Search Results

Search found 15364 results on 615 pages for 'static assert'.

Page 152/615 | < Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >

  • Function defined but not used in C

    - by thetna
    I have following code: static __inline__ LIST list_List(POINTER P) { return list_Cons(P,list_Nil()); } After compilation I got following warning: inlining is unlikely but function size may grow I removed the inline and changed into the following : static LIST list_List(POINTER P) { return list_Cons(P,list_Nil()); } Now I get the following warning: list_List is defined but not used. Can anybody please suggest me how can remove that warning.

    Read the article

  • Java overloading and overriding

    - by Padmanabh
    We always say that method overloading is static polymorphism and overriding is runtime polymorphism. What exactly do we mean by static here? Is the call to a method resolved on compiling the code? So whats the difference between normal method call and calling a final method? Which one is linked at compile time?

    Read the article

  • Get a random folder C# .NET

    - by Joshua
    Hi. public sealed static class FolderHelper { public static string GetRandomFolder() { // do work } } But.... How? Like start at c:\ (or whatever the main drive is) and then randomly take routes? Not even sure how to do that.

    Read the article

  • Resolve instance - Autofac

    - by user137348
    I'm trying to figure out how to resolve a instance somewhere in the code. At the application startup I registered a type static void Main() { var builder = new ContainerBuilder(); builder.RegisterType<Foo>().As<IFoo>(); } Now, how can I resolve an instance somewhere in the code ? In structure mam there is a static object ObjectFactory.GetInstance<IFoo>()

    Read the article

  • ThreadQueue problems in "Accelerated C# 2008"

    - by Singlet
    Example for threading queue book "Accelerated C# 2008" (CrudeThreadPool class) not work correctly. If I insert long job in WorkFunction() on 2-processor machine executing for next task don't run before first is over. How to solve this problem? I want to load the processor to 100 percent public class CrudeThreadPool { static readonly int MAX_WORK_THREADS = 4; static readonly int WAIT_TIMEOUT = 2000; public delegate void WorkDelegate(); public CrudeThreadPool() { stop = 0; workLock = new Object(); workQueue = new Queue(); threads = new Thread[ MAX_WORK_THREADS ]; for( int i = 0; i < MAX_WORK_THREADS; ++i ) { threads[i] = new Thread( new ThreadStart(this.ThreadFunc) ); threads[i].Start(); } } private void ThreadFunc() { lock( workLock ) { int shouldStop = 0; do { shouldStop = Interlocked.Exchange( ref stop, stop ); if( shouldStop == 0 ) { WorkDelegate workItem = null; if( Monitor.Wait(workLock, WAIT_TIMEOUT) ) { // Process the item on the front of the queue lock( workQueue ) { workItem =(WorkDelegate) workQueue.Dequeue(); } workItem(); } } } while( shouldStop == 0 ); } } public void SubmitWorkItem( WorkDelegate item ) { lock( workLock ) { lock( workQueue ) { workQueue.Enqueue( item ); } Monitor.Pulse( workLock ); } } public void Shutdown() { Interlocked.Exchange( ref stop, 1 ); } private Queue workQueue; private Object workLock; private Thread[] threads; private int stop; } public class EntryPoint { static void WorkFunction() { Console.WriteLine( "WorkFunction() called on Thread {0}",Thread.CurrentThread.GetHashCode() ); //some long job double s = 0; for (int i = 0; i < 100000000; i++) s += Math.Sin(i); } static void Main() { CrudeThreadPool pool = new CrudeThreadPool(); for( int i = 0; i < 10; ++i ) { pool.SubmitWorkItem( new CrudeThreadPool.WorkDelegate( EntryPoint.WorkFunction) ); } pool.Shutdown(); } }

    Read the article

  • How to get reference of activity object ?

    - by Fevos
    Hi i want to show messageBox or notification when connection lost in Static DB class but i cant use getApplicationContext() becouse its a static class and i tried to call other class called notification but i have error so how i could pass activity object to my new class .

    Read the article

  • Why fill() and copy() of Collections in java is implemented this way

    - by Priyank Doshi
    According to javadoc... Collections.fill() is written as below : public static <T> void fill(List<? super T> list, T obj) { int size = list.size(); if (size < FILL_THRESHOLD || list instanceof RandomAccess) { for (int i=0; i<size; i++) list.set(i, obj); } else { ListIterator<? super T> itr = list.listIterator(); for (int i=0; i<size; i++) { itr.next(); itr.set(obj); } } } Its easy to understand why they didn't use listIterator for if (size < FILL_THRESHOLD || list instanceof RandomAccess) condition as of RandomAccess. But whats the use of size < FILL_THRESHOLD in above? I mean is there any significant performance benefit over using iterator for size>=FILL_THRESHOLD and not for size < FILL_THRESHOLD ? I see the same approach for Collections.copy() also : public static <T> void copy(List<? super T> dest, List<? extends T> src) { int srcSize = src.size(); if (srcSize > dest.size()) throw new IndexOutOfBoundsException("Source does not fit in dest"); if (srcSize < COPY_THRESHOLD || (src instanceof RandomAccess && dest instanceof RandomAccess)) { for (int i=0; i<srcSize; i++) dest.set(i, src.get(i)); } else { ListIterator<? super T> di=dest.listIterator(); ListIterator<? extends T> si=src.listIterator(); for (int i=0; i<srcSize; i++) { di.next(); di.set(si.next()); } } } FYI: private static final int FILL_THRESHOLD = 25; private static final int COPY_THRESHOLD = 10;

    Read the article

  • Why thread started by ScheduledExecutorService.schedule() never quits?

    - by moonese
    If I create a scheduled task by calling ScheduledExecutorService.schedule(), it never quits after execution, is it a JDK bug, or I just miss something? note: doSomething() is empty method below. public static void doSomething() { } public static void main(String[] args) { ScheduledFuture scheduleFuture = Executors.newSingleThreadScheduledExecutor().schedule(new Callable() { public Void call() { try { doSomething(); } catch (Exception e) { e.printStackTrace(); } return null; } }, 1, TimeUnit.SECONDS); }

    Read the article

  • insertion in the same row for all activities

    - by Utman Alami
    i am here to ask for help again, i created one database for all activities, the problem i have is that the insertion in every activity comes in with new row, but that's not what i want, what i am looking for is in the same row in each activity insert the columns that contains. i already looked for solution here, they are speaking about static reference but i don't know how to do it! so, is there any ideas ? static DBAdapter db = new DBAdapter();

    Read the article

  • this parameter modifier in C#?

    - by Ivan
    I'm curious about this code snippet: public static class XNAExtensions { /// <summary> /// Write a Point /// </summary> public static void Write(this NetOutgoingMessage message, Point value) { message.Write(value.X); message.Write(value.Y); } // ... }; What does the this keyword mean next to the parameter type? I can't seem to find any information about it anywhere, even in the C# specification.

    Read the article

  • Pointers in c/c++

    - by jammkie same
    include void main() { int p[]={0,1,2,3,4}; int *a[]={p,p+1,p+2,p+3,p+4}; printf("%u %u %u %u",a,a,(*a)); } What should be the output of the above code? And if we make array p as static(static int p[]), output gets changed .Why?

    Read the article

  • C++ sort method

    - by qwead
    I want to sort a vector using std::sort, but my sort method is a static method of a class, and I want to call std::sort outside it, but it seems to be trouble doing it this way. On the class: static int CompareIt(void *sol1, void *sol2) { ... } std::sort call: sort(distanceList.at(q).begin(), distanceList.at(q).end(), &DistanceNodeComparator::CompareIt); Shouldn't it be possible to do this way?

    Read the article

  • how to make object public to all function in a class?

    - by thesocialhacker
    I've created a class that calls an object in the "__construct" how can i make this object available through out the class. class SocialMedia { function __construct() { $object = "whatever"; } } how can I access $object in the other funtions (which are static) from with in the class. I've tried to use "$this-object" but I get an error "$this when not in object context" when I try to call it from my other static functions.

    Read the article

  • NetBeans disappearing code problem

    - by user445714
    Hi, Dont know if this is the best place but im using NetBeans 4.1 at the moment and if for example i type in the following code private static final Character firstChar = 'A'; On the IDE i can see the following private static final Character firstChar = ; As you can guess its pretty annoying when you see things missing and its only when you highlight over the missing text you can see it, any idea on what is wrong and if i can fix it changing any of the settings

    Read the article

  • Using closes sql connection brought over by a function

    - by iefpw
    Would this using close this _connection? using(SqlConnection _connection = Class1.GetSqlConnection()) { //code inside the connection } //connection should be closed/ended? I'm just wondering because GetSqlConnection() is a static function of Class1 and the whole connection might not be closed because it is calling outside class' static function instead of straight? using(SqlConnection _connection = new SqlConnection(_connectionString) { //code inside the connection }

    Read the article

  • Powershell script to change screen Orientation

    - by user161964
    I wrote a script to change Primary screen orientation to portrait. my screen is 1920X1200 It runs and no error reported. But the screen does not rotated as i expected. The code was modified from Set-ScreenResolution (Andy Schneider) Does anybody can help me take a look? some reference site: 1.set-screenresolution http://gallery.technet.microsoft.com/ScriptCenter/2a631d72-206d-4036-a3f2-2e150f297515/ 2.C code for change oridentation (MSDN) Changing Screen Orientation Programmatically http://msdn.microsoft.com/en-us/library/ms812499.aspx my code as below: Function Set-ScreenOrientation { $pinvokeCode = @" using System; using System.Runtime.InteropServices; namespace Resolution { [StructLayout(LayoutKind.Sequential)] public struct DEVMODE1 { [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)] public string dmDeviceName; public short dmSpecVersion; public short dmDriverVersion; public short dmSize; public short dmDriverExtra; public int dmFields; public short dmOrientation; public short dmPaperSize; public short dmPaperLength; public short dmPaperWidth; public short dmScale; public short dmCopies; public short dmDefaultSource; public short dmPrintQuality; public short dmColor; public short dmDuplex; public short dmYResolution; public short dmTTOption; public short dmCollate; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)] public string dmFormName; [MarshalAs(UnmanagedType.U4)] public short dmDisplayOrientation public short dmLogPixels; public short dmBitsPerPel; public int dmPelsWidth; public int dmPelsHeight; public int dmDisplayFlags; public int dmDisplayFrequency; public int dmICMMethod; public int dmICMIntent; public int dmMediaType; public int dmDitherType; public int dmReserved1; public int dmReserved2; public int dmPanningWidth; public int dmPanningHeight; }; class User_32 { [DllImport("user32.dll")] public static extern int EnumDisplaySettings(string deviceName, int modeNum, ref DEVMODE1 devMode); [DllImport("user32.dll")] public static extern int ChangeDisplaySettings(ref DEVMODE1 devMode, int flags); public const int ENUM_CURRENT_SETTINGS = -1; public const int CDS_UPDATEREGISTRY = 0x01; public const int CDS_TEST = 0x02; public const int DISP_CHANGE_SUCCESSFUL = 0; public const int DISP_CHANGE_RESTART = 1; public const int DISP_CHANGE_FAILED = -1; } public class PrmaryScreenOrientation { static public string ChangeOrientation() { DEVMODE1 dm = GetDevMode1(); if (0 != User_32.EnumDisplaySettings(null, User_32.ENUM_CURRENT_SETTINGS, ref dm)) { dm.dmDisplayOrientation = DMDO_90 dm.dmPelsWidth = 1200; dm.dmPelsHeight = 1920; int iRet = User_32.ChangeDisplaySettings(ref dm, User_32.CDS_TEST); if (iRet == User_32.DISP_CHANGE_FAILED) { return "Unable To Process Your Request. Sorry For This Inconvenience."; } else { iRet = User_32.ChangeDisplaySettings(ref dm, User_32.CDS_UPDATEREGISTRY); switch (iRet) { case User_32.DISP_CHANGE_SUCCESSFUL: { return "Success"; } case User_32.DISP_CHANGE_RESTART: { return "You Need To Reboot For The Change To Happen.\n If You Feel Any Problem After Rebooting Your Machine\nThen Try To Change Resolution In Safe Mode."; } default: { return "Failed"; } } } } else { return "Failed To Change."; } } private static DEVMODE1 GetDevMode1() { DEVMODE1 dm = new DEVMODE1(); dm.dmDeviceName = new String(new char[32]); dm.dmFormName = new String(new char[32]); dm.dmSize = (short)Marshal.SizeOf(dm); return dm; } } } "@ Add-Type $pinvokeCode -ErrorAction SilentlyContinue [Resolution.PrmaryScreenOrientation]::ChangeOrientation() }

    Read the article

  • Why can't I convert FLV to MP4 format using FFmpeg when MP3 works?

    - by hugemeow
    In fact I have succeeded to convert FLV to MP3: D:\tmp\ffmpeg-20121005-git-d9dfe9a-win64-static\ffmpeg-20121005-git-d9dfe9a-win 4-static\bin>ffmpeg.exe -i a.flv -acodec mp3 a.mp3 ffmpeg version N-45080-gd9dfe9a Copyright (c) 2000-2012 the FFmpeg developers built on Oct 5 2012 16:49:01 with gcc 4.7.1 (GCC) configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-run ime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-libass -enable-libcelt --enable-libopencore-amrnb --enable-libopencore-amrwb --enable- ibfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-libopen peg --enable-librtmp --enable-libschroedinger --enable-libspeex --enable-libthe ra --enable-libutvideo --enable-libvo-aacenc --enable-libvo-amrwbenc --enable-l bvorbis --enable-libvpx --enable-libx264 --enable-libxavs --enable-libxvid --en ble-zlib libavutil 51. 73.102 / 51. 73.102 libavcodec 54. 63.100 / 54. 63.100 libavformat 54. 29.105 / 54. 29.105 libavdevice 54. 3.100 / 54. 3.100 libavfilter 3. 19.102 / 3. 19.102 libswscale 2. 1.101 / 2. 1.101 libswresample 0. 16.100 / 0. 16.100 libpostproc 52. 1.100 / 52. 1.100 Input #0, flv, from 'a.flv': Metadata: metadatacreator : iku hasKeyframes : true hasVideo : true hasAudio : true hasMetadata : true canSeekToEnd : false datasize : 16906383 videosize : 14558526 audiosize : 2270465 lasttimestamp : 530 lastkeyframetimestamp: 529 lastkeyframelocation: 16893721 Duration: 00:08:49.73, start: 0.000000, bitrate: 255 kb/s Stream #0:0: Video: h264 (Main), yuv420p, 448x336 [SAR 1:1 DAR 4:3], 218 kb s, 15 tbr, 1k tbn, 30 tbc Stream #0:1: Audio: aac, 44100 Hz, stereo, s16, 32 kb/s File 'a.mp3' already exists. Overwrite ? [y/N] y Output #0, mp3, to 'a.mp3': Metadata: metadatacreator : iku hasKeyframes : true hasVideo : true hasAudio : true hasMetadata : true canSeekToEnd : false datasize : 16906383 videosize : 14558526 audiosize : 2270465 lasttimestamp : 530 lastkeyframetimestamp: 529 lastkeyframelocation: 16893721 TSSE : Lavf54.29.105 Stream #0:0: Audio: mp3, 44100 Hz, stereo, s16 Stream mapping: Stream #0:1 -> #0:0 (aac -> libmp3lame) Press [q] to stop, [?] for help size= 8279kB time=00:08:49.78 bitrate= 128.0kbits/s video:0kB audio:8278kB subtitle:0 global headers:0kB muxing overhead 0.006842% But I failed to convert FLV to MP4. Why is the encoder 'mp4' unknown? What's more, how can I find the codecs which are already supported by my FFmpeg? D:\tmp\ffmpeg-20121005-git-d9dfe9a-win64-static\ffmpeg-20121005-git-d9dfe9a-win6 4-static\bin>ffmpeg.exe -i a.flv -acodec mp4 aa.mp4 ffmpeg version N-45080-gd9dfe9a Copyright (c) 2000-2012 the FFmpeg developers built on Oct 5 2012 16:49:01 with gcc 4.7.1 (GCC) configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-runt ime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-libass - -enable-libcelt --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-l ibfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-libopenj peg --enable-librtmp --enable-libschroedinger --enable-libspeex --enable-libtheo ra --enable-libutvideo --enable-libvo-aacenc --enable-libvo-amrwbenc --enable-li bvorbis --enable-libvpx --enable-libx264 --enable-libxavs --enable-libxvid --ena ble-zlib libavutil 51. 73.102 / 51. 73.102 libavcodec 54. 63.100 / 54. 63.100 libavformat 54. 29.105 / 54. 29.105 libavdevice 54. 3.100 / 54. 3.100 libavfilter 3. 19.102 / 3. 19.102 libswscale 2. 1.101 / 2. 1.101 libswresample 0. 16.100 / 0. 16.100 libpostproc 52. 1.100 / 52. 1.100 Input #0, flv, from 'a.flv': Metadata: metadatacreator : iku hasKeyframes : true hasVideo : true hasAudio : true hasMetadata : true canSeekToEnd : false datasize : 16906383 videosize : 14558526 audiosize : 2270465 lasttimestamp : 530 lastkeyframetimestamp: 529 lastkeyframelocation: 16893721 Duration: 00:08:49.73, start: 0.000000, bitrate: 255 kb/s Stream #0:0: Video: h264 (Main), yuv420p, 448x336 [SAR 1:1 DAR 4:3], 218 kb/ s, 15 tbr, 1k tbn, 30 tbc Stream #0:1: Audio: aac, 44100 Hz, stereo, s16, 32 kb/s Unknown encoder 'mp4'

    Read the article

  • VS 2012 Code Review &ndash; Before Check In OR After Check In?

    - by Tarun Arora
    “Is Code Review Important and Effective?” There is a consensus across the industry that code review is an effective and practical way to collar code inconsistency and possible defects early in the software development life cycle. Among others some of the advantages of code reviews are, Bugs are found faster Forces developers to write readable code (code that can be read without explanation or introduction!) Optimization methods/tricks/productive programs spread faster Programmers as specialists "evolve" faster It's fun “Code review is systematic examination (often known as peer review) of computer source code. It is intended to find and fix mistakes overlooked in the initial development phase, improving both the overall quality of software and the developers' skills. Reviews are done in various forms such as pair programming, informal walkthroughs, and formal inspections.” Wikipedia No where does the definition mention whether its better to review code before the code has been committed to version control or after the commit has been performed. No matter which side you favour, Visual Studio 2012 allows you to request for a code review both before check in and also request for a review after check in. Let’s weigh the pros and cons of the approaches independently. Code Review Before Check In or Code Review After Check In? Approach 1 – Code Review before Check in Developer completes the code and feels the code quality is appropriate for check in to TFS. The developer raises a code review request to have a second pair of eyes validate if the code abides to the recommended best practices, will not result in any defects due to common coding mistakes and whether any optimizations can be made to improve the code quality.                                             Image 1 – code review before check in Pros Everything that gets committed to source control is reviewed. Minimizes the chances of smelly code making its way into the code base. Decreases the cost of fixing bugs, remember, the earlier you find them, the lesser the pain in fixing them. Cons Development Code Freeze – Since the changes aren’t in the source control yet. Further development can only be done off-line. The changes have not been through a CI build, hard to say whether the code abides to all build quality standards. Inconsistent! Cumbersome to track the actual code review process.  Not every change to the code base is worth reviewing, a lot of effort is invested for very little gain. Approach 2 – Code Review after Check in Developer checks in, random code reviews are performed on the checked in code.                                                      Image 2 – Code review after check in Pros The code has already passed the CI build and run through any code analysis plug ins you may have running on the build server. Instruct the developer to ensure ZERO fx cop, style cop and static code analysis before check in. Code is cleaner and smell free even before the code review. No Offline development, developers can continue to develop against the source control. Cons Bad code can easily make its way into the code base. Since the review take place much later in the cycle, the cost of fixing issues can prove to be much higher. Approach 3 – Hybrid Approach The community advocates a more hybrid approach, a blend of tooling and human accountability quotient.                                                               Image 3 – Hybrid Approach 1. Code review high impact check ins. It is not possible to review everything, by setting up code review check in policies you can end up slowing your team. More over, the code that you are reviewing before check in hasn't even been through a green CI build either. 2. Tooling. Let the tooling work for you. By running static analysis, fx cop, style cop and other plug ins on the build agent, you can identify the real issues that in my opinion can't possibly be identified using human reviews. Configure the tooling to report back top 10 issues every day. Mandate the manual code review of individuals who keep making it to this list of shame more often. 3. During Merge. I would prefer eliminating some of the other code issues during merge from Main branch to the release branch. In a scrum project this is still easier because cheery picking the merges is a possibility and the size of code being reviewed is still limited. Let the tooling work for you, if some one breaks the CI build often, put them on a gated check in build course until you see improvement. If some one appears on the top 10 list of shame generated via the build then ensure that all their code is reviewed till you see improvement. At the end of the day, the goal is to ensure that the code being delivered is top quality. By enforcing a code review before any check in, you force the developer to work offline or stay put till the review is complete. What do the experts say? So I asked a few expects what they thought of “Code Review quality gate before Checking in code?" Terje Sandstrom | Microsoft ALM MVP You mean a review quality gate BEFORE checking in code????? That would mean a lot of code staying either local or in shelvesets, and not even been through a CI build, and a green CI build being the main criteria for going further, f.e. to the review state. I would not like code laying around with no checkin’s. Having a requirement that code is checked in small pieces, 4-8 hours work max, and AT LEAST daily checkins, a manual code review comes second down the lane. I would expect review quality gates to happen before merging back to main, or before merging to release.  But that would all be on checked-in code.  Branching is absolutely one way to ease the pain.   Another way we are using is automatic quality builds, running metrics, coverage, static code analysis.  Unfortunately it takes some time, would be great to be on CI’s – but…., so it’s done scheduled every night. Based on this we get, among other stuff,  top 10 lists of suspicious code, which is then subjected to reviews.  If a person seems to be very popular on these top 10 lists, we subject every check in from that person to a review for a period. That normally helps.   None of the clients I have can afford to have every checkin reviewed, so we need to find ways around it. I don’t disagree with the nicety of having all the code reviewed, but I find it hard to find those resources in today’s enterprises. David V. Corbin | Visual Studio ALM Ranger I tend to agree with both sides. I hate having code that is not checked in, but at the same time hate having “bad” code in the repository. I have found that branching is one approach to solving this dilemma. Code is checked into the private/feature branch before the review, but is not merged over to the “official” branch until after the review. I advocate both, depending on circumstance (especially team dynamics)   - The “pre-checkin” is usually for elements that may impact the project as a whole. Think of it as another “gate” along with passing unit tests. - The “post-checkin” may very well not be at the changeset level, but correlates to a review at the “user story” level.   Again, this depends on team dynamics in play…. Robert MacLean | Microsoft ALM MVP I do not think there is no right answer for the industry as a whole. In short the question is why do you do reviews? Your question implies risk mitigation, so in low risk areas you can get away with it after check in while in high risk you need to do it before check in. An example is those new to a team or juniors need it much earlier (maybe that is before checkin, maybe that is soon after) than seniors who have shipped twenty sprints on the team. Abhimanyu Singhal | Visual Studio ALM Ranger Depends on per scenario basis. We recommend post check-in reviews when: 1. We don't want to block other checks and processes on manual code reviews. Manual reviews take time, and some pieces may not require manual reviews at all. 2. We need to trace all changes and track history. 3. We have a code promotion strategy/process in place. For risk mitigation, post checkin code can be promoted to Accepted branches. Or can be rejected. Pre Checkin Reviews are used when 1. There is a high risk factor associated 2. Reviewers are generally (most of times) have immediate availability. 3. Team does not have strict tracking needs. Simply speaking, no single process fits all scenarios. You need to select what works best for your team/project. Thomas Schissler | Visual Studio ALM Ranger This is an interesting discussion, I’m right now discussing details about executing code reviews with my teams. I see and understand the aspects you brought in, but there is another side as well, I’d like to point out. 1.) If you do reviews per check in this is not very practical as a hard rule because this will disturb the flow of the team very often or it will lead to reduce the checkin frequency of the devs which I would not accept. 2.) If you do later reviews, for example if you review PBIs, it is not easy to find out which code you should review. Either you review all changesets associate with the PBI, but then you might review code which has been changed with a later checkin and the dev maybe has already fixed the issue. Or you review the diff of the latest changeset of the PBI with the first but then you might also review changes of other PBIs. Jakob Leander | Sr. Director, Avanade In my experience, manual code review: 1. Does not get done and at the very least does not get redone after changes (regardless of intentions at start of project) 2. When a project actually do it, they often do not do it right away = errors pile up 3. Requires a lot of time discussing/defining the standard and for the team to learn it However code review is very important since e.g. even small memory leaks in a high volume web solution have big consequences In the last years I have advocated following approach for code review - Architects up front do “at least one best practice example” of each type of component and tell the team. Copy from this one. This should include error handling, logging, security etc. - Dev lead on project continuously browse code to validate that the best practices are used. Especially that patterns etc. are not broken. You can do this formally after each sprint/iteration if you want. Once this is validated it is unlikely to “go bad” even during later code changes Agree with customer to rely on static code analysis from Visual Studio as the one and only coding standard. This has HUUGE benefits - You can easily tweak to reach the level you desire together with customer - It is easy to measure for both developers/management - It is 100% consistent across code base - It gets validated all the time so you never end up getting hammered by a customer review in the end - It is easy to tell the developer that you do not want code back unless it has zero errors = minimize communication You need to track this at least during nightly builds and make sure team sees total # issues. Do not allow #issues it to grow uncontrolled. On the project I run I require code analysis to have run on code before checkin (checkin rule). This means -  You have to have clean compile (or CA wont run) so this is extra benefit = very few broken builds - You can change a few of the rules to compile as errors instead of warnings. I often do this for “missing dispose” issues which you REALLY do not want in your app Tip: Place your custom CA rules files as part of solution. That  way it works when you do branching etc. (path to CA file is relative in VS) Some may argue that CA is not as good as manual inspection. But since manual inspection in reality suffers from the 3 issues in start it is IMO a MUCH better (and much cheaper) approach from helicopter perspective Tirthankar Dutta | Director, Avanade I think code review should be run both before and after check ins. There are some code metrics that are meant to be run on the entire codebase … Also, especially on multi-site projects, one should strive to architect in a way that lets men manage the framework while boys write the repetitive code… scales very well with the need to review less by containment and imposing architectural restrictions to emphasise the design. Bruno Capuano | Microsoft ALM MVP For code reviews (means peer reviews) in distributed team I use http://www.vsanywhere.com/default.aspx  David Jobling | Global Sr. Director, Avanade Peer review is the only way to scale and its a great practice for all in the team to learn to perform and accept. In my experience you soon learn who's code to watch more than others and tune the attention. Mikkel Toudal Kristiansen | Manager, Avanade If you have several branches in your code base, you will need to merge often. This requires manual merging, when a file has been changed in both branches. It offers a good opportunity to actually review to changed code. So my advice is: Merging between branches should be done as often as possible, it should be done by a senior developer, and he/she should perform a full code review of the code being merged. As for detecting architectural smells and code smells creeping into the code base, one really good third party tools exist: Ndepend (http://www.ndepend.com/, for static code analysis of the current state of the code base). You could also consider adding StyleCop to the solution. Jesse Houwing | Visual Studio ALM Ranger I gave a presentation on this subject on the TechDays conference in NL last year. See my presentation and slides here (talk in Dutch, but English presentation): http://blog.jessehouwing.nl/2012/03/did-you-miss-my-techdaysnl-talk-on-code.html  I’d like to add a few more points: - Before/After checking is mostly a trust issue. If you have a team that does diligent peer reviews and regularly talk/sit together or peer review, there’s no need to enforce a before-checkin policy. The peer peer-programming and regular feedback during development can take care of most of the review requirements as long as the team isn’t under stress. - Under stress, enforce pre-checkin reviews, it might sound strange, if you’re already under time or budgetary constraints, but it is under such conditions most real issues start to be created or pile up. - Use tools to catch most common errors, Code Analysis/FxCop was already mentioned. HP Fortify, Resharper, Coderush etc can help you there. There are also a lot of 3rd party rules you can add to Code Analysis. I’ve written a few myself (http://fccopcontrib.codeplex.com) and various teams from Microsoft have added their own rules (MSOCAF for SharePoint, WSSF for WCF). For common errors that keep cropping up, see if you can define a rule. It’s much easier. But more importantly make sure you have a good help page explaining *WHY* it's wrong. If you have small feature or developer branches/shelvesets, you might want to review pre-merge. It’s still better to do peer reviews and peer programming, but the most important thing is that bad quality code doesn’t make it into the important branch. So my philosophy: - Use tooling as much as possible. - Make sure the team understands the tooling and the importance of the things it flags. It’s too easy to just click suppress all to ignore the warnings. - Under stress, tighten process, it’s under stress that the problems of late reviews will really surface - Most importantly if you do reviews do them as early as possible, but never later than needed. In other words, pre-checkin/post checking doesn’t really matter, as long as the review is done before the code is released. It’ll just be much more expensive to fix any review outcomes the later you find them. --- I would love to hear what you think!

    Read the article

  • Liskov Substitution Principle and the Oft Forgot Third Wheel

    - by Stacy Vicknair
    Liskov Substitution Principle (LSP) is a principle of object oriented programming that many might be familiar with from the SOLID principles mnemonic from Uncle Bob Martin. The principle highlights the relationship between a type and its subtypes, and, according to Wikipedia, is defined by Barbara Liskov and Jeanette Wing as the following principle:   Let be a property provable about objects of type . Then should be provable for objects of type where is a subtype of .   Rectangles gonna rectangulate The iconic example of this principle is illustrated with the relationship between a rectangle and a square. Let’s say we have a class named Rectangle that had a property to set width and a property to set its height. 1: Public Class Rectangle 2: Overridable Property Width As Integer 3: Overridable Property Height As Integer 4: End Class   We all at some point here that inheritance mocks an “IS A” relationship, and by gosh we all know square IS A rectangle. So let’s make a square class that inherits from rectangle. However, squares do maintain the same length on every side, so let’s override and add that behavior. 1: Public Class Square 2: Inherits Rectangle 3:  4: Private _sideLength As Integer 5:  6: Public Overrides Property Width As Integer 7: Get 8: Return _sideLength 9: End Get 10: Set(value As Integer) 11: _sideLength = value 12: End Set 13: End Property 14:  15: Public Overrides Property Height As Integer 16: Get 17: Return _sideLength 18: End Get 19: Set(value As Integer) 20: _sideLength = value 21: End Set 22: End Property 23: End Class   Now, say we had the following test: 1: Public Sub SetHeight_DoesNotAffectWidth(rectangle As Rectangle) 2: 'arrange 3: Dim expectedWidth = 4 4: rectangle.Width = 4 5:  6: 'act 7: rectangle.Height = 7 8:  9: 'assert 10: Assert.AreEqual(expectedWidth, rectangle.Width) 11: End Sub   If we pass in a rectangle, this test passes just fine. What if we pass in a square?   This is where we see the violation of Liskov’s Principle! A square might "IS A” to a rectangle, but we have differing expectations on how a rectangle should function than how a square should! Great expectations Here’s where we pat ourselves on the back and take a victory lap around the office and tell everyone about how we understand LSP like a boss. And all is good… until we start trying to apply it to our work. If I can’t even change functionality on a simple setter without breaking the expectations on a parent class, what can I do with subtyping? Did Liskov just tell me to never touch subtyping again? The short answer: NO, SHE DIDN’T. When I first learned LSP, and from those I’ve talked with as well, I overlooked a very important but not appropriately stressed quality of the principle: our expectations. Our inclination is to want a logical catch-all, where we can easily apply this principle and wipe our hands, drop the mic and exit stage left. That’s not the case because in every different programming scenario, our expectations of the parent class or type will be different. We have to set reasonable expectations on the behaviors that we expect out of the parent, then make sure that those expectations are met by the child. Any expectations not explicitly expected of the parent aren’t expected of the child either, and don’t register as a violation of LSP that prevents implementation. You can see the flexibility mentioned in the Wikipedia article itself: A typical example that violates LSP is a Square class that derives from a Rectangle class, assuming getter and setter methods exist for both width and height. The Square class always assumes that the width is equal with the height. If a Square object is used in a context where a Rectangle is expected, unexpected behavior may occur because the dimensions of a Square cannot (or rather should not) be modified independently. This problem cannot be easily fixed: if we can modify the setter methods in the Square class so that they preserve the Square invariant (i.e., keep the dimensions equal), then these methods will weaken (violate) the postconditions for the Rectangle setters, which state that dimensions can be modified independently. Violations of LSP, like this one, may or may not be a problem in practice, depending on the postconditions or invariants that are actually expected by the code that uses classes violating LSP. Mutability is a key issue here. If Square and Rectangle had only getter methods (i.e., they were immutable objects), then no violation of LSP could occur. What this means is that the above situation with a rectangle and a square can be acceptable if we do not have the expectation for width to leave height unaffected, or vice-versa, in our application. Conclusion – the oft forgot third wheel Liskov Substitution Principle is meant to act as a guidance and warn us against unexpected behaviors. Objects can be stateful and as a result we can end up with unexpected situations if we don’t code carefully. Specifically when subclassing, make sure that the subclass meets the expectations held to its parent. Don’t let LSP think you cannot deviate from the behaviors of the parent, but understand that LSP is meant to highlight the importance of not only the parent and the child class, but also of the expectations WE set for the parent class and the necessity of meeting those expectations in order to help prevent sticky situations.   Code examples, in both VB and C# Technorati Tags: LSV,Liskov Substitution Principle,Uncle Bob,Robert Martin,Barbara Liskov,Liskov

    Read the article

  • Playing with aspx page cycle using JustMock

    In this post , I will cover a test code that will mock the various elements needed to complete a HTTP page request and  assert the expected page cycle steps. To begin, i have a simple enumeration that has my predefined page steps: public enum PageStep {     PreInit,     Load,     PreRender,     UnLoad } Once doing so, i  first...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Calculating the Size (in Bytes and MB) of a Oracle Coherence Cache

    - by Ricardo Ferreira
    The concept and usage of data grids are becoming very popular in this days since this type of technology are evolving very fast with some cool lead products like Oracle Coherence. Once for a while, developers need an programmatic way to calculate the total size of a specific cache that are residing in the data grid. In this post, I will show how to accomplish this using Oracle Coherence API. This example has been tested with 3.6, 3.7 and 3.7.1 versions of Oracle Coherence. To start the development of this example, you need to create a POJO ("Plain Old Java Object") that represents a data structure that will hold user data. This data structure will also create an internal fat so I call that should increase considerably the size of each instance in the heap memory. Create a Java class named "Person" as shown in the listing below. package com.oracle.coherence.domain; import java.io.Serializable; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Random; @SuppressWarnings("serial") public class Person implements Serializable { private String firstName; private String lastName; private List<Object> fat; private String email; public Person() { generateFat(); } public Person(String firstName, String lastName, String email) { setFirstName(firstName); setLastName(lastName); setEmail(email); generateFat(); } private void generateFat() { fat = new ArrayList<Object>(); Random random = new Random(); for (int i = 0; i < random.nextInt(18000); i++) { HashMap<Long, Double> internalFat = new HashMap<Long, Double>(); for (int j = 0; j < random.nextInt(10000); j++) { internalFat.put(random.nextLong(), random.nextDouble()); } fat.add(internalFat); } } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } Now let's create a Java program that will start a data grid into Coherence and will create a cache named "People", that will hold people instances with sequential integer keys. Each person created in this program will trigger the execution of a custom constructor created in the People class that instantiates an internal fat (the random amount of data generated to increase the size of the object) for each person. Create a Java class named "CreatePeopleCacheAndPopulateWithData" as shown in the listing below. package com.oracle.coherence.demo; import com.oracle.coherence.domain.Person; import com.tangosol.net.CacheFactory; import com.tangosol.net.NamedCache; public class CreatePeopleCacheAndPopulateWithData { public static void main(String[] args) { // Asks Coherence for a new cache named "People"... NamedCache people = CacheFactory.getCache("People"); // Creates three people that will be putted into the data grid. Each person // generates an internal fat that should increase its size in terms of bytes... Person pessoa1 = new Person("Ricardo", "Ferreira", "[email protected]"); Person pessoa2 = new Person("Vitor", "Ferreira", "[email protected]"); Person pessoa3 = new Person("Vivian", "Ferreira", "[email protected]"); // Insert three people at the data grid... people.put(1, pessoa1); people.put(2, pessoa2); people.put(3, pessoa3); // Waits for 5 minutes until the user runs the Java program // that calculates the total size of the people cache... try { System.out.println("---> Waiting for 5 minutes for the cache size calculation..."); Thread.sleep(300000); } catch (InterruptedException ie) { ie.printStackTrace(); } } } Finally, let's create a Java program that, using the Coherence API and JMX, will calculate the total size of each cache that the data grid is currently managing. The approach used in this example was retrieve every cache that the data grid are currently managing, but if you are interested on an specific cache, the same approach can be used, you should only filter witch cache will be looked for. Create a Java class named "CalculateTheSizeOfPeopleCache" as shown in the listing below. package com.oracle.coherence.demo; import java.text.DecimalFormat; import java.util.Map; import java.util.Set; import java.util.TreeMap; import javax.management.MBeanServer; import javax.management.MBeanServerFactory; import javax.management.ObjectName; import com.tangosol.net.CacheFactory; public class CalculateTheSizeOfPeopleCache { @SuppressWarnings({ "unchecked", "rawtypes" }) private void run() throws Exception { // Enable JMX support in this Coherence data grid session... System.setProperty("tangosol.coherence.management", "all"); // Create a sample cache just to access the data grid... CacheFactory.getCache(MBeanServerFactory.class.getName()); // Gets the JMX server from Coherence data grid... MBeanServer jmxServer = getJMXServer(); // Creates a internal data structure that would maintain // the statistics from each cache in the data grid... Map cacheList = new TreeMap(); Set jmxObjectList = jmxServer.queryNames(new ObjectName("Coherence:type=Cache,*"), null); for (Object jmxObject : jmxObjectList) { ObjectName jmxObjectName = (ObjectName) jmxObject; String cacheName = jmxObjectName.getKeyProperty("name"); if (cacheName.equals(MBeanServerFactory.class.getName())) { continue; } else { cacheList.put(cacheName, new Statistics(cacheName)); } } // Updates the internal data structure with statistic data // retrieved from caches inside the in-memory data grid... Set<String> cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Set resultSet = jmxServer.queryNames( new ObjectName("Coherence:type=Cache,name=" + cacheName + ",*"), null); for (Object resultSetRef : resultSet) { ObjectName objectName = (ObjectName) resultSetRef; if (objectName.getKeyProperty("tier").equals("back")) { int unit = (Integer) jmxServer.getAttribute(objectName, "Units"); int size = (Integer) jmxServer.getAttribute(objectName, "Size"); Statistics statistics = (Statistics) cacheList.get(cacheName); statistics.incrementUnit(unit); statistics.incrementSize(size); cacheList.put(cacheName, statistics); } } } // Finally... print the objects from the internal data // structure that represents the statistics from caches... cacheNames = cacheList.keySet(); for (String cacheName : cacheNames) { Statistics estatisticas = (Statistics) cacheList.get(cacheName); System.out.println(estatisticas); } } public MBeanServer getJMXServer() { MBeanServer jmxServer = null; for (Object jmxServerRef : MBeanServerFactory.findMBeanServer(null)) { jmxServer = (MBeanServer) jmxServerRef; if (jmxServer.getDefaultDomain().equals(DEFAULT_DOMAIN) || DEFAULT_DOMAIN.length() == 0) { break; } jmxServer = null; } if (jmxServer == null) { jmxServer = MBeanServerFactory.createMBeanServer(DEFAULT_DOMAIN); } return jmxServer; } private class Statistics { private long unit; private long size; private String cacheName; public Statistics(String cacheName) { this.cacheName = cacheName; } public void incrementUnit(long unit) { this.unit += unit; } public void incrementSize(long size) { this.size += size; } public long getUnit() { return unit; } public long getSize() { return size; } public double getUnitInMB() { return unit / (1024.0 * 1024.0); } public double getAverageSize() { return size == 0 ? 0 : unit / size; } public String toString() { StringBuffer sb = new StringBuffer(); sb.append("\nCache Statistics of '").append(cacheName).append("':\n"); sb.append(" - Total Entries of Cache -----> " + getSize()).append("\n"); sb.append(" - Used Memory (Bytes) --------> " + getUnit()).append("\n"); sb.append(" - Used Memory (MB) -----------> " + FORMAT.format(getUnitInMB())).append("\n"); sb.append(" - Object Average Size --------> " + FORMAT.format(getAverageSize())).append("\n"); return sb.toString(); } } public static void main(String[] args) throws Exception { new CalculateTheSizeOfPeopleCache().run(); } public static final DecimalFormat FORMAT = new DecimalFormat("###.###"); public static final String DEFAULT_DOMAIN = ""; public static final String DOMAIN_NAME = "Coherence"; } I've commented the overall example so, I don't think that you should get into trouble to understand it. Basically we are dealing with JMX. The first thing to do is enable JMX support for the Coherence client (ie, an JVM that will only retrieve values from the data grid and will not integrate the cluster) application. This can be done very easily using the runtime "tangosol.coherence.management" system property. Consult the Coherence documentation for JMX to understand the possible values that could be applied. The program creates an in memory data structure that holds a custom class created called "Statistics". This class represents the information that we are interested to see, which in this case are the size in bytes and in MB of the caches. An instance of this class is created for each cache that are currently managed by the data grid. Using JMX specific methods, we retrieve the information that are relevant for calculate the total size of the caches. To test this example, you should execute first the CreatePeopleCacheAndPopulateWithData.java program and after the CreatePeopleCacheAndPopulateWithData.java program. The results in the console should be something like this: 2012-06-23 13:29:31.188/4.970 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded operational overrides from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml" 2012-06-23 13:29:31.219/5.001 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/tangosol-coherence-override.xml" is not specified 2012-06-23 13:29:31.266/5.048 Oracle Coherence 3.6.0.4 <D5> (thread=Main Thread, member=n/a): Optional configuration override "/custom-mbeans.xml" is not specified Oracle Coherence Version 3.6.0.4 Build 19111 Grid Edition: Development mode Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 2012-06-23 13:29:33.156/6.938 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded Reporter configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/reports/report-group.xml" 2012-06-23 13:29:33.500/7.282 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Loaded cache configuration from "jar:file:/E:/Oracle/Middleware/oepe_11gR1PS4/workspace/calcular-tamanho-cache-coherence/lib/coherence.jar!/coherence-cache-config.xml" 2012-06-23 13:29:35.391/9.173 Oracle Coherence GE 3.6.0.4 <D4> (thread=Main Thread, member=n/a): TCMP bound to /192.168.177.133:8090 using SystemSocketProvider 2012-06-23 13:29:37.062/10.844 Oracle Coherence GE 3.6.0.4 <Info> (thread=Cluster, member=n/a): This Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) joined cluster "cluster:0xC4DB" with senior Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) 2012-06-23 13:29:37.172/10.954 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Cluster with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service Management with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <D5> (thread=Cluster, member=n/a): Member 1 joined Service DistributedCache with senior member 1 2012-06-23 13:29:37.188/10.970 Oracle Coherence GE 3.6.0.4 <Info> (thread=Main Thread, member=n/a): Started cluster Name=cluster:0xC4DB Group{Address=224.3.6.0, Port=36000, TTL=4} MasterMemberSet ( ThisMember=Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) OldestMember=Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) ActualMemberSet=MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2012-06-23 13:29:14.031, Address=192.168.177.133:8088, MachineId=55685, Location=process:1128, Role=CreatePeopleCacheAndPopulateWith) Member(Id=2, Timestamp=2012-06-23 13:29:36.899, Address=192.168.177.133:8090, MachineId=55685, Location=process:244, Role=Oracle) ) RecycleMillis=1200000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) TcpRing{Connections=[1]} IpMonitor{AddressListSize=0} 2012-06-23 13:29:37.891/11.673 Oracle Coherence GE 3.6.0.4 <D5> (thread=Invocation:Management, member=2): Service Management joined the cluster with senior service member 1 2012-06-23 13:29:39.203/12.985 Oracle Coherence GE 3.6.0.4 <D5> (thread=DistributedCache, member=2): Service DistributedCache joined the cluster with senior service member 1 2012-06-23 13:29:39.297/13.079 Oracle Coherence GE 3.6.0.4 <D4> (thread=DistributedCache, member=2): Asking member 1 for 128 primary partitions Cache Statistics of 'People': - Total Entries of Cache -----> 3 - Used Memory (Bytes) --------> 883920 - Used Memory (MB) -----------> 0.843 - Object Average Size --------> 294640 I hope that this post could save you some time when calculate the total size of Coherence cache became a requirement for your high scalable system using data grids. See you!

    Read the article

< Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >