_fx_counter; int next_fx_steps; Particle particles[2];//this is the interesting one ParticleManager::ParticleId particle_id[2]; }; The member "Particle particles[2]" has a self-made kind of smart-ptr in it (resource-counted texture-class). this smart-pointer has a default constructor, that initializes to the ptr to 0 (but that is not important) I also have another struct, containing the BulletFXData struct : struct BulletFX { BulletFXData data; BulletFXRenderFunPtr render_fun_ptr; BulletFXUpdateFunPtr update_fun_ptr; BulletFXExplosionFunPtr explode_fun_ptr; BulletFXLifetimeOverFunPtr lifetime_over_fun_ptr; BulletFX( BulletFXData data, BulletFXRenderFunPtr render_fun_ptr, BulletFXUpdateFunPtr update_fun_ptr, BulletFXExplosionFunPtr explode_fun_ptr, BulletFXLifetimeOverFunPtr lifetime_over_fun_ptr) :data(data), render_fun_ptr(render_fun_ptr), update_fun_ptr(update_fun_ptr), explode_fun_ptr(explode_fun_ptr), lifetime_over_fun_ptr(lifetime_over_fun_ptr) { } /* //USER DEFINED copy-ctor. if it's defined things go crazy BulletFX(const BulletFX& rhs) :data(data),//this line of code seems to do a plain memory-copy without calling the right ctors render_fun_ptr(render_fun_ptr), update_fun_ptr(update_fun_ptr), explode_fun_ptr(explode_fun_ptr), lifetime_over_fun_ptr(lifetime_over_fun_ptr) { } */ }; If i use the user-defined copy-ctor my smart-pointer class goes crazy, and it seems that calling the CopyCtor / assignment operator aren't called as they should. So - does this all make sense ? it seems as if my own copy-ctor of struct BulletFX should do exactly what the compiler-generated would, but it seems to forget to call the right constructors down the chain. compiler bug ? me being stupid ? Sorry about the big code, some small example could have illustrated too. but often you guys ask for the real code, so well - here it is :D EDIT : more info : typedef ParticleId unsigned int; Particle has no user defined copyctor, but has a member of type : Particle { .... Resource<Texture> tex_res; ... } Resource is a smart-pointer class, and has all ctor's defined (also asignment operator) and it seems that Resource is copied bitwise. EDIT : henrik solved it... data(data) is stupid of course ! it should of course be rhs.data !!! sorry for huge amount of code, with a very little bug in it !!! (Guess you shouldn't code at 1 in the morning :D )

    Read the article

  • Reverse Expression.Like criterion

    - by Joel Potter
    How should I go about writing a backwards like statement using NHibernate criteria? WHERE 'somestring' LIKE [Property] + '%' Sub Question: Can you access the abstract root alias in a SQLCriterion expression? This is somewhat achievable using the SQLCriterion expression Expression.Sql("? like {alias}.[Property] + '.%'", value, NHibernateUtil.String); However, in the case of class inheritance, {alias} is replaced with the incorrect alias for the column. Example (these classes are stored in separate tables): public abstract class Parent { public virtual string Property { get; set; } } public class Child : Parent { } The above query executed with Child as the root type will replace {alias} with the alias to the Child table rather than the Parent table. This results in an invalid column exception. I need to execute a like statement as above where the property exists on the parent table rather than on the root type table.

    Read the article

  • Entity Framework LINQ Query using Custom C# Class Method - Once yes, once no - because executing on the client or in SQL?

    - by BrooklynDev
    I have two Entity Framework 4 Linq queries I wrote that make use of a custom class method, one works and one does not: The custom method is: public static DateTime GetLastReadToDate(string fbaUsername, Discussion discussion) { return (discussion.DiscussionUserReads.Where(dur => dur.User.aspnet_User.UserName == fbaUsername).FirstOrDefault() ?? new DiscussionUserRead { ReadToDate = DateTime.Now.AddYears(-99) }).ReadToDate; } The linq query that works calls a from after a from, the equivalent of SelectMany(): from g in oc.Users.Where(u => u.aspnet_User.UserName == fbaUsername).First().Groups from d in g.Discussions select new { UnReadPostCount = d.Posts.Where(p => p.CreatedDate > DiscussionRepository.GetLastReadToDate(fbaUsername, p.Discussion)).Count() }; The query that does not work is more like a regular select: from d in oc.Discussions where d.Group.Name == "Student" select new { UnReadPostCount = d.Posts.Where(p => p.CreatedDate > DiscussionRepository.GetLastReadToDate(fbaUsername, p.Discussion)).Count(), }; The error I get is: LINQ to Entities does not recognize the method 'System.DateTime GetLastReadToDate(System.String, Discussion)' method, and this method cannot be translated into a store expression. My question is, why am I able to use my custom GetLastReadToDate() method in the first query and not the second? I suppose this has something to do with what gets executed on the db server and what gets executed on the client? These queries seem to use the GetLastReadToDate() method so similarly though, I'm wondering why would work for the first and not the second, and most importantly if there's a way to factor common query syntax like what's in the GetLastReadToDate() method into a separate location to be reused in several different places LINQ queries. Please note all these queries are sharing the same object context.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • How do I UPDATE a Linked Server table where "alias" is required, in SQL Server 2000?

    - by Mark Hurd
    In SQL Server 2005 tablename can be used to distinguish which table you're referring to: UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE tablename.ID=u.ID In SQL Server 2000 this results in Server: Msg 107, Level 16, State 2 The column prefix 'tablename' does not match with a table name or alias name used in the query. Trying UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE LinkedServer.database.user.tablename.ID=u.ID results in Server: Msg 117, Level 15, State 2 The number name 'LinkedServer.database.user.tablename' contains more than the maximum number of prefixes. The maximum is 3. And, of course, UPDATE LinkedServer.database.user.tablename SET val=u.val FROM localtable u WHERE ID=u.ID results in Server: Msg 209, Level 16, State 1 Ambiguous column name 'ID'. (In fact searching on "The number name contains more than the maximum number of prefixes. The maximum is 3." I found the answer, but I've typed up this question and I'm going to post it! :-) )

    Read the article

  • Cannot install packages. "Warning: untrusted versions..." plus "method driver /usr/lib/apt/methods/http could not be found"

    - by Steve Tjoa
    Judging from Internet forums, these errors appear to be popular when attempting to install packages: steve:~$ sudo aptitude install examplepackage The following NEW packages will be installed: examplepackage examplepackage-common{a} 0 packages upgraded, 2 newly installed, 0 to remove and 0 not upgraded. Need to get 1,834 kB of archives. After unpacking 7,631 kB will be used. Do you want to continue? [Y/n/?] WARNING: untrusted versions of the following packages will be installed! Untrusted packages could compromise your system's security. You should only proceed with the installation if you are certain that this is what you want to do. examplepackage examplepackage-common Do you want to ignore this warning and proceed anyway? To continue, enter "Yes"; to abort, enter "No": Yes E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: Internal error: couldn't generate list of packages to download I followed this post by uninstalling ubuntu-keyring. But I cannot reinstall ubuntu-keyring or ubuntu-minimal -- the above errors reappear. In fact, I don't even seem to have apt (I must have caused this along the way by trying a bad solution, or maybe a clean): steve:~$ sudo apt-get update sudo: apt-get: command not found Aptitude works, but I can't install apt: steve:~$ sudo aptitude install apt The following NEW packages will be installed: apt 0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded. Need to get 1,046 kB of archives. After unpacking 3,441 kB will be used. E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: Internal error: couldn't generate list of packages to download ...or update steve:~$ sudo aptitude update E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. I tried this post. Didn't help. To summarize, the main problem is that I cannot install anything. While attempting to fix the problem, the other aforementioned errors occurred. Can you help me fix this error? Feel free to ask if you need more information. Stats: steve:~$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 11.10 Release: 11.10 Codename: oneiric

    Read the article

  • Can not open port 3306 on Ubuntu using iptables

    - by user94626
    I am trying to open port 3306 (for remote mysql connections) on my ubuntu 12.04 server machine but for the life of me can't get the damned thing to work! Here is what I did: 1) list current firewall rules: $> sudo iptables -nL -v output: Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 225 16984 fail2ban-ssh tcp -- * * 0.0.0.0/0 0.0.0.0/0 multiport dports 22 220 69605 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 0 0 REJECT all -- lo * 0.0.0.0/0 127.0.0.0/8 reject-with icmp-port-unreachable 486 54824 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 1 60 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 19 988 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443 1 52 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8 4 208 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 limit: avg 5/min burst 5 LOG flags 0 level 7 prefix "iptables denied: " 4 208 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 735 182K ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 Chain fail2ban-ssh (1 references) pkts bytes target prot opt in out source destination 225 16984 RETURN all -- * * 0.0.0.0/0 0.0.0.0/0 2) try to connect from remote machine: $> mysql -u root -p -h x.x.x.x output: timeout.... failed to connect 3) try to add a new rule to iptables: iptables -A INPUT -i eth0 -p tcp -m tcp --dport 3306 -j ACCEPT 4) make sure the new rule is added: $> sudo iptables -nL -v output: Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 359 25972 fail2ban-ssh tcp -- * * 0.0.0.0/0 0.0.0.0/0 multiport dports 22 251 78665 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 0 0 REJECT all -- lo * 0.0.0.0/0 127.0.0.0/8 reject-with icmp-port-unreachable 628 64420 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 1 60 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 19 988 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443 1 52 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmptype 8 5 260 LOG all -- * * 0.0.0.0/0 0.0.0.0/0 limit: avg 5/min burst 5 LOG flags 0 level 7 prefix "iptables denied: " 5 260 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable 0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:3306 Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 919 213K ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 Chain fail2ban-ssh (1 references) pkts bytes target prot opt in out source destination 359 25972 RETURN all -- * * 0.0.0.0/0 0.0.0.0/0 which appears to be the case (last line in "Chain INPUT" section). 5) try to connect again from remote machine: $> mysql -u root -p -h x.x.x.x output: timeout.... failed to connect which is failing again. 6) try to flush all rules: $> sudo iptables -F 7) this time I CAN CONNECT. 8) reboot server and try to connect, FAILURE. I suspect since the new rule is being appended at the end it will have no effect as there appears to be a "reject all" sort of rule before it. If this is the case, how to make sure the new rule is added in the right order? Otherwise, what am I missing? Please help.

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Metro: Namespaces and Modules

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can use the Windows JavaScript (WinJS) library to create namespaces. In particular, you learn how to use the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. You also learn how to hide private methods by using the module pattern. Why Do We Need Namespaces? Before we do anything else, we should start by answering the question: Why do we need namespaces? What function do they serve? Do they just add needless complexity to our Metro applications? After all, plenty of JavaScript libraries do just fine without introducing support for namespaces. For example, jQuery has no support for namespaces and jQuery is the most popular JavaScript library in the universe. If jQuery can do without namespaces, why do we need to worry about namespaces at all? Namespaces perform two functions in a programming language. First, namespaces prevent naming collisions. In other words, namespaces enable you to create more than one object with the same name without conflict. For example, imagine that two companies – company A and company B – both want to make a JavaScript shopping cart control and both companies want to name the control ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a CompanyB.ShoppingCart control. The second function of a namespace is organization. Namespaces are used to group related functionality even when the functionality is defined in different physical files. For example, I know that all of the methods in the WinJS library related to working with classes can be found in the WinJS.Class namespace. Namespaces make it easier to understand the functionality available in a library. If you are building a simple JavaScript application then you won’t have much reason to care about namespaces. If you need to use multiple libraries written by different people then namespaces become very important. Using WinJS.Namespace.define() In the WinJS library, the most basic method of creating a namespace is to use the WinJS.Namespace.define() method. This method enables you to declare a namespace (of arbitrary depth). The WinJS.Namespace.define() method has the following parameters: · name – A string representing the name of the new namespace. You can add nested namespace by using dot notation · members – An optional collection of objects to add to the new namespace For example, the following code sample declares two new namespaces named CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object which has a checkout() method: // Create CompanyA namespace with ShoppingCart WinJS.Namespace.define("CompanyA"); CompanyA.ShoppingCart = { checkout: function (){ return "Checking out from A"; } }; // Create CompanyB.Controls namespace with ShoppingCart WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); // Call CompanyA ShoppingCart checkout method console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A" // Call CompanyB.Controls checkout method console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out from B" In the code above, the CompanyA namespace is created by calling WinJS.Namespace.define(“CompanyA”). Next, the ShoppingCart is added to this namespace. The namespace is defined and an object is added to the namespace in separate lines of code. A different approach is taken in the case of the CompanyB.Controls namespace. The namespace is created and the ShoppingCart object is added to the namespace with the following single line of code: WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); Notice that CompanyB.Controls is a nested namespace. The top level namespace CompanyB contains the namespace Controls. You can declare a nested namespace using dot notation and the WinJS library handles the details of creating one namespace within the other. After the namespaces have been defined, you can use either of the two shopping cart controls. You call CompanyA.ShoppingCart.checkout() or you can call CompanyB.Controls.ShoppingCart.checkout(). Using WinJS.Namespace.defineWithParent() The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.define() method. Both methods enable you to define a new namespace. The difference is that the defineWithParent() method enables you to add a new namespace to an existing namespace. The WinJS.Namespace.defineWithParent() method has the following parameters: · parentNamespace – An object which represents a parent namespace · name – A string representing the new namespace to add to the parent namespace · members – An optional collection of objects to add to the new namespace The following code sample demonstrates how you can create a root namespace named CompanyA and add a Controls child namespace to the CompanyA parent namespace: WinJS.Namespace.define("CompanyA"); WinJS.Namespace.defineWithParent(CompanyA, "Controls", { ShoppingCart: { checkout: function () { return "Checking out"; } } } ); console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out" One significant advantage of using the defineWithParent() method over the define() method is the defineWithParent() method is strongly-typed. In other words, you use an object to represent the base namespace instead of a string. If you misspell the name of the object (CompnyA) then you get a runtime error. Using the Module Pattern When you are building a JavaScript library, you want to be able to create both public and private methods. Some methods, the public methods, are intended to be used by consumers of your JavaScript library. The public methods act as your library’s public API. Other methods, the private methods, are not intended for public consumption. Instead, these methods are internal methods required to get the library to function. You don’t want people calling these internal methods because you might need to change them in the future. JavaScript does not support access modifiers. You can’t mark an object or method as public or private. Anyone gets to call any method and anyone gets to interact with any object. The only mechanism for encapsulating (hiding) methods and objects in JavaScript is to take advantage of functions. In JavaScript, a function determines variable scope. A JavaScript variable either has global scope – it is available everywhere – or it has function scope – it is available only within a function. If you want to hide an object or method then you need to place it within a function. For example, the following code contains a function named doSomething() which contains a nested function named doSomethingElse(): function doSomething() { console.log("doSomething"); function doSomethingElse() { console.log("doSomethingElse"); } } doSomething(); // Writes "doSomething" doSomethingElse(); // Throws ReferenceError You can call doSomethingElse() only within the doSomething() function. The doSomethingElse() function is encapsulated in the doSomething() function. The WinJS library takes advantage of function encapsulation to hide all of its internal methods. All of the WinJS methods are defined within self-executing anonymous functions. Everything is hidden by default. Public methods are exposed by explicitly adding the public methods to namespaces defined in the global scope. Imagine, for example, that I want a small library of utility methods. I want to create a method for calculating sales tax and a method for calculating the expected ship date of a product. The following library encapsulates the implementation of my library in a self-executing anonymous function: (function (global) { // Public method which calculates tax function calculateTax(price) { return calculateFederalTax(price) + calculateStateTax(price); } // Private method for calculating state tax function calculateStateTax(price) { return price * 0.08; } // Private method for calculating federal tax function calculateFederalTax(price) { return price * 0.02; } // Public method which returns the expected ship date function calculateShipDate(currentDate) { currentDate.setDate(currentDate.getDate() + 4); return currentDate; } // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); })(this); // Show expected ship date var shipDate = CompanyA.Utilities.calculateShipDate(new Date()); console.log(shipDate); // Show price + tax var price = 12.33; var tax = CompanyA.Utilities.calculateTax(price); console.log(price + tax); In the code above, the self-executing anonymous function contains four functions: calculateTax(), calculateStateTax(), calculateFederalTax(), and calculateShipDate(). The following statement is used to expose only the calcuateTax() and the calculateShipDate() functions: // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); Because the calculateTax() and calcuateShipDate() functions are added to the CompanyA.Utilities namespace, you can call these two methods outside of the self-executing function. These are the public methods of your library which form the public API. The calculateStateTax() and calculateFederalTax() methods, on the other hand, are forever hidden within the black hole of the self-executing function. These methods are encapsulated and can never be called outside of scope of the self-executing function. These are the internal methods of your library. Summary The goal of this blog entry was to describe why and how you use namespaces with the WinJS library. You learned how to define namespaces using both the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. We also discussed how to hide private members and expose public members using the module pattern.

    Read the article

  • How do you replace a method of a Moose object at runtime?

    - by xxxxxxx
    Is it possible to replace a method of a Moose object at runtime ? By looking at the source code of Class::MOP::Method (which Moose::Meta::Method inherits from) I concluded that by doing $method->{body} = sub{ my stuff } I would be able to replace at runtime a method of an object. I can get the method using $object->meta->find_method_by_name(<method_name>); However, this didn't quite work out. Is it conceivable to modify methods at run time? And, what is the way to do it with Moose?

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >