Search Results

Search found 11146 results on 446 pages for 'dynamic queries'.

Page 139/446 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Is Cherokee (probably) the best static content server for beginner sysadmins?

    - by Bad Learner
    I have read the pros and cons of most of the popular web servers and have come to a conclusion that Apache would (probably) be the best web server for serving dynamic content - - no wonder YouTube, Flickr and Facbook, among many others, use it. I do not know if that C10K problem applies to Apache even when serving dynamic content only, but I think any web server used to serve dynamic content needs some good tweaking for optimized performance, and the fact that nothing beats Apache when it comes to documentation, resources and support on the web, I think should will go with Apache for dynamic content. That apart, the confusion begins when it comes to choosing web servers for static content (including streaming videos). I see that Nginx, Cherokee and Lighttpd are among the best (I am not considering non-open source or non-linux stuff here). So, which too choose? I know one cannot go wrong with any of the three (Nginx, Cherokee, Lighttpd). Lighttpd's development has evidently gotten slower than it was a good time ago. The documentation is pretty good for all the three, and hopefully, so are the resources (knowledge of these among the users of Stackoverflow/Serverfault sites, the web etc). Precisely, and noting point [2] and [3], if I am not wrong, I should either go with Nginx or Cherokee. I would love to see someone clarify these... is Cherokee just as fast (mb/s), performant (connections/s), and reliable (think downtime/restarting server) as Nginx for serving static content and load balancing, for small, medium to large (and really large) websites and applications? (Think, the size of YouTube, Apache or Facebook.) if the answer for the Q above is a big "hell, yes!" then, I should probably prefer Cherokee, right? Because, since I am a beginner, it would a lot easier to setup Cherokee as it has a graphical admin user interface + really good documentation. Yes? I could be wrong, I could be right. I put down what I know so that you can offer most relevant advise. Pardon if anything I've said is offensive.

    Read the article

  • Should I use nginx exclusively, or have it as a proxy to Tomcat (performance related)?

    - by Kevin
    I've planned to create a website that'll be pretty heavy on dynamic content, and want to know what would be the wisest choice for part of my webstack. Right now I'm trying to decide whether I should develop upon nginx, using PHP to deliver the dynamic content, or use nginx as a proxy to Tomcat and use servlets to deliver the dynamic content. I have a good amount of experience with Java, JSP, and servlets, so that's a plus right off the bat. Also, since it is a compiled language, it will execute faster than PHP (it is implied here that Java is around 37x faster than PHP) , and will create the web pages faster. I have no experience with PHP, however i'm under the impression that it is easy to pick up. It's slower than Java, but since the client will only be communicating with nginx, I'm thinking that serving the dynamically created web pages to the client will be faster this way. Considering these things, i'd like to know: Are my assumptions correct? Where does the bottleneck occur: creating pages or serving them back to the client? Will proxying Tomcat with nginx give me any of nginx performance benefits if I'm going to be using Tomcat to generate the dynamic content (keeping in mind my site is going to be heavy in this aspect)? I don't mind learning PHP if, in the end, its going to give me the best performance. I just want to know what would be the best choice from that standpoint.

    Read the article

  • Using an alternate JSON Serializer in ASP.NET Web API

    - by Rick Strahl
    The new ASP.NET Web API that Microsoft released alongside MVC 4.0 Beta last week is a great framework for building REST and AJAX APIs. I've been working with it for quite a while now and I really like the way it works and the complete set of features it provides 'in the box'. It's about time that Microsoft gets a decent API for building generic HTTP endpoints into the framework. DataContractJsonSerializer sucks As nice as Web API's overall design is one thing still sucks: The built-in JSON Serialization uses the DataContractJsonSerializer which is just too limiting for many scenarios. The biggest issues I have with it are: No support for untyped values (object, dynamic, Anonymous Types) MS AJAX style Date Formatting Ugly serialization formats for types like Dictionaries To me the most serious issue is dealing with serialization of untyped objects. I have number of applications with AJAX front ends that dynamically reformat data from business objects to fit a specific message format that certain UI components require. The most common scenario I have there are IEnumerable query results from a database with fields from the result set rearranged to fit the sometimes unconventional formats required for the UI components (like jqGrid for example). Creating custom types to fit these messages seems like overkill and projections using Linq makes this much easier to code up. Alas DataContractJsonSerializer doesn't support it. Neither does DataContractSerializer for XML output for that matter. What this means is that you can't do stuff like this in Web API out of the box:public object GetAnonymousType() { return new { name = "Rick", company = "West Wind", entered= DateTime.Now }; } Basically anything that doesn't have an explicit type DataContractJsonSerializer will not let you return. FWIW, the same is true for XmlSerializer which also doesn't work with non-typed values for serialization. The example above is obviously contrived with a hardcoded object graph, but it's not uncommon to get dynamic values returned from queries that have anonymous types for their result projections. Apparently there's a good possibility that Microsoft will ship Json.NET as part of Web API RTM release.  Scott Hanselman confirmed this as a footnote in his JSON Dates post a few days ago. I've heard several other people from Microsoft confirm that Json.NET will be included and be the default JSON serializer, but no details yet in what capacity it will show up. Let's hope it ends up as the default in the box. Meanwhile this post will show you how you can use it today with the beta and get JSON that matches what you should see in the RTM version. What about JsonValue? To be fair Web API DOES include a new JsonValue/JsonObject/JsonArray type that allow you to address some of these scenarios. JsonValue is a new type in the System.Json assembly that can be used to build up an object graph based on a dictionary. It's actually a really cool implementation of a dynamic type that allows you to create an object graph and spit it out to JSON without having to create .NET type first. JsonValue can also receive a JSON string and parse it without having to actually load it into a .NET type (which is something that's been missing in the core framework). This is really useful if you get a JSON result from an arbitrary service and you don't want to explicitly create a mapping type for the data returned. For serialization you can create an object structure on the fly and pass it back as part of an Web API action method like this:public JsonValue GetJsonValue() { dynamic json = new JsonObject(); json.name = "Rick"; json.company = "West Wind"; json.entered = DateTime.Now; dynamic address = new JsonObject(); address.street = "32 Kaiea"; address.zip = "96779"; json.address = address; dynamic phones = new JsonArray(); json.phoneNumbers = phones; dynamic phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); //var jsonString = json.ToString(); return json; } which produces the following output (formatted here for easier reading):{ name: "rick", company: "West Wind", entered: "2012-03-08T15:33:19.673-10:00", address: { street: "32 Kaiea", zip: "96779" }, phoneNumbers: [ { type: "Home", number: "808 123-1233" }, { type: "Mobile", number: "808 123-1234" }] } If you need to build a simple JSON type on the fly these types work great. But if you have an existing type - or worse a query result/list that's already formatted JsonValue et al. become a pain to work with. As far as I can see there's no way to just throw an object instance at JsonValue and have it convert into JsonValue dictionary. It's a manual process. Using alternate Serializers in Web API So, currently the default serializer in WebAPI is DataContractJsonSeriaizer and I don't like it. You may not either, but luckily you can swap the serializer fairly easily. If you'd rather use the JavaScriptSerializer built into System.Web.Extensions or Json.NET today, it's not too difficult to create a custom MediaTypeFormatter that uses these serializers and can replace or partially replace the native serializer. Here's a MediaTypeFormatter implementation using the ASP.NET JavaScriptSerializer:using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using System.IO; namespace Westwind.Web.WebApi { public class JavaScriptSerializerFormatter : MediaTypeFormatter { public JavaScriptSerializerFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type== typeof(JsonArray) ) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var ser = new JavaScriptSerializer(); string json; using (var sr = new StreamReader(stream)) { json = sr.ReadToEnd(); sr.Close(); } object val = ser.Deserialize(json,type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var ser = new JavaScriptSerializer(); var json = ser.Serialize(value); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } Formatter implementation is pretty simple: You override 4 methods to tell which types you can handle and then handle the input or output streams to create/parse the JSON data. Note that when creating output you want to take care to still allow JsonValue/JsonObject/JsonArray types to be handled by the default serializer so those objects serialize properly - if you let either JavaScriptSerializer or JSON.NET handle them they'd try to render the dictionaries which is very undesirable. If you'd rather use Json.NET here's the JSON.NET version of the formatter:// this code requires a reference to JSON.NET in your project #if true using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using Newtonsoft.Json; using System.IO; using Newtonsoft.Json.Converters; namespace Westwind.Web.WebApi { public class JsonNetFormatter : MediaTypeFormatter { public JsonNetFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type == typeof(JsonArray)) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; var sr = new StreamReader(stream); var jreader = new JsonTextReader(sr); var ser = new JsonSerializer(); ser.Converters.Add(new IsoDateTimeConverter()); object val = ser.Deserialize(jreader, type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; string json = JsonConvert.SerializeObject(value, Formatting.Indented, new JsonConverter[1] { new IsoDateTimeConverter() } ); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } #endif   One advantage of the Json.NET serializer is that you can specify a few options on how things are formatted and handled. You get null value handling and you can plug in the IsoDateTimeConverter which is nice to product proper ISO dates that I would expect any Json serializer to output these days. Hooking up the Formatters Once you've created the custom formatters you need to enable them for your Web API application. To do this use the GlobalConfiguration.Configuration object and add the formatter to the Formatters collection. Here's what this looks like hooked up from Application_Start in a Web project:protected void Application_Start(object sender, EventArgs e) { // Action based routing (used for RPC calls) RouteTable.Routes.MapHttpRoute( name: "StockApi", routeTemplate: "stocks/{action}/{symbol}", defaults: new { symbol = RouteParameter.Optional, controller = "StockApi" } ); // WebApi Configuration to hook up formatters and message handlers // optional RegisterApis(GlobalConfiguration.Configuration); } public static void RegisterApis(HttpConfiguration config) { // Add JavaScriptSerializer formatter instead - add at top to make default //config.Formatters.Insert(0, new JavaScriptSerializerFormatter()); // Add Json.net formatter - add at the top so it fires first! // This leaves the old one in place so JsonValue/JsonObject/JsonArray still are handled config.Formatters.Insert(0, new JsonNetFormatter()); } One thing to remember here is the GlobalConfiguration object which is Web API's static configuration instance. I think this thing is seriously misnamed given that GlobalConfiguration could stand for anything and so is hard to discover if you don't know what you're looking for. How about WebApiConfiguration or something more descriptive? Anyway, once you know what it is you can use the Formatters collection to insert your custom formatter. Note that I insert my formatter at the top of the list so it takes precedence over the default formatter. I also am not removing the old formatter because I still want JsonValue/JsonObject/JsonArray to be handled by the default serialization mechanism. Since they process in sequence and I exclude processing for these types JsonValue et al. still get properly serialized/deserialized. Summary Currently DataContractJsonSerializer in Web API is a pain, but at least we have the ability with relatively limited effort to replace the MediaTypeFormatter and plug in our own JSON serializer. This is useful for many scenarios - if you have existing client applications that used MVC JsonResult or ASP.NET AJAX results from ASMX AJAX services you can plug in the JavaScript serializer and get exactly the same serializer you used in the past so your results will be the same and don't potentially break clients. JSON serializers do vary a bit in how they serialize some of the more complex types (like Dictionaries and dates for example) and so if you're migrating it might be helpful to ensure your client code doesn't break when you switch to ASP.NET Web API. Going forward it looks like Microsoft is planning on plugging in Json.Net into Web API and make that the default. I think that's an awesome choice since Json.net has been around forever, is fast and easy to use and provides a ton of functionality as part of this great library. I just wish Microsoft would have figured this out sooner instead of now at the last minute integrating with it especially given that Json.Net has a similar set of lower level JSON objects JsonValue/JsonObject etc. which now will end up being duplicated by the native System.Json stuff. It's not like we don't already have enough confusion regarding which JSON serializer to use (JavaScriptSerializer, DataContractJsonSerializer, JsonValue/JsonObject/JsonArray and now Json.net). For years I've been using my own JSON serializer because the built in choices are both limited. However, with an official encorsement of Json.Net I'm happily moving on to use that in my applications. Let's see and hope Microsoft gets this right before ASP.NET Web API goes gold.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX  ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • Plan Caching and Query Memory Part II (Hash Match) – When not to use stored procedure - Most common performance mistake SQL Server developers make.

    - by sqlworkshops
    SQL Server estimates Memory requirement at compile time, when stored procedure or other plan caching mechanisms like sp_executesql or prepared statement are used, the memory requirement is estimated based on first set of execution parameters. This is a common reason for spill over tempdb and hence poor performance. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Hash Match operations with examples. It is recommended to read Plan Caching and Query Memory Part I before this article which covers an introduction and Query memory for Sort. In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a query does not change significantly based on predicates.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts  Let’s create a Customer’s State table that has 99% of customers in NY and the rest 1% in WA.Customers table used in Part I of this article is also used here.To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'. --Example provided by www.sqlworkshops.com drop table CustomersState go create table CustomersState (CustomerID int primary key, Address char(200), State char(2)) go insert into CustomersState (CustomerID, Address) select CustomerID, 'Address' from Customers update CustomersState set State = 'NY' where CustomerID % 100 != 1 update CustomersState set State = 'WA' where CustomerID % 100 = 1 go update statistics CustomersState with fullscan go   Let’s create a stored procedure that joins customers with CustomersState table with a predicate on State. --Example provided by www.sqlworkshops.com create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1) end go  Let’s execute the stored procedure first with parameter value ‘WA’ – which will select 1% of data. set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' goThe stored procedure took 294 ms to complete.  The stored procedure was granted 6704 KB based on 8000 rows being estimated.  The estimated number of rows, 8000 is similar to actual number of rows 8000 and hence the memory estimation should be ok.  There was no Hash Warning in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Now let’s execute the stored procedure with parameter value ‘NY’ – which will select 99% of data. -Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  The stored procedure took 2922 ms to complete.   The stored procedure was granted 6704 KB based on 8000 rows being estimated.    The estimated number of rows, 8000 is way different from the actual number of rows 792000 because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘WA’ in our case. This underestimation will lead to spill over tempdb, resulting in poor performance.   There was Hash Warning (Recursion) in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Let’s recompile the stored procedure and then let’s first execute the stored procedure with parameter value ‘NY’.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts, www.sqlworkshops.com/webcasts for further details.   exec sp_recompile CustomersByState go --Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  Now the stored procedure took only 1046 ms instead of 2922 ms.   The stored procedure was granted 146752 KB of memory. The estimated number of rows, 792000 is similar to actual number of rows of 792000. Better performance of this stored procedure execution is due to better estimation of memory and avoiding spill over tempdb.   There was no Hash Warning in SQL Profiler.   Now let’s execute the stored procedure with parameter value ‘WA’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go  The stored procedure took 351 ms to complete, higher than the previous execution time of 294 ms.    This stored procedure was granted more memory (146752 KB) than necessary (6704 KB) based on parameter value ‘NY’ for estimation (792000 rows) instead of parameter value ‘WA’ for estimation (8000 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘NY’ in this case. This overestimation leads to poor performance of this Hash Match operation, it might also affect the performance of other concurrently executing queries requiring memory and hence overestimation is not recommended.     The estimated number of rows, 792000 is much more than the actual number of rows of 8000.  Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined data range.Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, recompile) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 297 ms and 1102 ms in line with previous optimal execution times.   The stored procedure with parameter value ‘WA’ has good estimation like before.   Estimated number of rows of 8000 is similar to actual number of rows of 8000.   The stored procedure with parameter value ‘NY’ also has good estimation and memory grant like before because the stored procedure was recompiled with current set of parameter values.  Estimated number of rows of 792000 is similar to actual number of rows of 792000.    The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.   There was no Hash Warning in SQL Profiler.   Let’s recreate the stored procedure with optimize for hint of ‘NY’. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, optimize for (@State = 'NY')) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 353 ms with parameter value ‘WA’, this is much slower than the optimal execution time of 294 ms we observed previously. This is because of overestimation of memory. The stored procedure with parameter value ‘NY’ has optimal execution time like before.   The stored procedure with parameter value ‘WA’ has overestimation of rows because of optimize for hint value of ‘NY’.   Unlike before, more memory was estimated to this stored procedure based on optimize for hint value ‘NY’.    The stored procedure with parameter value ‘NY’ has good estimation because of optimize for hint value of ‘NY’. Estimated number of rows of 792000 is similar to actual number of rows of 792000.   Optimal amount memory was estimated to this stored procedure based on optimize for hint value ‘NY’.   There was no Hash Warning in SQL Profiler.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.  Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Troubleshooting High-CPU Utilization for SQL Server

    - by Susantha Bathige
    The objective of this FAQ is to outline the basic steps in troubleshooting high CPU utilization on  a server hosting a SQL Server instance. The first and the most common step if you suspect high CPU utilization (or are alerted for it) is to login to the physical server and check the Windows Task Manager. The Performance tab will show the high utilization as shown below: Next, we need to determine which process is responsible for the high CPU consumption. The Processes tab of the Task Manager will show this information: Note that to see all processes you should select Show processes from all user. In this case, SQL Server (sqlserver.exe) is consuming 99% of the CPU (a normal benchmark for max CPU utilization is about 50-60%). Next we examine the scheduler data. Scheduler is a component of SQLOS which evenly distributes load amongst CPUs. The query below returns the important columns for CPU troubleshooting. Note – if your server is under severe stress and you are unable to login to SSMS, you can use another machine’s SSMS to login to the server through DAC – Dedicated Administrator Connection (see http://msdn.microsoft.com/en-us/library/ms189595.aspx for details on using DAC) SELECT scheduler_id ,cpu_id ,status ,runnable_tasks_count ,active_workers_count ,load_factor ,yield_count FROM sys.dm_os_schedulers WHERE scheduler_id See below for the BOL definitions for the above columns. scheduler_id – ID of the scheduler. All schedulers that are used to run regular queries have ID numbers less than 1048576. Those schedulers that have IDs greater than or equal to 1048576 are used internally by SQL Server, such as the dedicated administrator connection scheduler. cpu_id – ID of the CPU with which this scheduler is associated. status – Indicates the status of the scheduler. runnable_tasks_count – Number of workers, with tasks assigned to them that are waiting to be scheduled on the runnable queue. active_workers_count – Number of workers that are active. An active worker is never preemptive, must have an associated task, and is either running, runnable, or suspended. current_tasks_count - Number of current tasks that are associated with this scheduler. load_factor – Internal value that indicates the perceived load on this scheduler. yield_count – Internal value that is used to indicate progress on this scheduler.                                                                 Now to interpret the above data. There are four schedulers and each assigned to a different CPU. All the CPUs are ready to accept user queries as they all are ONLINE. There are 294 active tasks in the output as per the current_tasks_count column. This count indicates how many activities currently associated with the schedulers. When a  task is complete, this number is decremented. The 294 is quite a high figure and indicates all four schedulers are extremely busy. When a task is enqueued, the load_factor  value is incremented. This value is used to determine whether a new task should be put on this scheduler or another scheduler. The new task will be allocated to less loaded scheduler by SQLOS. The very high value of this column indicates all the schedulers have a high load. There are 268 runnable tasks which mean all these tasks are assigned a worker and waiting to be scheduled on the runnable queue.   The next step is  to identify which queries are demanding a lot of CPU time. The below query is useful for this purpose (note, in its current form,  it only shows the top 10 records). SELECT TOP 10 st.text  ,st.dbid  ,st.objectid  ,qs.total_worker_time  ,qs.last_worker_time  ,qp.query_plan FROM sys.dm_exec_query_stats qs CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp ORDER BY qs.total_worker_time DESC This query as total_worker_time as the measure of CPU load and is in descending order of the  total_worker_time to show the most expensive queries and their plans at the top:      Note the BOL definitions for the important columns: total_worker_time - Total amount of CPU time, in microseconds, that was consumed by executions of this plan since it was compiled. last_worker_time - CPU time, in microseconds, that was consumed the last time the plan was executed.   I re-ran the same query again after few seconds and was returned the below output. After few seconds the SP dbo.TestProc1 is shown in fourth place and once again the last_worker_time is the highest. This means the procedure TestProc1 consumes a CPU time continuously each time it executes.      In this case, the primary cause for high CPU utilization was a stored procedure. You can view the execution plan by clicking on query_plan column to investigate why this is causing a high CPU load. I have used SQL Server 2008 (SP1) to test all the queries used in this article.

    Read the article

  • Use Drive Mirroring for Instant Backup in Windows 7

    - by Trevor Bekolay
    Even with the best backup solution, a hard drive crash means you’ll lose a few hours of work. By enabling drive mirroring in Windows 7, you’ll always have an up-to-date copy of your data. Windows 7’s mirroring – which is only available in Professional, Enterprise, and Ultimate editions – is a software implementation of RAID 1, which means that two or more disks are holding the exact same data. The files are constantly kept in sync, so that if one of the disks fails, you won’t lose any data. Note that mirroring is not technically a backup solution, because if you accidentally delete a file, it’s gone from both hard disks (though you may be able to recover the file). As an additional caveat, having mirrored disks requires changing them to “dynamic disks,” which can only be read within modern versions of Windows (you may have problems working with a dynamic disk in other operating systems or in older versions of Windows). See this Wikipedia page for more information. You will need at least one empty disk to set up disk mirroring. We’ll show you how to mirror an existing disk (of equal or lesser size) without losing any data on the mirrored drive, and how to set up two empty disks as mirrored copies from the get-go. Mirroring an Existing Drive Click on the start button and type partitions in the search box. Click on the Create and format hard disk partitions entry that shows up. Alternatively, if you’ve disabled the search box, press Win+R to open the Run window and type in: diskmgmt.msc The Disk Management window will appear. We’ve got a small disk, labeled OldData, that we want to mirror in a second disk of the same size. Note: The disk that you will use to mirror the existing disk must be unallocated. If it is not, then right-click on it and select Delete Volume… to mark it as unallocated. This will destroy any data on that drive. Right-click on the existing disk that you want to mirror. Select Add Mirror…. Select the disk that you want to use to mirror the existing disk’s data and press Add Mirror. You will be warned that this process will change the existing disk from basic to dynamic. Note that this process will not delete any data on the disk! The new disk will be marked as a mirror, and it will starting copying data from the existing drive to the new one. Eventually the drives will be synced up (it can take a while), and any data added to the E: drive will exist on both physical hard drives. Setting Up Two New Drives as Mirrored If you have two new equal-sized drives, you can format them to be mirrored copies of each other from the get-go. Open the Disk Management window as described above. Make sure that the drives are unallocated. If they’re not, and you don’t need the data on either of them, right-click and select Delete volume…. Right-click on one of the unallocated drives and select New Mirrored Volume…. A wizard will pop up. Click Next. Click on the drives you want to hold the mirrored data and click Add. Note that you can add any number of drives. Click Next. Assign it a drive letter that makes sense, and then click Next. You’re limited to using the NTFS file system for mirrored drives, so enter a volume label, enable compression if you want, and then click Next. Click Finish to start formatting the drives. You will be warned that the new drives will be converted to dynamic disks. And that’s it! You now have two mirrored drives. Any files added to E: will reside on both physical disks, in case something happens to one of them. Conclusion While the switch from basic to dynamic disks can be a problem for people who dual-boot into another operating system, setting up drive mirroring is an easy way to make sure that your data can be recovered in case of a hard drive crash. Of course, even with drive mirroring, we advocate regular backups to external drives or online backup services. Similar Articles Productive Geek Tips Rebit Backup Software [Review]Disabling Instant Search in Outlook 2007Restore Files from Backups on Windows Home ServerSecond Copy 7 [Review]Backup Windows Home Server Folders to an External Hard Drive TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010

    Read the article

  • MySQL Connect 9 Days Away – Optimizer Sessions

    - by Bertrand Matthelié
    72 1024x768 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Following my previous blog post focusing on InnoDB talks at MySQL Connect, let us review today the sessions focusing on the MySQL Optimizer: Saturday, 11.30 am, Room Golden Gate 6: MySQL Optimizer Overview—Olav Sanstå, Oracle The goal of MySQL optimizer is to take a SQL query as input and produce an optimal execution plan for the query. This session presents an overview of the main phases of the MySQL optimizer and the primary optimizations done to the query. These optimizations are based on a combination of logical transformations and cost-based decisions. Examples of optimization strategies the presentation covers are the main query transformations, the join optimizer, the data access selection strategies, and the range optimizer. For the cost-based optimizations, an overview of the cost model and the data used for doing the cost estimations is included. Saturday, 1.00 pm, Room Golden Gate 6: Overview of New Optimizer Features in MySQL 5.6—Manyi Lu, Oracle Many optimizer features have been added into MySQL 5.6. This session provides an introduction to these great features. Multirange read, index condition pushdown, and batched key access will yield huge performance improvements on large data volumes. Structured explain, explain for update/delete/insert, and optimizer tracing will help users analyze and speed up queries. And last but not least, the session covers subquery optimizations in Release 5.6. Saturday, 7.00 pm, Room Golden Gate 4: BoF: Query Optimizations: What Is New and What Is Coming? This BoF presents common techniques for query optimization, covers what is new in MySQL 5.6, and provides a discussion forum in which attendees can tell the MySQL optimizer team which optimizations they would like to see in the future. Sunday, 1.15 pm, Room Golden Gate 8: Query Performance Comparison of MySQL 5.5 and MySQL 5.6—Øystein Grøvlen, Oracle MySQL Release 5.6 contains several improvements in the query optimizer that create improved performance for complex queries. This presentation looks at how MySQL 5.6 improves the performance of many of the queries in the DBT-3 benchmark. Based on the observed improvements, the presentation discusses what makes the specific queries perform better in Release 5.6. It describes the relevant new optimization techniques and gives examples of the types of queries that will benefit from these techniques. Sunday, 4.15 pm, Room Golden Gate 4: Powerful EXPLAIN in MySQL 5.6—Evgeny Potemkin, Oracle The EXPLAIN command of MySQL has long been a very useful tool for understanding how MySQL will execute a query. Release 5.6 of the MySQL database offers several new additions that give more-detailed information about the query plan and make it easier to understand at the same time. This presentation gives an overview of new EXPLAIN features: structured EXPLAIN in JSON format, EXPLAIN for INSERT/UPDATE/DELETE, and optimizer tracing. Examples in the session give insights into how you can take advantage of the new features. They show how these features supplement and relate to each other and to classical EXPLAIN and how and why the MySQL server chooses a particular query plan. You can check out the full program here as well as in the September edition of the MySQL newsletter. Not registered yet? You can still save US$ 300 over the on-site fee – Register Now!

    Read the article

  • New Replication, Optimizer and High Availability features in MySQL 5.6.5!

    - by Rob Young
    As the Product Manager for the MySQL database it is always great to announce when the MySQL Engineering team delivers another great product release.  As a field DBA and developer it is even better when that release contains improvements and innovation that I know will help those currently using MySQL for apps that range from modest intranet sites to the most highly trafficked web sites on the web.  That said, it is my pleasure to take my hat off to MySQL Engineering for today's release of the MySQL 5.6.5 Development Milestone Release ("DMR"). The new highlighted features in MySQL 5.6.5 are discussed here: New Self-Healing Replication ClustersThe 5.6.5 DMR improves MySQL Replication by adding Global Transaction Ids and automated utilities for self-healing Replication clusters.  Prior to 5.6.5 this has been somewhat of a pain point for MySQL users with most developing custom solutions or looking to costly, complex third-party solutions for these capabilities.  With 5.6.5 these shackles are all but removed by a solution that is included with the GPL version of the database and supporting GPL tools.  You can learn all about the details of the great, problem solving Replication features in MySQL 5.6 in Mat Keep's Developer Zone article.  New Replication Administration and Failover UtilitiesAs mentioned above, the new Replication features, Global Transaction Ids specifically, are now supported by a set of automated GPL utilities that leverage the new GTIDs to provide administration and manual or auto failover to the most up to date slave (that is the default, but user configurable if needed) in the event of a master failure. The new utilities, along with links to Engineering related blogs, are discussed in detail in the DevZone Article noted above. Better Query Optimization and ThroughputThe MySQL Optimizer team continues to amaze with the latest round of improvements in 5.6.5. Along with much refactoring of the legacy code base, the Optimizer team has improved complex query optimization and throughput by adding these functional improvements: Subquery Optimizations - Subqueries are now included in the Optimizer path for runtime optimization.  Better throughput of nested queries enables application developers to simplify and consolidate multiple queries and result sets into a single unit or work. Optimizer now uses CURRENT_TIMESTAMP as default for DATETIME columns - For simplification, this eliminates the need for application developers to assign this value when a column of this type is blank by default. Optimizations for Range based queries - Optimizer now uses ready statistics vs Index based scans for queries with multiple range values. Optimizations for queries using filesort and ORDER BY.  Optimization criteria/decision on execution method is done now at optimization vs parsing stage. Print EXPLAIN in JSON format for hierarchical readability and Enterprise tool consumption. You can learn the details about these new features as well all of the Optimizer based improvements in MySQL 5.6 by following the Optimizer team blog. You can download and try the MySQL 5.6.5 DMR here. (look under "Development Releases")  Please let us know what you think!  The new HA utilities for Replication Administration and Failover are available as part of the MySQL Workbench Community Edition, which you can download here .Also New in MySQL LabsAs has become our tradition when announcing DMRs we also like to provide "Early Access" development features to the MySQL Community via the MySQL Labs.  Today is no exception as we are also releasing the following to Labs for you to download, try and let us know your thoughts on where we need to improve:InnoDB Online OperationsMySQL 5.6 now provides Online ADD Index, FK Drop and Online Column RENAME.  These operations are non-blocking and will continue to evolve in future DMRs.  You can learn the grainy details by following John Russell's blog.InnoDB data access via Memcached API ("NotOnlySQL") - Improved refresh of an earlier feature releaseSimilar to Cluster 7.2, MySQL 5.6 provides direct NotOnlySQL access to InnoDB data via the familiar Memcached API. This provides the ultimate in flexibility for developers who need fast, simple key/value access and complex query support commingled within their applications.Improved Transactional Performance, ScaleThe InnoDB Engineering team has once again under promised and over delivered in the area of improved performance and scale.  These improvements are also included in the aggregated Spring 2012 labs release:InnoDB CPU cache performance improvements for modern, multi-core/CPU systems show great promise with internal tests showing:    2x throughput improvement for read only activity 6x throughput improvement for SELECT range Read/Write benchmarks are in progress More details on the above are available here. You can download all of the above in an aggregated "InnoDB 2012 Spring Labs Release" binary from the MySQL Labs. You can also learn more about these improvements and about related fixes to mysys mutex and hash sort by checking out the InnoDB team blog.MySQL 5.6.5 is another installment in what we believe will be the best release of the MySQL database ever.  It also serves as a shining example of how the MySQL Engineering team at Oracle leads in MySQL innovation.You can get the overall Oracle message on the MySQL 5.6.5 DMR and Early Access labs features here. As always, thanks for your continued support of MySQL, the #1 open source database on the planet!

    Read the article

  • Some notes on Reflector 7

    - by CliveT
    Both Bart and I have blogged about some of the changes that we (and other members of the team) have made to .NET Reflector for version 7, including the new tabbed browsing model, the inclusion of Jason Haley's PowerCommands add-in and some improvements to decompilation such as handling iterator blocks. The intention of this blog post is to cover all of the main new features in one place, and to describe the three new editions of .NET Reflector 7. If you'd simply like to try out the latest version of the beta for yourself you can do so here. Three new editions .NET Reflector 7 will come in three new editions: .NET Reflector .NET Reflector VS .NET Reflector VSPro The first edition is just the standalone Windows application. The latter two editions include the Windows application, but also add the power of Reflector into Visual Studio so that you can save time switching tools and quickly get to the bottom of a debugging issue that involves third-party code. Let's take a look at some of the new features in each edition. Tabbed browsing .NET Reflector now has a tabbed browsing model, in which the individual tabs have independent histories. You can open a new tab to view the selected object by using CTRL+CLICK. I've found this really useful when I'm investigating a particular piece of code but then want to focus on some other methods that I find along the way. For version 7, we wanted to implement the basic idea of tabs to see whether it is something that users will find helpful. If it is something that enhances productivity, we will add more tab-based features in a future version. PowerCommands add-in We have also included Jason Haley's PowerCommands add-in as part of version 7. This add-in provides a number of useful commands, including support for opening .xap files and extracting the constituent assemblies, and a query editor that allows C# queries to be written and executed against the Reflector object model . All of the PowerCommands features can be turned on from the options menu. We will be really interested to see what people are finding useful for further integration into the main tool in the future. My personal favourite part of the PowerCommands add-in is the query editor. You can set up as many of your own queries as you like, but we provide 25 to get you started. These do useful things like listing all extension methods in a given assembly, and displaying other lower-level information, such as the number of times that a given method uses the box IL instruction. These queries can be extracted and then executed from the 'Run Query' context menu within the assembly explorer. Moreover, the queries can be loaded, modified, and saved using the built-in editor, allowing very specific user customization and sharing of queries. The PowerCommands add-in contains many other useful utilities. For example, you can open an item using an external application, work with enumeration bit flags, or generate assembly binding redirect files. You can see Bart's earlier post for a more complete list. .NET Reflector VS .NET Reflector VS adds a brand new Reflector object browser into Visual Studio to save you time opening .NET Reflector separately and browsing for an object. A 'Decompile and Explore' option is also added to the context menu of references in the Solution Explorer, so you don't need to leave Visual Studio to look through decompiled code. We've also added some simple navigation features to allow you to move through the decompiled code as quickly and easily as you can in .NET Reflector. When this is selected, the add-in decompiles the given assembly, Once the decompilation has finished, a clone of the Reflector assembly explorer can be used inside Visual Studio. When Reflector generates the source code, it records the location information. You can therefore navigate from the source file to other decompiled source using the 'Go To Definition' context menu item. This then takes you to the definition in another decompiled assembly. .NET Reflector VSPro .NET Reflector VSPro builds on the features in .NET Reflector VS to add the ability to debug any source code you decompile. When you decompile with .NET Reflector VSPro, a matching .pdb is generated, so you can use Visual Studio to debug the source code as if it were part of the project. You can now use all the standard debugging techniques that you are used to in the Visual Studio debugger, and step through decompiled code as if it were your own. Again, you can select assemblies for decompilation. They are then decompiled. And then you can debug as if they were one of your own source code files. The future of .NET Reflector As I have mentioned throughout this post, most of the new features in version 7 are exploratory steps and we will be watching feedback closely. Although we don't want to speculate now about any other new features or bugs that will or won't be fixed in the next few versions of .NET Reflector, Bart has mentioned in a previous post that there are lots of improvements we intend to make. We plan to do this with great care and without taking anything away from the simplicity of the core product. User experience is something that we pride ourselves on at Red Gate, and it is clear that Reflector is still a long way off our usual standards. We plan for the next few versions of Reflector to be worked on by some of our top usability specialists who have been involved with our other market-leading products such as the ANTS Profilers and SQL Compare. I re-iterate the need for the really great simple mode in .NET Reflector to remain intact regardless of any other improvements we are planning to make. I really hope that you enjoy using some of the new features in version 7 and that Reflector continues to be your favourite .NET development tool for a long time to come.

    Read the article

  • InnoDB Compression Improvements in MySQL 5.6

    - by Inaam Rana
    MySQL 5.6 comes with significant improvements for the compression support inside InnoDB. The enhancements that we'll talk about in this piece are also a good example of community contributions. The work on these was conceived, implemented and contributed by the engineers at Facebook. Before we plunge into the details let us familiarize ourselves with some of the key concepts surrounding InnoDB compression. In InnoDB compressed pages are fixed size. Supported sizes are 1, 2, 4, 8 and 16K. The compressed page size is specified at table creation time. InnoDB uses zlib for compression. InnoDB buffer pool will attempt to cache compressed pages like normal pages. However, whenever a page is actively used by a transaction, we'll always have the uncompressed version of the page as well i.e.: we can have a page in the buffer pool in compressed only form or in a state where we have both the compressed page and uncompressed version but we'll never have a page in uncompressed only form. On-disk we'll always only have the compressed page. When both compressed and uncompressed images are present in the buffer pool they are always kept in sync i.e.: changes are applied to both atomically. Recompression happens when changes are made to the compressed data. In order to minimize recompressions InnoDB maintains a modification log within a compressed page. This is the extra space available in the page after compression and it is used to log modifications to the compressed data thus avoiding recompressions. DELETE (and ROLLBACK of DELETE) and purge can be performed without recompressing the page. This is because the delete-mark bit and the system fields DB_TRX_ID and DB_ROLL_PTR are stored in uncompressed format on the compressed page. A record can be purged by shuffling entries in the compressed page directory. This can also be useful for updates of indexed columns, because UPDATE of a key is mapped to INSERT+DELETE+purge. A compression failure happens when we attempt to recompress a page and it does not fit in the fixed size. In such case, we first try to reorganize the page and attempt to recompress and if that fails as well then we split the page into two and recompress both pages. Now lets talk about the three major improvements that we made in MySQL 5.6.Logging of Compressed Page Images:InnoDB used to log entire compressed data on the page to the redo logs when recompression happens. This was an extra safety measure to guard against the rare case where an attempt is made to do recovery using a different zlib version from the one that was used before the crash. Because recovery is a page level operation in InnoDB we have to be sure that all recompress attempts must succeed without causing a btree page split. However, writing entire compressed data images to the redo log files not only makes the operation heavy duty but can also adversely affect flushing activity. This happens because redo space is used in a circular fashion and when we generate much more than normal redo we fill up the space much more quickly and in order to reuse the redo space we have to flush the corresponding dirty pages from the buffer pool.Starting with MySQL 5.6 a new global configuration parameter innodb_log_compressed_pages. The default value is true which is same as the current behavior. If you are sure that you are not going to attempt to recover from a crash using a different version of zlib then you should set this parameter to false. This is a dynamic parameter.Compression Level:You can now set the compression level that zlib should choose to compress the data. The global parameter is innodb_compression_level - the default value is 6 (the zlib default) and allowed values are 1 to 9. Again the parameter is dynamic i.e.: you can change it on the fly.Dynamic Padding to Reduce Compression Failures:Compression failures are expensive in terms of CPU. We go through the hoops of recompress, failure, reorganize, recompress, failure and finally page split. At the same time, how often we encounter compression failure depends largely on the compressibility of the data. In MySQL 5.6, courtesy of Facebook engineers, we have an adaptive algorithm based on per-index statistics that we gather about compression operations. The idea is that if a certain index/table is experiencing too many compression failures then we should try to pack the 16K uncompressed version of the page less densely i.e.: we let some space in the 16K page go unused in an attempt that the recompression won't end up in a failure. In other words, we dynamically keep adding 'pad' to the 16K page till we get compression failures within an agreeable range. It works the other way as well, that is we'll keep removing the pad if failure rate is fairly low. To tune the padding effort two configuration variables are exposed. innodb_compression_failure_threshold_pct: default 5, range 0 - 100,dynamic, implies the percentage of compress ops to fail before we start using to padding. Value 0 has a special meaning of disabling the padding. innodb_compression_pad_pct_max: default 50, range 0 - 75, dynamic, the  maximum percentage of uncompressed data page that can be reserved as pad.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 5

    - by MarkPearl
    Learning Outcomes Describe the operation of a memory cell Explain the difference between DRAM and SRAM Discuss the different types of ROM Explain the concepts of a hard failure and a soft error respectively Describe SDRAM organization Semiconductor Main Memory The two traditional forms of RAM used in computers are DRAM and SRAM DRAM (Dynamic RAM) Divided into two technologies… Dynamic Static Dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have natural tendency to discharge, dynamic RAM requires periodic charge refreshing to maintain data storage. The term dynamic refers to the tendency of the stored charge to leak away, even with power continuously applied. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analogue device. The capacitor can store any charge value within a range, a threshold value determines whether the charge is interpreted as a 1 or 0. SRAM (Static RAM) SRAM is a digital device that uses the same logic elements used in the processor. In SRAM, binary values are stored using traditional flip flop logic configurations. SRAM will hold its data as along as power is supplied to it. Unlike DRAM, no refresh is required to retain data. SRAM vs. DRAM DRAM is simpler and smaller than SRAM. Thus it is more dense and less expensive than SRAM. The cost of the refreshing circuitry for DRAM needs to be considered, but if the machine requires a large amount of memory, DRAM turns out to be cheaper than SRAM. SRAMS are somewhat faster than DRAM, thus SRAM is generally used for cache memory and DRAM is used for main memory. Types of ROM Read Only Memory (ROM) contains a permanent pattern of data that cannot be changed. ROM is non volatile meaning no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROM is microprogramming, other applications include library subroutines for frequently wanted functions, System programs, Function tables. A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. To reduce costs of fabrication, we have PROMS. PROMS are… Written only once Non-volatile Written after fabrication Another variation of ROM is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations, but for which non volatile storage is required. There are three common forms of read-mostly memory, namely… EPROM EEPROM Flash memory Error Correction Semiconductor memory is subject to errors, which can be classed into two categories… Hard failure – Permanent physical defect so that the memory cell or cells cannot reliably store data Soft failure – Random error that alters the contents of one or more memory cells without damaging the memory (common cause includes power supply issues, etc.) Most modern main memory systems include logic for both detecting and correcting errors. Error detection works as follows… When data is to be read into memory, a calculation is performed on the data to produce a code Both the code and the data are stored When the previously stored word is read out, the code is used to detect and possibly correct errors The error checking provides one of 3 possible results… No errors are detected – the fetched data bits are sent out An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of bits to be sent out An error is detected, but it is not possible to correct it. This condition is reported Hamming Code See wiki for detailed explanation. We will probably need to know how to do a hemming code – refer to the textbook (pg. 188 – 189) Advanced DRAM organization One of the most critical system bottlenecks when using high-performance processors is the interface to main memory. This interface is the most important pathway in the entire computer system. The basic building block of main memory remains the DRAM chip. In recent years a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market including… SDRAM (Synchronous DRAM) DDR-DRAM RDRAM SDRAM (Synchronous DRAM) SDRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states. SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access In burst mode a series of data bits can be clocked out rapidly after the first bit has been accessed SDRAM has a multiple bank internal architecture that improves opportunities for on chip parallelism SDRAM performs best when it is transferring large blocks of data serially There is now an enhanced version of SDRAM known as double data rate SDRAM or DDR-SDRAM that overcomes the once-per-cycle limitation of SDRAM

    Read the article

  • .htaccess allow from hostname?

    - by Mikey B
    Ubuntu 9.10 Apache2 Hi Guys, Long story short, I need to restrict access to a certain part of my web site based on a dynamic IP source address that changes every now and then. Historically, I've just added the following to htaccess... order deny,allow deny from all # allow my dynamic IP address allow from <dynamic ip> But the problem is that I'll have to manually make this change every time the IP changes. Ideally I'd like to specify a hostname instead... something like: order deny,allow deny from all # allow my host allow from hostname.whatever.local That doesn't seemed to have worked though. I get an error 403 - access forbidden. Does .htaccess not support hostnames?

    Read the article

  • Postgres 9.0 locking up, 100% CPU

    - by Jake
    We are having a problem where our Postgres 9.0 server occasionally locks up and kills our webapp. Restarting Postgres fixes the problem. Here's what I've been able to observe: First, usage of one CPU jumps to 100% for a few minutes Disk operations drop to ~0 during this time Database operations drop to 0 (blocks and tuples per sec) Logs show during this time: WARNING: worker took too long to start; cancelled WARNING: worker took too long to start; cancelled No Queries in logs (only those over 200ms are logged) No unusually long-running queries logged before or during Then the second CPU jumps to 100% The number of postgres processes jumps from the usual 8-10 to ~20 Matched by a spike in Postgres Blocks per second (about twice normal) Logs show LOG: could not accept SSL connection: EOF detected Queries are running but slow Restarting postgres returns everything to normal Setup: Server: Amazon EC2 Large Ubuntu 10.04.2 LTS Postgres 9.0.3 Dedicated DB server Does anyone have any idea what's causing this? Or any suggestions about what else I should be checking out?

    Read the article

  • How can I grant read-only access to my SQL Server 2008 database?

    - by Adrian Grigore
    Hi, I'm trying to grant read-only access (in other words: select queries only) to a user account on my SQL Server 2008 R2 database. Which rights do I have to grant to the user to make this work? I've tried several kinds of combinations of permissions on the server and the database itself, but in all cases the user could still run update queries or he could not run any queries (not even select) at all. The error message I always got was The server principal "foo" is not able to access the database "bar" under the current security context. Thanks for your help, Adrian

    Read the article

  • Windows 2003 DNS updates from ISC DHCP server

    - by wolfgangsz
    We have a very mixed network, with most clients being Debian Lenny, the rest Windows XP/Vista/7. The network itself is split into two segments (for technical reasons) called "corporate" and "engineering". On the "corporate" side all clients get their IP addresses from a Windows DHCP server and the dynamic updates into the Windows DNS work just fine. On the "engineering" side, clients get their IP addresses from a linux machine running the standard ISC DHCP server. Although this server is configured to do dynamic DNS updates, they actually don't work. Anybody got any advice on how to fix this? Please note: dynamic updates from the clients directly into the DNS would work, but are not an option for us. So this is strictly on how make this work from an ISC DHCP server to a Windows DNS server.

    Read the article

  • Relay thru external SMTP server on Exchange 2010

    - by MadBoy
    My client has dynamic IP on which he hosts Exchange 2010 with POP3 Connector running and gathering emails from his current hosting. Until he gets static IP he wants to send emails out. This will work most of the time but some servers won't accept such email sent by Exchange (from dynamic ip due to multiple reasons) so I would like to make a relay thru external SMTP server which hosts current mailboxes. Normally SMTP server could be set up to allow relay thru it but this would require static IP to be allowed on that server so it would know which IP is allowed to relay thru it. Or is there a way to setup relay in Exchange 2010 so it can use dynamic IP and kinda authenticates with user/password itself on the hosted server?

    Read the article

  • Assign two static IP addresses to one mac address

    - by Timo Ylikännö
    Can Isc-dhcp-server give two static ip addresses to one mac address? I have several home terminals in my network. Each terminal have two interfaces. One for public traffic and one for a management traffic. Both interfaces have same mac address. DHCP server can detect interfaces via dhcp option field and dhcp class declarations. Every terminal have to have static ip address instead of dynamic address. With dynamic address and dynamic pools this would be an easy task. Or is there any dhcp server that can do this?

    Read the article

  • Caching DNS server (bind9.2) CPU usage is so so so high.

    - by Gk
    Hi, I have a caching-only dns server which get ~3k queries per second. Here is specs: Xeon dual-core 2,8GHz 4GB of RAM Centos 5x (kernel 2.6.18-164.15.1.el5PAE) bind 9.4.2 rndc status: recursive clients: 666/4900/5000 About 300 new queries (not in cache) per second. Bind always uses 100% on one core on single-thread config. After I recompiled it to multi-thread, it uses nearly 200% on two core :( No iowait, only sys and user. I searched around but didn't see any info about how bind use CPU. Why does it become bottleneck? One more thing, here is RAM usage: cat /proc/meminfo MemTotal: 4147876 kB MemFree: 1863972 kB Buffers: 143632 kB Cached: 372792 kB SwapCached: 0 kB Active: 1916804 kB Inactive: 276056 kB I've set max-cache-size to 0 to make sure bind can use as much RAM as it want, but it always stop at ~2GB. Since every second we got not cached queries so theoretically RAM must be exhausted but it wasn't. Do you have any idea? TIA, -Gk

    Read the article

  • Linq2SQL vs NHibernate performance (have I gone mad?)

    - by HeavyWave
    I have written the following tests to compare performance of Linq2SQL and NHibernate and I find results to be somewhat strange. Mappings are straight forward and identical for both. Both are running against a live DB. Although I'm not deleting Campaigns in case of Linq, but that shouldn't affect performance by more than 10 ms. Linq: [Test] public void Test1000ReadsWritesToAgentStateLinqPrecompiled() { Stopwatch sw = new Stopwatch(); Stopwatch swIn = new Stopwatch(); sw.Start(); for (int i = 0; i < 1000; i++) { swIn.Reset(); swIn.Start(); ReadWriteAndDeleteAgentStateWithLinqPrecompiled(); swIn.Stop(); Console.WriteLine("Run ReadWriteAndDeleteAgentState: " + swIn.ElapsedMilliseconds + " ms"); } sw.Stop(); Console.WriteLine("Total Time: " + sw.ElapsedMilliseconds + " ms"); Console.WriteLine("Average time to execute queries: " + sw.ElapsedMilliseconds / 1000 + " ms"); } private static readonly Func<AgentDesktop3DataContext, int, EntityModel.CampaignDetail> GetCampaignById = CompiledQuery.Compile<AgentDesktop3DataContext, int, EntityModel.CampaignDetail>( (ctx, sessionId) => (from cd in ctx.CampaignDetails join a in ctx.AgentCampaigns on cd.CampaignDetailId equals a.CampaignDetailId where a.AgentStateId == sessionId select cd).FirstOrDefault()); private void ReadWriteAndDeleteAgentStateWithLinqPrecompiled() { int id = 0; using (var ctx = new AgentDesktop3DataContext()) { EntityModel.AgentState agentState = new EntityModel.AgentState(); var campaign = new EntityModel.CampaignDetail { CampaignName = "Test" }; var campaignDisposition = new EntityModel.CampaignDisposition { Code = "123" }; campaignDisposition.Description = "abc"; campaign.CampaignDispositions.Add(campaignDisposition); agentState.CallState = 3; campaign.AgentCampaigns.Add(new AgentCampaign { AgentState = agentState }); ctx.CampaignDetails.InsertOnSubmit(campaign); ctx.AgentStates.InsertOnSubmit(agentState); ctx.SubmitChanges(); id = agentState.AgentStateId; } using (var ctx = new AgentDesktop3DataContext()) { var dbAgentState = ctx.GetAgentStateById(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); var campaignDetails = GetCampaignById(ctx, id); Assert.AreEqual(campaignDetails.CampaignDispositions[0].Description, "abc"); } using (var ctx = new AgentDesktop3DataContext()) { ctx.DeleteSessionById(id); } } NHibernate (the loop is the same): private void ReadWriteAndDeleteAgentState() { var id = WriteAgentState().Id; StartNewTransaction(); var dbAgentState = agentStateRepository.Get(id); Assert.IsNotNull(dbAgentState); Assert.AreEqual(dbAgentState.CallState, 3); Assert.AreEqual(dbAgentState.Campaigns[0].Dispositions[0].Description, "abc"); var campaignId = dbAgentState.Campaigns[0].Id; agentStateRepository.Delete(dbAgentState); NHibernateSession.Current.Transaction.Commit(); Cleanup(campaignId); NHibernateSession.Current.BeginTransaction(); } Results: NHibernate: Total Time: 9469 ms Average time to execute 13 queries: 9 ms Linq: Total Time: 127200 ms Average time to execute 13 queries: 127 ms Linq lost by 13.5 times! Event with precompiled queries (both read queries are precompiled). This can't be right, although I expected NHibernate to be faster, this is just too big of a difference, considering mappings are identical and NHibernate actually executes more queries against the DB.

    Read the article

  • g++ symbol versioning. Set it to GCC_3.0 using version 4 of g++

    - by Ismael
    Hi all I need to implemente a Java class which uses JNI to control a fiscal printer in XUbuntu 8.10 with sun-java6-jdk installed. The structure is the following: EpsonDriver.java loads libEpson.so libEpson is linked dynamically with EpsonFiscalProtocol.so ( provided by Epson, no source available ) and pthread I use javah to generate the header file, and the code compiles. Then I put the libEpson.so in $JAVA_HOME/jre/lib/i386, and EpsonDriver.java uses an static initializar System.loadLibrary("libEpson") That part works, however, when I try to use any of the methods I get an unsatisfiedLinkError exception. Some time ago, a coworker did a version that works, and using objdump -Dslx I got the following: Program Header: LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12 filesz 0x0000ccc4 memsz 0x0000ccc4 flags r-x LOAD off 0x0000d000 vaddr 0x0000d000 paddr 0x0000d000 align 2**12 filesz 0x00000250 memsz 0x00044a5c flags rw- DYNAMIC off 0x0000d014 vaddr 0x0000d014 paddr 0x0000d014 align 2**2 filesz 0x000000f0 memsz 0x000000f0 flags rw- NOTE off 0x000000d4 vaddr 0x000000d4 paddr 0x000000d4 align 2**2 filesz 0x00000024 memsz 0x00000024 flags r-- STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**2 filesz 0x00000000 memsz 0x00000000 flags rw- Dynamic Section: NEEDED EpsonFiscalProtocol.so NEEDED libpthread.so.0 NEEDED libstdc++.so.6 NEEDED libm.so.6 NEEDED libc.so.6 SONAME libcom_tichile_jpos_EpsonSerialDriver.so INIT 0x00007254 FINI 0x0000ba08 GNU_HASH 0x000000f8 STRTAB 0x00001f50 SYMTAB 0x00000ae0 STRSZ 0x00002384 SYMENT 0x00000010 PLTGOT 0x0000d108 PLTRELSZ 0x00000008 PLTREL 0x00000011 JMPREL 0x0000724c REL 0x000045c4 RELSZ 0x00002c88 RELENT 0x00000008 TEXTREL 0x00000000 VERNEED 0x00004564 VERNEEDNUM 0x00000002 VERSYM 0x000042d4 RELCOUNT 0x000000ac Version References: required from libstdc++.so.6: 0x056bafd3 0x00 05 CXXABI_1.3 0x08922974 0x00 04 GLIBCXX_3.4 required from libc.so.6: 0x0b792650 0x00 03 GCC_3.0 0x0d696910 0x00 02 GLIBC_2.0 In the recently compiled file I get: Program Header: LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12 filesz 0x00005300 memsz 0x00005300 flags r-x LOAD off 0x00005300 vaddr 0x00006300 paddr 0x00006300 align 2**12 filesz 0x00000274 memsz 0x00010314 flags rw- DYNAMIC off 0x00005314 vaddr 0x00006314 paddr 0x00006314 align 2**2 filesz 0x000000e0 memsz 0x000000e0 flags rw- EH_FRAME off 0x00004a00 vaddr 0x00004a00 paddr 0x00004a00 align 2**2 filesz 0x00000154 memsz 0x00000154 flags r-- Dynamic Section: NEEDED libstdc++.so.5 NEEDED libm.so.6 NEEDED libgcc_s.so.1 NEEDED libc.so.6 SONAME EpsonFiscalProtocol.so INIT 0x00001cb4 FINI 0x00004994 HASH 0x000000b4 STRTAB 0x00000da4 SYMTAB 0x000004f4 STRSZ 0x00000acf SYMENT 0x00000010 PLTGOT 0x0000640c PLTRELSZ 0x00000270 PLTREL 0x00000011 JMPREL 0x00001a44 REL 0x000019dc RELSZ 0x00000068 RELENT 0x00000008 VERNEED 0x0000198c VERNEEDNUM 0x00000002 VERSYM 0x00001874 RELCOUNT 0x00000004 Version References: required from libstdc++.so.5: 0x056bafd2 0x00 04 CXXABI_1.2 required from libc.so.6: 0x09691f73 0x00 03 GLIBC_2.1.3 0x0d696910 0x00 02 GLIBC_2.0 So I suspect the main diference is the GCC_3.0 symbol I compile libcom_tichile_EpsonSerialDriver.so with the following command ( from memory as I not at work right now ) g++ -Wl,-soname=.... -shared -I/*jni libraries*/ -o libcom_tichile_jpos_EpsonSerialDriver -lEpsonFiscalProtocol -lpthread Is there any way to tell g++ to use that symbol version? Or any idea in how to make it work? EDIT: I have another non-working version with the followin dump: Program Header: LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12 filesz 0x0000bf68 memsz 0x0000bf68 flags r-x LOAD off 0x0000cc0c vaddr 0x0000cc0c paddr 0x0000cc0c align 2**12 filesz 0x000005e8 memsz 0x00044df0 flags rw- DYNAMIC off 0x0000cc20 vaddr 0x0000cc20 paddr 0x0000cc20 align 2**2 filesz 0x000000f8 memsz 0x000000f8 flags rw- EH_FRAME off 0x0000b310 vaddr 0x0000b310 paddr 0x0000b310 align 2**2 filesz 0x000002bc memsz 0x000002bc flags r-- STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**2 filesz 0x00000000 memsz 0x00000000 flags rw- RELRO off 0x0000cc0c vaddr 0x0000cc0c paddr 0x0000cc0c align 2**0 filesz 0x000003f4 memsz 0x000003f4 flags r-- Dynamic Section: NEEDED EpsonFiscalProtocol.so NEEDED libpthread.so.0 NEEDED libstdc++.so.6 NEEDED libm.so.6 NEEDED libgcc_s.so.1 NEEDED libc.so.6 SONAME libcom_tichile_jpos_EpsonSerialDriver.so INIT 0x000055d8 FINI 0x0000a968 HASH 0x000000f4 GNU_HASH 0x00000a30 STRTAB 0x00002870 SYMTAB 0x00001410 STRSZ 0x00002339 SYMENT 0x00000010 PLTGOT 0x0000cff4 PLTRELSZ 0x00000168 PLTREL 0x00000011 JMPREL 0x00005470 REL 0x00004ea8 RELSZ 0x000005c8 RELENT 0x00000008 VERNEED 0x00004e38 VERNEEDNUM 0x00000002 VERSYM 0x00004baa RELCOUNT 0x00000001 Version References: required from libstdc++.so.6: 0x056bafd3 0x00 05 CXXABI_1.3 0x08922974 0x00 03 GLIBCXX_3.4 required from libc.so.6: 0x09691f73 0x00 06 GLIBC_2.1.3 0x0d696914 0x00 04 GLIBC_2.4 0x0d696910 0x00 02 GLIBC_2.0 Now I think the main difference is in the GCC_3.0 symbol/ABI EDIT: Luckily, a coworker found a way to talk to the printer using Java

    Read the article

  • How to increase signal/range of your Wi-Fi antenna-less repeater/booster over the network?

    - by kenorb
    I've BT Home Hub in the upper flat (2-3 walls behind) and I'm using WPS Wireless-N Wifi Range Router Repeater Extender in my flat where I'm using my laptop. These are antenna-less devices. Are there any life-hack tricks to increase signal/range of my repeater without buying the new more powerful repeater? I've tried already to move my repeater closer to the ceiling or putting the aluminium foil underneath, but it didn't help. Are there any methods, specific plates or materials which can boost the signal? Specification: Model: WN518W2 Frequency range: 2.4-2.4835GHz Wireless transmit power: 14 ~17 dBm (Typical) Wireless Signal Rates With Automatic Fallback: 11n: Up to 300Mbps(dynamic), 11g: Up to 54Mbps(dynamic), 11b: Up to 11Mbps(dynamic) Modulation Technology: DBPSK, DQPSK, CCK, OFDM, 16-QAM, 64-QAM Receiver Sensitivity: 300M: -68dBm@10% PER / 150M: -68dBm@10% PER / 108M: -68dBm@10% PER / 54M: -68dBm@10% PER / 11M: -85dBm@8% PER / 6M: -88dBm@10% PER / 1M: -90dBm@8% PER Product dimensions: 11 * 6 * 7cm

    Read the article

  • master-slave-slave replication: master will become bottleneck for writes

    - by JMW
    hi, the mysql database has arround 2TB of data. i have a master-slave-slave replication running. the application that uses the database does read (SELECT) queries just on one of the 2 slaves and write (DELETE/INSERT/UPDATE) queries on the master. the application does way more reads, than writes. if we have a problem with the read (SELECT) queries, we can just add another slave database and tell the application, that there is another salve. so it scales well... Currently, the master is running arround 40% disk io due to the writes. So i'm thinking about how to scale the the database in the future. Because one day the master will be overloaded. What could be a solution there? maybe mysql cluster? if so, are there any pitfalls or limitations in switching the database to ndb? thanks a lot in advance... :)

    Read the article

  • Caching DNS server (bind9.2) CPU usage is so so so high

    - by Gk.
    I have a caching-only dns server which get ~3k queries per second. Here is specs: Xeon dual-core 2,8GHz 4GB of RAM Centos 5x (kernel 2.6.18-164.15.1.el5PAE) bind 9.4.2 rndc status: recursive clients: 666/4900/5000 About 300 new queries (not in cache) per second. Bind always uses 100% on one core on single-thread config. After I recompiled it to multi-thread, it uses nearly 200% on two core :( No iowait, only sys and user. I searched around but didn't see any info about how bind use CPU. Why does it become bottleneck? One more thing, here is RAM usage: cat /proc/meminfo MemTotal: 4147876 kB MemFree: 1863972 kB Buffers: 143632 kB Cached: 372792 kB SwapCached: 0 kB Active: 1916804 kB Inactive: 276056 kB I've set max-cache-size to 0 to make sure bind can use as much RAM as it want, but it always stop at ~2GB. Since every second we got not cached queries so theoretically RAM must be exhausted but it wasn't. Do you have any idea? TIA, -Gk

    Read the article

  • How do we increase the maximum allowed HTTP GET query length in Jetty?

    - by Mike
    We are using Jetty to run an Apache Solr index. We've had some queries that have grown way beyond the previously expected maximum length, and are now having issues wehre most queries are not returning any data because the URL gets truncated. These requests are not being made through a browser, they're being made programmatically using the Apache_Solr_Service PHP library. The application is expecting queries to come in as HTTP GET requests, so simply switching to a POST will not solve this problem. How can we increase the maximum allowed HTTP GET query length in Jetty? Thanks!

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >