Search Results

Search found 10662 results on 427 pages for 'parameter passing'.

Page 158/427 | < Previous Page | 154 155 156 157 158 159 160 161 162 163 164 165  | Next Page >

  • regarding object recycling

    - by ajaycv
    I have a question. What is wrong with regards to the below code: ArrayList tempList2 = new ArrayList(); tempList2 = getXYZ(tempList1, tempList2); //method getXYZ getXYZ(ArrayList tempList1, ArrayList tempList2) { //does some logic and adds objects into tempList2 return tempList2; } The code will get executed but it seems by passing tempList2 to the getXYZ method argument, it is doing object recycling. My question is, Is recycling the tempList2 arraylist object correct?

    Read the article

  • Creating a good search solution

    - by Daniel
    I have an app where users have a role,a username,faculty and so on.When I'm looking for a list of users by their role or faculty or anything they have in common I can call (among others possible) @users = User.find_by_role(params[:role]) #or @users = User.find_by_shift(params[:shift]) So it keeps the system Class.find_by_property So the question is: What if at different points users lists should be generated based on different properties.I mean: I'm passing from different links params[:role] or params[:faculty] or params[:department] to my list action in my users controller.As I see it all has to be in that action,but which parameter should the search be made by?

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • dual boot install--no GRUB

    - by Jim Syyap
    My computer recently had a hardware upgrade and now runs on Windows 7. I decided to install Ubuntu 11.04 as dual boot using the ISO I got from ubuntu.com downloaded onto my USB stick. Restarting with the USB stick, I was able to install Ubuntu 11.04 choosing the option: Install Ubuntu 11.04 side by side with Windows 7 (or something like that). No errors were encountered on installation. However on restarting, there was no GRUB; the system went straight into Windows 7. Looking for answers, I found these: http://essayboard.com/2011/07/12/how-to-dual-boot-ubuntu-11-04-and-windows-7-the-traditional-way-through-grub-2/ http://ubuntuforums.org/showthread.php?t=1774523 Following their instructions, I got: Boot Info Script 0.60 from 17 May 2011 ============================= Boot Info Summary: =============================== => Windows is installed in the MBR of /dev/sda. => Syslinux MBR (3.61-4.03) is installed in the MBR of /dev/sdb. => Grub2 (v1.99) is installed in the MBR of /dev/sdc and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos7)/boot/grub on this drive. sda1: __________________________________________________ ________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /grldr /bootmgr /Boot/BCD /grldr sda2: __________________________________________________ ________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /Windows/System32/winload.exe sdb1: __________________________________________________ ________________________ File system: vfat Boot sector type: SYSLINUX 4.02 debian-20101016 ...........>...r>....... ......0...~.k...~...f...M.f.f....f..8~....>2} Boot sector info: Syslinux looks at sector 1437504 of /dev/sdb1 for its second stage. SYSLINUX is installed in the directory. The integrity check of the ADV area failed. According to the info in the boot sector, sdb1 starts at sector 0. But according to the info from fdisk, sdb1 starts at sector 62. Operating System: Boot files: /boot/grub/grub.cfg /syslinux/syslinux.cfg /ldlinux.sys sdc1: __________________________________________________ ________________________ File system: ntfs Boot sector type: Windows XP Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sdc2: __________________________________________________ ________________________ File system: Extended Partition Boot sector type: - Boot sector info: sdc5: __________________________________________________ ________________________ File system: swap Boot sector type: - Boot sector info: sdc6: __________________________________________________ ________________________ File system: swap Boot sector type: - Boot sector info: sdc7: __________________________________________________ ________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 11.04 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdc8: __________________________________________________ ________________________ File system: swap Boot sector type: - Boot sector info: Going back into Ubuntu and running sudo fdisk -l , I got these: ubuntu@ubuntu:~$ sudo fdisk -l Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0002f393 Device Boot Start End Blocks Id System /dev/sda1 * 1 13 102400 7 HPFS/NTFS Partition 1 does not end on cylinder boundary. /dev/sda2 13 19458 156185600 7 HPFS/NTFS Disk /dev/sdb: 2011 MB, 2011168768 bytes 62 heads, 62 sectors/track, 1021 cylinders Units = cylinders of 3844 * 512 = 1968128 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000f2ab9 Device Boot Start End Blocks Id System /dev/sdb1 * 1 1021 1962331 c W95 FAT32 (LBA) Disk /dev/sdc: 1000.2 GB, 1000202043392 bytes 255 heads, 63 sectors/track, 121600 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00261ddd Device Boot Start End Blocks Id System /dev/sdc1 * 1 60657 487222656+ 7 HPFS/NTFS /dev/sdc2 60657 121600 489527681 5 Extended /dev/sdc5 120563 121600 8337703+ 82 Linux swap / Solaris /dev/sdc6 120073 120562 3930112 82 Linux swap / Solaris /dev/sdc7 60657 119584 473328640 83 Linux /dev/sdc8 119584 120072 3923968 82 Linux swap / Solaris Should I proceed and do the following? Assuming Ubuntu 11.04 was installed on device sdb1, do this: sudo mount /dev/sdb1 /mnt Then do this: sudo grub-install--root-directory=/mnt /dev/sdb Notice there are two dashes in front of the root directory, and I'm not using sdb1 but sdb. Since the command in step 15 had reinstalled Grub 2, now we need to unmount the /mnt (i.e. sdb1) to clean up. Do this: sudo umount /mnt Reboot and remove Ubuntu 11.04 CD/DVD from disk tray. Log into Ubuntu 11.04 (you have no choice but it will make you log into Ubuntu 11.04 at this point). Open up a terminal in Ubuntu 11.04 (using real installation, not live CD/DVD). Execute this command: sudo update-grub Reboot the machine.

    Read the article

  • x11vnc working in Ubuntu 10.10

    - by pablorc
    I'm trying to start x11vnc in a Ubuntu 10.10 (my server is in Amazon EC2), but I have the next error $ sudo x11vnc -forever -usepw -httpdir /usr/share/vnc-java/ -httpport 5900 -auth /usr/sbin/gdm 25/11/2010 13:29:51 passing arg to libvncserver: -httpport 25/11/2010 13:29:51 passing arg to libvncserver: 5900 25/11/2010 13:29:51 -usepw: found /home/ubuntu/.vnc/passwd 25/11/2010 13:29:51 x11vnc version: 0.9.10 lastmod: 2010-04-28 pid: 3504 25/11/2010 13:29:51 XOpenDisplay(":0.0") failed. 25/11/2010 13:29:51 Trying again with XAUTHLOCALHOSTNAME=localhost ... 25/11/2010 13:29:51 *************************************** 25/11/2010 13:29:51 *** XOpenDisplay failed (:0.0) *** x11vnc was unable to open the X DISPLAY: ":0.0", it cannot continue. *** There may be "Xlib:" error messages above with details about the failure. Some tips and guidelines: ** An X server (the one you wish to view) must be running before x11vnc is started: x11vnc does not start the X server. (however, see the -create option if that is what you really want). ** You must use -display <disp>, -OR- set and export your $DISPLAY environment variable to refer to the display of the desired X server. - Usually the display is simply ":0" (in fact x11vnc uses this if you forget to specify it), but in some multi-user situations it could be ":1", ":2", or even ":137". Ask your administrator or a guru if you are having difficulty determining what your X DISPLAY is. ** Next, you need to have sufficient permissions (Xauthority) to connect to the X DISPLAY. Here are some Tips: - Often, you just need to run x11vnc as the user logged into the X session. So make sure to be that user when you type x11vnc. - Being root is usually not enough because the incorrect MIT-MAGIC-COOKIE file may be accessed. The cookie file contains the secret key that allows x11vnc to connect to the desired X DISPLAY. - You can explicitly indicate which MIT-MAGIC-COOKIE file should be used by the -auth option, e.g.: x11vnc -auth /home/someuser/.Xauthority -display :0 x11vnc -auth /tmp/.gdmzndVlR -display :0 you must have read permission for the auth file. See also '-auth guess' and '-findauth' discussed below. ** If NO ONE is logged into an X session yet, but there is a greeter login program like "gdm", "kdm", "xdm", or "dtlogin" running, you will need to find and use the raw display manager MIT-MAGIC-COOKIE file. Some examples for various display managers: gdm: -auth /var/gdm/:0.Xauth -auth /var/lib/gdm/:0.Xauth kdm: -auth /var/lib/kdm/A:0-crWk72 -auth /var/run/xauth/A:0-crWk72 xdm: -auth /var/lib/xdm/authdir/authfiles/A:0-XQvaJk dtlogin: -auth /var/dt/A:0-UgaaXa Sometimes the command "ps wwwwaux | grep auth" can reveal the file location. Starting with x11vnc 0.9.9 you can have it try to guess by using: -auth guess (see also the x11vnc -findauth option.) Only root will have read permission for the file, and so x11vnc must be run as root (or copy it). The random characters in the filenames will of course change and the directory the cookie file resides in is system dependent. See also: http://www.karlrunge.com/x11vnc/faq.html I've already tried with some -auth options but the error persist. I have gdm running. Thank you in advance

    Read the article

  • UpdatePanel, JavaScript postback and changing querystring at same time in SharePoint Search Page

    - by Lee Dale
    Hi Guys, Been tearing my hear out with this one. Let me see if I can explain: I have a SharePoint results page on which I have a Search Results Core WebPart. Now I want to change the parameter in the querystring when I postback the page so that the WebPart returns different results for each parameter e.g. the querystring will be interactivemap.aspx?k=Country:Romania this will filter the results for Romania. First issue is I want to do this with javascript so I call: document.getElementById('aspnetForm').action = "interactivemap.aspx?k=Country:" + country; Nothing special here but the reason I need to call from Javascript is there is also a flash applet on this page from which the Javascript calls originate. When the javascript calls are made the page needs to PostBack but not reload the flash applet. I turned to ASP.Net AJAX for this so I wrapped the search results webpart in an update panel. Now if I use a button within the UpdatePanel to postback the UpdatePanel behaves as expected and does a partial render of the search results webpart not reloading the flash applet. Problem comes because I need postback the page from javscript. I called __doPostBack() as I have used this successully in the past. It works on it's own but fails when I first call the above Javascript before the __doPostBack() (I also tried calling click() on a hidden button) the code for the page is at the bottom. I think the problem comes with the scriptmanager not allowing a partial render when the form post action has changed. My questions are. A) Is there some other way to change the search results webpart parameter without using the querystring. or B) Is there a way around changing the querystring when doing an AJAX postback and getting a partial render. <asp:Content ContentPlaceHolderID="PlaceHolderFullContent" runat="server"> function update(country) { //__doPostBack('ContentUpdatePanel', ''); //document.getElementById('aspnetForm').action = "interactivemap.aspx?k=ArticleCountry:" + country; document.getElementById('ctl00_PlaceHolderFullContent_UpdateButton').click(); } Romania <div class="firstDataTitle"> <div class="datatabletitleOuterWrapper"> <div class="datatabletitle"> <span>Content</span></div> </div> <div class="datatableWrapper"> <div class="dataHolderWrapper"> <div class="datatable"> <div> <div class="searchMain"> <div class="searchZoneMain"> <asp:UpdatePanel runat="server" id="ContentUpdatePanel" UpdateMode="Conditional"> <ContentTemplate> <WebPartPages:webpartzone runat="server" AllowPersonalization="false" title="<%$Resources:sps,LayoutPageZone_BottomZone%>" id="BottomZone" orientation="Vertical" QuickAdd-GroupNames="Search" QuickAdd-ShowListsAndLibraries="false"><ZoneTemplate></ZoneTemplate></WebPartPages:webpartzone> <asp:Button id="UpdateButton" name="UpdateButton" runat="server" Text="Update"/> </ContentTemplate> </asp:UpdatePanel> </div> </div> </div> </div> </div> </div>

    Read the article

  • SubSonic Stored Procedure Issue - Data Generated at Stored Procedure is different from Data Received

    - by ShaShaIn
    Hi All, I am facing a unknown problem while using stored procedure with SubSonic. I have written a stored procedure & application code that takes first name & last name as input parameter and return last login id as ouput parameter. It creates login id as first character of first name & complete last name for no-existing login id otherwise it adds 1 in the last login id e.g. First Name - Mark, Last Name - Waugh, First Login Id - MWaugh, Second Login Id - MWaugh1, Third Login Id - MWaugh2 etc. Stored Procedure SET ANSI_NULLS OFF GO SET QUOTED_IDENTIFIER ON GO CREATE PROCEDURE [dbo].[Users_FetchLoginId] ( @FirstName nvarchar(64), @LastName nvarchar(64), @LoginId nvarchar(256) OUTPUT ) AS DECLARE @UserId nvarchar(256); SET @UserId = NULL; SET @LoginId = NULL; SELECT @UserId = LoweredUserName FROM aspnet_Users WHERE LoweredUserName LIKE (LOWER(SUBSTRING(@FirstName,1,1) + @LastName)) IF @@rowcount = 0 OR @UserId IS NULL BEGIN SET @LoginId = (SUBSTRING(@FirstName, 1, 1) + @LastName); print @LoginId RETURN 1; END ELSE BEGIN SELECT TOP 1 LoweredUserName FROM aspnet_Users WHERE LoweredUserName LIKE (LOWER(SUBSTRING(@FirstName,1,1) + @LastName + '%')) ORDER BY LoweredUserName DESC RETURN 2; END Application Code public string FetchLoginId(string firstName, string lastName) { SubSonic.StoredProcedure sp = SPs.UsersFetchLoginId( firstName, lastName, null ); sp.Command.AddReturnParameter(); sp.Execute(); if (sp.Command.Parameters.Find(delegate(QueryParameter queryParameter) { return queryParameter.Mode == ParameterDirection.ReturnValue; }).ParameterValue != System.DBNull.Value) { int returnCode = Convert.ToInt32(sp.Command.Parameters.Find(delegate(QueryParameter queryParameter) { return queryParameter.Mode == ParameterDirection.ReturnValue; }).ParameterValue, CultureInfo.InvariantCulture); if (returnCode == 1) { // UserName as First Character of First Name & Full Last Name return sp.Command.Parameters[2].ParameterValue.ToString(); } if (returnCode == 2) { DataSet ds = sp.GetDataSet(); if (null == ds || null == ds.Tables[0] || 0 == ds.Tables[0].Rows.Count) return ""; string maxLoginId = ds.Tables[0].Rows[0]["LoweredUserName"].ToString(); string initialLoginId = firstName.Substring(0, 1) + lastName; int maxLoginIdIndex = 0; int initialLoginIdLength = initialLoginId.Length; if (maxLoginId.Substring(initialLoginIdLength).Length == 0) { maxLoginIdIndex++; // UserName as Max Lowered User Name Found & Incrementer as Suffix (Here, First Incrementer i.e. 1) return (initialLoginId + maxLoginIdIndex); } if (int.TryParse(maxLoginId.Substring(initialLoginIdLength), out maxLoginIdIndex)) { if (maxLoginIdIndex > 0) { maxLoginIdIndex++; // UserName as Max Lowered User Name Found & Incrementer as Suffix return (initialLoginId + maxLoginIdIndex); } } } } Now the problem is for some input (see test data below), the login id created at sql server end correctly but at application subsonic dal side, it truncates some characters. First Name - Jenelia and Last Name - Kanupatikenalaalayampentyalavelugoplansubhramanayam [dbo].[Users_FetchLoginId] - Execute Stored Procedure Separately - Login Id Is Correct JKanupatikenalaalayampentyalavelugoplansubhramanayam public string FetchLoginId(string firstName, string lastName) - Application Code DAL Side - LginId Is Wrongly Received From Stored Procedure JKanupatikenalaalayampentyalavelugoplansubhramanay You can easily see that 2 charactes are removed. If the data is correctly generated by stored procedure then why the characters are removed when data is received in output parameter of stored procedure? Is it due to any internal known or unknown bug of SubSonic? Your help is significant. Thanks in advance...

    Read the article

  • Treeview - Hierarchical Data Template - Binding does not update on source change?

    - by ClearsTheScreen
    Greetings! I ran into this problem in my project (Silverlight 3 with C#): I have a TreeView which is data bound to, well, a tree. This TreeView has a HierarchicalDataTamplate in a resource dictionary, that defines various controls. Now I want to hide (Visibility.Collapse) some items depending on wether a node has children or not. Other items shall be visible under the same condition. It works like charm when I first bind the source tree to the TreeView, but when I change the source tree, the visibility in the treeview does not change. XAML - page: <controls:TreeView x:Name="SankeyTreeView" ItemContainerStyle="{StaticResource expandedTreeViewItemStyle}" ItemTemplate="{StaticResource SankeyTreeTemplate}"> <controls:TreeViewItem IsExpanded="True"> <controls:TreeViewItem.HeaderTemplate> <DataTemplate> <TextBlock Text="This is just for loading and will be replaced directly after the data becomes available..."/> </DataTemplate> </controls:TreeViewItem.HeaderTemplate> </controls:TreeViewItem> </controls:TreeView> XAML - ResourceDictionary <!-- Each node in the tree is structurally identical, hence only one Hierarchical Data Template that'll use itself on the children. --> <Data:HierarchicalDataTemplate x:Key="SankeyTreeTemplate" ItemsSource="{Binding Children}"> <Grid Height="24"> <TextBlock x:Name="TextBlockName" Text="{Binding Path=Value.name, Mode=TwoWay}" VerticalAlignment="Center" Foreground="Black"/> <TextBox x:Name="TextBoxFlow" Text="{Binding Path=Value.flow, Mode=TwoWay}" Grid.Column="1" Visibility="{Binding Children, Converter={StaticResource BoxConverter}, ConverterParameter=\{box\}}"/> <TextBlock x:Name="TextBlockThroughput" Text="{Binding Path=Value.throughput, Mode=TwoWay}" Grid.Column="1" Visibility="{Binding Children, Converter={StaticResource BoxConverter}, ConverterParameter=\{block\}}"/> <Button x:Name="ButtonAddNode"/> <Button x:Name="ButtonDeleteNode"/> <Button x:Name="ButtonEditNode"/> </Grid> </Data:HierarchicalDataTemplate> Now, as you can see, the TextBoxFlow and the TextBlockThroughput share the same space. What I aim at: The "Throughput" value of a node is how much of something 'flows' through this node from its children. It can't be changed directly, so I want to display a text block. Only leaf nodes have a TextBox to let someone enter the 'flow' that is generated in this leaf node. (I.E.: Node.Throughput = Node.Flow + Sum(Children.Throughput), where Node.Flow = 0 for each non-leaf.) What the BoxConverter (silly name -.-) does: public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture) { if ((value as NodeList<TreeItem>).Count > 1) // Node has Children? { if ((parameter as String) == "{box}") { return Visibility.Collapsed; } else ((parameter as String) == "{block}") { return Visibility.Visible; } } else { /* * As above, just with Collapsed and Visible switched */ } } The structure of the tree that is bound to the TreeView is essentially stolen from Dan Vanderboom (a bit too much to dump the whole code here), except that I here of course use an ObservableCollection for the children and the value items implement INotifyPropertyChanged. I would be very grateful if someone could explain to me, why inserting items into the underlying tree does not update the visibility for box and block. Thank you in advance!

    Read the article

  • Maven doesn't see my <repository> in <dependencyManagement>

    - by Ondra Žižka
    To make Maven "deploy" to a directory, I use this: <distributionManagement> <downloadUrl>http://code.google.com/p/junitdiff/downloads/list</downloadUrl> <repository> <id>local-hack-repo</id> <name>LocalDir</name> <url>file://${project.basedir}/dist-maven</url> </repository> <snapshotRepository> <id>jboss-snapshots-repository</id> <name>JBoss Snapshots Repository</name> <!-- <url>https://repository.jboss.org/nexus/content/repositories/snapshots</url> --> <url>file://${project.basedir}/dist-maven</url> </snapshotRepository> </distributionManagement> This appears in the efffective pom. ... <distributionManagement> <repository> <id>local-hack-repo</id> <name>LocalDir</name> <url>file:///home/ondra/work/TOOLS/JUnitDiff/github/dist-maven</url> </repository> <snapshotRepository> <id>jboss-snapshots-repository</id> <name>JBoss Snapshots Repository</name> <url>file:///home/ondra/work/TOOLS/JUnitDiff/github/dist-maven</url> </snapshotRepository> <downloadUrl>http://code.google.com/p/junitdiff/downloads/list</downloadUrl> </distributionManagement> But still, Maven insists that it's not there: [INFO] [ERROR] Failed to execute goal org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy (default-deploy) on project JUnitDiff: Deployment failed: repository element was not specified in the POM inside distributionManagement element or in -DaltDeploymentRepository=id::layout::url parameter -> [Help 1] [INFO] org.apache.maven.lifecycle.LifecycleExecutionException: Failed to execute goal org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy (default-deploy) on project JUnitDiff: Deployment failed: repository element was not specified in the POM inside distributionManagement element or in -DaltDeploymentRepository=id::layout::url parameter [INFO] at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:217) [INFO] at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:153) [INFO] at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:145) [INFO] at org.apache.maven.lifecycle.internal.LifecycleModuleBuilder.buildProject(LifecycleModuleBuilder.java:84) [INFO] at org.apache.maven.lifecycle.internal.LifecycleModuleBuilder.buildProject(LifecycleModuleBuilder.java:59) [INFO] at org.apache.maven.lifecycle.internal.LifecycleStarter.singleThreadedBuild(LifecycleStarter.java:183) [INFO] at org.apache.maven.lifecycle.internal.LifecycleStarter.execute(LifecycleStarter.java:161) [INFO] at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:320) [INFO] at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:156) [INFO] at org.apache.maven.cli.MavenCli.execute(MavenCli.java:537) [INFO] at org.apache.maven.cli.MavenCli.doMain(MavenCli.java:196) [INFO] at org.apache.maven.cli.MavenCli.main(MavenCli.java:141) [INFO] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [INFO] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) [INFO] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) [INFO] at java.lang.reflect.Method.invoke(Method.java:601) [INFO] at org.codehaus.plexus.classworlds.launcher.Launcher.launchEnhanced(Launcher.java:290) [INFO] at org.codehaus.plexus.classworlds.launcher.Launcher.launch(Launcher.java:230) [INFO] at org.codehaus.plexus.classworlds.launcher.Launcher.mainWithExitCode(Launcher.java:409) [INFO] at org.codehaus.plexus.classworlds.launcher.Launcher.main(Launcher.java:352) [INFO] Caused by: org.apache.maven.plugin.MojoExecutionException: Deployment failed: repository element was not specified in the POM inside distributionManagement element or in -DaltDeploymentRepository=id::layout::url parameter [INFO] at org.apache.maven.plugin.deploy.DeployMojo.getDeploymentRepository(DeployMojo.java:235) [INFO] at org.apache.maven.plugin.deploy.DeployMojo.execute(DeployMojo.java:118) [INFO] at org.apache.maven.plugin.DefaultBuildPluginManager.executeMojo(DefaultBuildPluginManager.java:101) [INFO] at org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:209) [INFO] ... 19 more I am using it through the maven-release-plugin. What's wrong?

    Read the article

  • Vista/7: How to get glass color?

    - by Ian Boyd
    How do you use DwmGetColorizationColor? The documentation says it returns two values: a 32-bit 0xAARRGGBB containing the color used for glass composition a boolean parameter that is true "if the color is an opaque blend" (whatever that means) Here's a color that i like, a nice puke green: You can notice the color is greeny, and the translucent title bar (against a white background) shows the snot color very clearly: i try to get the color from Windows: DwmGetColorizationColor(dwCcolorization, bIsOpaqueBlend); And i get dwColorization: 0x0D0A0F04 bIsOpaqueBlend: false According to the documentation this value is of the format AARRGGBB, and so contains: AA: 0x0D (13) RR: 0x0A (10) GG: 0x0F (15) BB: 0x04 (4) This supposedly means that the color is (10, 15, 4), with an opacity of ~5.1%. But if you actually look at this RGB value, it's nowhere near my desired snot green. Here is (10, 15, 4) with zero opacity (the original color), and (10,15,4) with 5% opacity against a white/checkerboard background: So the question is: How to get glass color in Windows Vista/7? i tried using DwmGetColorizationColor, but that doesn't work very well. A person with same problem, but a nicer shiny picture to attract you squirrels: So, it boils down to – DwmGetColorizationColor is completely unusable for applications attempting to apply the current color onto an opaque surface. i love this guy's screenshots much better than mine. Using his screenshots as a template, i made up a few more sparklies: For the last two screenshots, the alpha blended chip is a true partially transparent PNG, blending to your browser's background. Cool! (i'm such a geek) Edit 2: Had to arrange them in rainbow color. (i'm such a geek) Edit 3: Well now i of course have to add Yellow. Undocumented/Unsupported/Fragile Workarounds There is an undocumented export from DwmApi.dll at entry point 137, which we'll call DwmGetColorizationParameters: HRESULT GetColorizationParameters_Undocumented(out DWMCOLORIZATIONPARAMS params); struct DWMCOLORIZATIONPARAMS { public UInt32 ColorizationColor; public UInt32 ColorizationAfterglow; public UInt32 ColorizationColorBalance; public UInt32 ColorizationAfterglowBalance; public UInt32 ColorizationBlurBalance; public UInt32 ColorizationGlassReflectionIntensity; public UInt32 ColorizationOpaqueBlend; } We're interested in the first parameter: ColorizationColor. We can also read the value out of the registry: HKEY_CURRENT_USER\Software\Microsoft\Windows\DWM ColorizationColor: REG_DWORD = 0x6614A600 So you pick your poison of creating appcompat issues. You can rely on an undocumented API (which is bad, bad, bad, and can go away at any time) use an undocumented registry key (which is also bad, and can go away at any time) See also Is there a list of valid parameter combinations for GetThemeColor / Visual Styles API How does Windows change Aero Glass color? DWM - Colorization Color Handling Using DWMGetColorizationColor Retrieving Aero Glass base color for opaque surface rendering i've been wanting to ask this question for over a year now. i always knew that it's impossible to answer, and that the only way to get anyone to actually pay attention is to have colorful screenshots; developers are attracted to shiny things. But on the downside it means i had to put all kinds of work into making the lures.

    Read the article

  • RackSpace Cloud Strips $_SESSION if URL Has Certain File Extensions

    - by macinjosh
    The Situation I am creating a video training site for a client on the RackSpace Cloud using the traditional LAMP stack (RackSpace's cloud has both Windows and LAMP stacks). The videos and other media files I'm serving on this site need to be protected as my client charges money for access to them. There is no DRM or funny business like that, essentially we store the files outside of the web root and use PHP to authenticate user's before they are able to access the files by using mod_rewrite to run the request through PHP. So let's say the user requests a file at this URL: http://www.example.com/uploads/preview_image/29.jpg I am using mod_rewrite to rewrite that url to: http://www.example.com/files.php?path=%2Fuploads%2Fpreview_image%2F29.jpg Here is a simplified version of the files.php script: <?php // Setups the environment and sets $logged_in // This part requires $_SESSION require_once('../../includes/user_config.php'); if (!$logged_in) { // Redirect non-authenticated users header('Location: login.php'); } // This user is authenticated, continue $content_type = "image/jpeg"; // getAbsolutePathForRequestedResource() takes // a Query Parameter called path and uses DB // lookups and some string manipulation to get // an absolute path. This part doesn't have // any bearing on the problem at hand $file_path = getAbsolutePathForRequestedResource($_GET['path']); // At this point $file_path looks something like // this: "/path/to/a/place/outside/the/webroot" if (file_exists($file_path) && !is_dir($file_path)) { header("Content-Type: $content_type"); header('Content-Length: ' . filesize($file_path)); echo file_get_contents($file_path); } else { header('HTTP/1.0 404 Not Found'); header('Status: 404 Not Found'); echo '404 Not Found'; } exit(); ?> The Problem Let me start by saying this works perfectly for me. On local test machines it works like a charm. However once deployed to the cloud it stops working. After some debugging it turns out that if a request to the cloud has certain file extensions like .JPG, .PNG, or .SWF (i.e. extensions of typically static media files.) the request is routed to a cache system called Varnish. The end result of this routing is that by the time this whole process makes it to my PHP script the session is not present. If I change the extension in the URL to .PHP or if I even add a query parameter Varnish is bypassed and the PHP script can get the session. No problem right? I'll just add a meaningless query parameter to my requests! Here is the rub: The media files I am serving through this system are being requested through compiled SWF files that I have zero control over. They are generated by third-party software and I have no hope of adding or changing the URLs that they request. Are there any other options I have on this? Update: I should note that I have verified this behavior with RackSpace support and they have said there is nothing they can do about it.

    Read the article

  • GCC error with variadic templates: "Sorry, unimplemented: cannot expand 'Identifier...' into a fixe

    - by Dennis
    While doing variadic template programming in C++0x on GCC, once in a while I get an error that says "Sorry, unimplemented: cannot expand 'Identifier...' into a fixed-length arugment list." If I remove the "..." in the code then I get a different error: "error: parameter packs not expanded with '...'". So if I have the "..." in, GCC calls that an error, and if I take the "..." out, GCC calls that an error too. The only way I have been able to deal with this is to completely rewrite the template metaprogram from scratch using a different approach, and (with luck) I eventually come up with code that doesn't cause the error. But I would really like to know what I was doing wrong. Despite Googling for it and despite much experimentation, I can't pin down what it is that I'm doing differently between variadic template code that does produce this error, and code that does not have the error. The wording of the error message seems to imply that the code should work according the C++0x standard, but that GCC doesn't support it yet. Or perhaps it is a compiler bug? Here's some code that produces the error. Note: I don't need you to write a correct implementation for me, but rather just to point out what is about my code that is causing this specific error // Used as a container for a set of types. template <typename... Types> struct TypePack { // Given a TypePack<T1, T2, T3> and T=T4, returns TypePack<T1, T2, T3, T4> template <typename T> struct Add { typedef TypePack<Types..., T> type; }; }; // Takes the set (First, Others...) and, while N > 0, adds (First) to TPack. // TPack is a TypePack containing between 0 and N-1 types. template <int N, typename TPack, typename First, typename... Others> struct TypePackFirstN { // sorry, unimplemented: cannot expand ‘Others ...’ into a fixed-length argument list typedef typename TypePackFirstN<N-1, typename TPack::template Add<First>::type, Others...>::type type; }; // The stop condition for TypePackFirstN: when N is 0, return the TypePack that has been built up. template <typename TPack, typename... Others> struct TypePackFirstN<0, TPack, Others...> //sorry, unimplemented: cannot expand ‘Others ...’ into a fixed-length argument list { typedef TPack type; }; EDIT: I've noticed that while a partial template instantiation that looks like does incur the error: template <typename... T> struct SomeStruct<1, 2, 3, T...> {}; Rewriting it as this does not produce an error: template <typename... T> struct SomeStruct<1, 2, 3, TypePack<T...>> {}; It seems that you can declare parameters to partial specializations to be variadic; i.e. this line is OK: template <typename... T> But you cannot actually use those parameter packs in the specialization, i.e. this part is not OK: SomeStruct<1, 2, 3, T... The fact that you can make it work if you wrap the pack in some other type, i.e. like this: SomeStruct<1, 2, 3, TypePack<T...>> to me implies that the declaration of the variadic parameter to a partial template specialization was successful, and you just can't use it directly. Can anyone confirm this?

    Read the article

  • NullPointerException in generated JSP code calling setJspId()

    - by Dobbo
    I am trying to deploy the Duke's Bank example form the J2EE 5 tutorial on JBoss 7.1.1. I have only used (unaltered) the source, and the standard XML configuration files for deployment, part of the exercise here is to see how I might structure a JSP based project of my own. The exception I get is as follows: ERROR [[jsp]] Servlet.service() for servlet jsp threw exception: java.lang.NullPointerException at javax.faces.webapp.UIComponentClassicTagBase.setJspId(UIComponentClassicTagBase.java:1858) [jboss-jsf-api_2.1_spec-2.0.1.Final.jar:2.0.1.Final] at org.apache.jsp.main_jsp._jspx_meth_f_005fview_005f0(main_jsp.java:99) at org.apache.jsp.main_jsp._jspService(main_jsp.java:76) at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:70) [jbossweb-7.0.13.Final.jar:] at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) [jboss-servlet-api_3.0_spec-1.0.0.Final.jar:1.0.0.Final] at org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:369) [jbossweb-7.0.13.Final.jar:] at org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:326) [jbossweb-7.0.13.Final.jar:] at org.apache.jasper.servlet.JspServlet.service(JspServlet.java:253) [jbossweb-7.0.13.Final.jar:] at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) [jboss-servlet-api_3.0_spec-1.0.0.Final.jar:1.0.0.Final] at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:329) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:248) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:275) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:161) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:397) [jbossweb-7.0.13.Final.jar:] at org.jboss.as.jpa.interceptor.WebNonTxEmCloserValve.invoke(WebNonTxEmCloserValve.java:50) [jboss-as-jpa-7.1.1.Final.jar:7.1.1.Final] at org.jboss.as.web.security.SecurityContextAssociationValve.invoke(SecurityContextAssociationValve.java:153) [jboss-as-web-7.1.1.Final.jar:7.1.1.Final] at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:155) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) [jbossweb-7.0.13.Final.jar:] at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:368) [jbossweb-7.0.13.Final.jar:] at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:877) [jbossweb-7.0.13.Final.jar:] at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:671) [jbossweb-7.0.13.Final.jar:] at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:930) [jbossweb-7.0.13.Final.jar:] at java.lang.Thread.run(Thread.java:636) [rt.jar:1.6.0_18] I have not given any JBoss configuration files, the WAR's WEB-INF part looks like this: $ jar tvf build/lib/dukebank-web.war 0 Sat Dec 15 22:00:12 GMT 2012 META-INF/ 123 Sat Dec 15 22:00:10 GMT 2012 META-INF/MANIFEST.MF 0 Sat Dec 15 22:00:12 GMT 2012 WEB-INF/ 2514 Fri Dec 14 14:29:20 GMT 2012 WEB-INF/web.xml 1348 Sat Dec 15 08:19:46 GMT 2012 WEB-INF/dukesBank.tld 7245 Sat Dec 15 08:19:46 GMT 2012 WEB-INF/faces-config.xml 2153 Sat Dec 15 08:19:46 GMT 2012 WEB-INF/tutorial-template.tld 0 Sat Dec 15 22:00:12 GMT 2012 WEB-INF/classes/... The JSP file (main.jsp) that causes this problem is: <f:view> <h:form> <jsp:include page="/template/template.jsp"/> <center> <h3><h:outputText value="#{bundle.Welcome}"/></h3> </center> </h:form> </f:view> The template file it includes: <%@ taglib uri="/WEB-INF/tutorial-template.tld" prefix="tt" %> <%@ page errorPage="/template/errorpage.jsp" %> <%@ include file="/template/screendefinitions.jspf" %> <html> <head> <title> <tt:insert definition="bank" parameter="title"/> </title> <link rel="stylesheet" type="text/css" href="stylesheet.css"> </head> <body bgcolor="#ffffff"> <tt:insert definition="bank" parameter="banner"/> <tt:insert definition="bank" parameter="links"/> </body> </html> I will refrain from coping any more files because, as I said at the start I haven't altered any of the files I have used. Many thanks for your help, Steve

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • Netflix, jQuery, JSONP, and OData

    - by Stephen Walther
    At the last MIX conference, Netflix announced that they are exposing their catalog of movie information using the OData protocol. This is great news! This means that you can take advantage of all of the advanced OData querying features against a live database of Netflix movies. In this blog entry, I’ll demonstrate how you can use Netflix, jQuery, JSONP, and OData to create a simple movie lookup form. The form enables you to enter a movie title, or part of a movie title, and display a list of matching movies. For example, Figure 1 illustrates the movies displayed when you enter the value robot into the lookup form.   Using the Netflix OData Catalog API You can learn about the Netflix OData Catalog API at the following website: http://developer.netflix.com/docs/oData_Catalog The nice thing about this website is that it provides plenty of samples. It also has a good general reference for OData. For example, the website includes a list of OData filter operators and functions. The Netflix Catalog API exposes 4 top-level resources: Titles – A database of Movie information including interesting movie properties such as synopsis, BoxArt, and Cast. People – A database of people information including interesting information such as Awards, TitlesDirected, and TitlesActedIn. Languages – Enables you to get title information in different languages. Genres – Enables you to get title information for specific movie genres. OData is REST based. This means that you can perform queries by putting together the right URL. For example, if you want to get a list of the movies that were released after 2010 and that had an average rating greater than 4 then you can enter the following URL in the address bar of your browser: http://odata.netflix.com/Catalog/Titles?$filter=ReleaseYear gt 2010&AverageRating gt 4 Entering this URL returns the movies in Figure 2. Creating the Movie Lookup Form The complete code for the Movie Lookup form is contained in Listing 1. Listing 1 – MovieLookup.htm <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Netflix with jQuery</title> <style type="text/css"> #movieTemplateContainer div { width:400px; padding: 10px; margin: 10px; border: black solid 1px; } </style> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="App_Scripts/Microtemplates.js" type="text/javascript"></script> </head> <body> <label>Search Movies:</label> <input id="movieName" size="50" /> <button id="btnLookup">Lookup</button> <div id="movieTemplateContainer"></div> <script id="movieTemplate" type="text/html"> <div> <img src="<%=BoxArtSmallUrl %>" /> <strong><%=Name%></strong> <p> <%=Synopsis %> </p> </div> </script> <script type="text/javascript"> $("#btnLookup").click(function () { // Build OData query var movieName = $("#movieName").val(); var query = "http://odata.netflix.com/Catalog" // netflix base url + "/Titles" // top-level resource + "?$filter=substringof('" + escape(movieName) + "',Name)" // filter by movie name + "&$callback=callback" // jsonp request + "&$format=json"; // json request // Make JSONP call to Netflix $.ajax({ dataType: "jsonp", url: query, jsonpCallback: "callback", success: callback }); }); function callback(result) { // unwrap result var movies = result["d"]["results"]; // show movies in template var showMovie = tmpl("movieTemplate"); var html = ""; for (var i = 0; i < movies.length; i++) { // flatten movie movies[i].BoxArtSmallUrl = movies[i].BoxArt.SmallUrl; // render with template html += showMovie(movies[i]); } $("#movieTemplateContainer").html(html); } </script> </body> </html> The HTML page in Listing 1 includes two JavaScript libraries: <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="App_Scripts/Microtemplates.js" type="text/javascript"></script> The first script tag retrieves jQuery from the Microsoft Ajax CDN. You can learn more about the Microsoft Ajax CDN by visiting the following website: http://www.asp.net/ajaxLibrary/cdn.ashx The second script tag is used to reference Resig’s micro-templating library. Because I want to use a template to display each movie, I need this library: http://ejohn.org/blog/javascript-micro-templating/ When you enter a value into the Search Movies input field and click the button, the following JavaScript code is executed: // Build OData query var movieName = $("#movieName").val(); var query = "http://odata.netflix.com/Catalog" // netflix base url + "/Titles" // top-level resource + "?$filter=substringof('" + escape(movieName) + "',Name)" // filter by movie name + "&$callback=callback" // jsonp request + "&$format=json"; // json request // Make JSONP call to Netflix $.ajax({ dataType: "jsonp", url: query, jsonpCallback: "callback", success: callback }); This code Is used to build a query that will be executed against the Netflix Catalog API. For example, if you enter the search phrase King Kong then the following URL is created: http://odata.netflix.com/Catalog/Titles?$filter=substringof(‘King%20Kong’,Name)&$callback=callback&$format=json This query includes the following parameters: $filter – You assign a filter expression to this parameter to filter the movie results. $callback – You assign the name of a JavaScript callback method to this parameter. OData calls this method to return the movie results. $format – you assign either the value json or xml to this parameter to specify how the format of the movie results. Notice that all of the OData parameters -- $filter, $callback, $format -- start with a dollar sign $. The Movie Lookup form uses JSONP to retrieve data across the Internet. Because WCF Data Services supports JSONP, and Netflix uses WCF Data Services to expose movies using the OData protocol, you can use JSONP when interacting with the Netflix Catalog API. To learn more about using JSONP with OData, see Pablo Castro’s blog: http://blogs.msdn.com/pablo/archive/2009/02/25/adding-support-for-jsonp-and-url-controlled-format-to-ado-net-data-services.aspx The actual JSONP call is performed by calling the $.ajax() method. When this call successfully completes, the JavaScript callback() method is called. The callback() method looks like this: function callback(result) { // unwrap result var movies = result["d"]["results"]; // show movies in template var showMovie = tmpl("movieTemplate"); var html = ""; for (var i = 0; i < movies.length; i++) { // flatten movie movies[i].BoxArtSmallUrl = movies[i].BoxArt.SmallUrl; // render with template html += showMovie(movies[i]); } $("#movieTemplateContainer").html(html); } The movie results from Netflix are passed to the callback method. The callback method takes advantage of Resig’s micro-templating library to display each of the movie results. A template used to display each movie is passed to the tmpl() method. The movie template looks like this: <script id="movieTemplate" type="text/html"> <div> <img src="<%=BoxArtSmallUrl %>" /> <strong><%=Name%></strong> <p> <%=Synopsis %> </p> </div> </script>   This template looks like a server-side ASP.NET template. However, the template is rendered in the client (browser) instead of the server. Summary The goal of this blog entry was to demonstrate how well jQuery works with OData. We managed to use a number of interesting open-source libraries and open protocols while building the Movie Lookup form including jQuery, JSONP, JSON, and OData.

    Read the article

  • Preventing duplicate Data with ASP.NET AJAX

    - by Yousef_Jadallah
      Some times you need to prevent  User names ,E-mail ID's or other values from being duplicated by a new user during Registration or any other cases,So I will add a simple approach to make the page more user-friendly. Instead the user filled all the Registration fields then press submit after that received a message as a result of PostBack that "THIS USERNAME IS EXIST", Ajax tidies this up by allowing asynchronous querying while the user is still completing the registration form.   ASP.NET enables you to create Web services can be accessed from client script in Web pages by using AJAX technology to make Web service calls. Data is exchanged asynchronously between client and server, typically in JSON format. I’ve added an article to show you step by step  how to use ASP.NET AJAX with Web Services , you can find it here .   Lets go a head with the steps :   1-Create a new project , if you are using VS 2005 you have to create ASP.NET Ajax Enabled Web site.   2-Create your own Database which contain user table that have User_Name field. for Testing I’ve added SQL Server Database that come with Dot Net 2008: Then I’ve created tblUsers:   This table and this structure just for our example, you can use your own table to implement this approach.   3-Add new Item to your project or website, Choose Web Service file, lets say  WebService.cs  .In this Web Service file import System.Data.SqlClient Namespace, Then Add your web method that contain string parameter which received the Username parameter from the Script , Finally don’t forget to qualified the Web Service Class with the ScriptServiceAttribute attribute ([System.Web.Script.Services.ScriptService])     using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Services; using System.Data.SqlClient;     [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [System.Web.Script.Services.ScriptService] public class WebService : System.Web.Services.WebService {     [WebMethod] public int CheckDuplicate(string User_Name) { string strConn = @"Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\TestDB.mdf;Integrated Security=True;User Instance=True"; string strQuery = "SELECT COUNT(*) FROM tblUsers WHERE User_Name = @User_Name"; SqlConnection con = new SqlConnection(strConn); SqlCommand cmd = new SqlCommand(strQuery, con); cmd.Parameters.Add("User_Name", User_Name); con.Open(); int RetVal= (int)cmd.ExecuteScalar(); con.Close(); return RetVal; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Our Web Method here is CheckDuplicate Which accept User_Name String as a parameter and return number of the rows , if the name will found in the database this method will return 1 else it will return 0. I’ve applied  [WebMethod] Attribute to our method CheckDuplicate, And applied the ScriptService attribute to a Web Service class named WebService.   4-Add this simple Registration form : <fieldset> <table id="TblRegistratoin" cellpadding="0" cellspacing="0"> <tr> <td> User Name </td> <td> <asp:TextBox ID="txtUserName" onblur="CallWebMethod();" runat="server"></asp:TextBox> </td> <td> <asp:Label ID="lblDuplicate" runat="server" ForeColor="Red" Text=""></asp:Label> </td> </tr> <tr> <td colspan="3"> <asp:Button ID="btnRegistration" runat="server" Text="Registration" /> </td> </tr> </table> </fieldset> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   onblur event is added to the Textbox txtUserName, This event Fires when the Textbox loses the input focus, That mean after the user get focus out from the Textbox CallWebMethod function will be fired. CallWebMethod will be implemented in step 6.   5-Add ScriptManager Control to your aspx file then reference the Web service by adding an asp:ServiceReference child element to the ScriptManager control and setting its path attribute to point to the Web service, That generate a JavaScript proxy class for calling the specified Web service from client script.   <asp:ScriptManager runat="server" ID="scriptManager"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     6-Define the JavaScript code to call the Web Service :   <script language="javascript" type="text/javascript">   // This function calls the Web service method // passing simple type parameters and the // callback function function CallWebMethod() { var User_Name = document.getElementById('<%=txtUserName.ClientID %>').value; WebService.CheckDuplicate(User_Name, OnSucceeded, OnError); }   // This is the callback function invoked if the Web service // succeeded function OnSucceeded(result) { var rsltElement = document.getElementById("lblDuplicate"); if (result == 1) rsltElement.innerHTML = "This User Name is exist"; else rsltElement.innerHTML = "";   }   function OnError(error) { // Display the error. alert("Service Error: " + error.get_message()); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   This call references the WebService Class and CheckDuplicate Web Method defined in the service. It passes a User_Name value obtained from a textbox as well as a callback function named OnSucceeded that should be invoked when the asynchronous Web Service call returns. If the Web Service in different Namespace you can refer it before the class name this Main formula may help you :  NameSpaceName.ClassName.WebMethdName(Parameters , Success callback function, Error callback function); Parameters: you can pass one or many parameters. Success callback function :handles returned data from the service . Error callback function :Any errors that occur when the Web Service is called will trigger in this function. Using Error Callback function is optional.   Hope these steps help you to understand this approach.

    Read the article

  • Preventing duplicate Data with ASP.NET AJAX

    - by Yousef_Jadallah
      Some times you need to prevent  User names ,E-mail ID's or other values from being duplicated by a new user during Registration or any other cases,So I will add a simple approach to make the page more user-friendly. Instead the user filled all the Registration fields then press submit after that received a message as a result of PostBack that "THIS USERNAME IS EXIST", Ajax tidies this up by allowing asynchronous querying while the user is still completing the registration form.   ASP.NET enables you to create Web services can be accessed from client script in Web pages by using AJAX technology to make Web service calls. Data is exchanged asynchronously between client and server, typically in JSON format. I’ve added an article to show you step by step  how to use ASP.NET AJAX with Web Services , you can find it here .   Lets go a head with the steps :   1-Create a new project , if you are using VS 2005 you have to create ASP.NET Ajax Enabled Web site.   2-Create your own Database which contain user table that have User_Name field. for Testing I’ve added SQL Server Database that come with Dot Net 2008: Then I’ve created tblUsers:   This table and this structure just for our example, you can use your own table to implement this approach.   3-Add new Item to your project or website, Choose Web Service file, lets say  WebService.cs  .In this Web Service file import System.Data.SqlClient Namespace, Then Add your web method that contain string parameter which received the Username parameter from the Script , Finally don’t forget to qualified the Web Service Class with the ScriptServiceAttribute attribute ([System.Web.Script.Services.ScriptService])     using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Services; using System.Data.SqlClient;     [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [System.Web.Script.Services.ScriptService] public class WebService : System.Web.Services.WebService {     [WebMethod] public int CheckDuplicate(string User_Name) { string strConn = @"Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\TestDB.mdf;Integrated Security=True;User Instance=True"; string strQuery = "SELECT COUNT(*) FROM tblUsers WHERE User_Name = @User_Name"; SqlConnection con = new SqlConnection(strConn); SqlCommand cmd = new SqlCommand(strQuery, con); cmd.Parameters.Add("User_Name", User_Name); con.Open(); int RetVal= (int)cmd.ExecuteScalar(); con.Close(); return RetVal; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Our Web Method here is CheckDuplicate Which accept User_Name String as a parameter and return number of the rows , if the name will found in the database this method will return 1 else it will return 0. I’ve applied  [WebMethod] Attribute to our method CheckDuplicate, And applied the ScriptService attribute to a Web Service class named WebService.   4-Add this simple Registration form : <fieldset> <table id="TblRegistratoin" cellpadding="0" cellspacing="0"> <tr> <td> User Name </td> <td> <asp:TextBox ID="txtUserName" onblur="CallWebMethod();" runat="server"></asp:TextBox> </td> <td> <asp:Label ID="lblDuplicate" runat="server" ForeColor="Red" Text=""></asp:Label> </td> </tr> <tr> <td colspan="3"> <asp:Button ID="btnRegistration" runat="server" Text="Registration" /> </td> </tr> </table> </fieldset> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   onblur event is added to the Textbox txtUserName, This event Fires when the Textbox loses the input focus, That mean after the user get focus out from the Textbox CallWebMethod function will be fired. CallWebMethod will be implemented in step 6.   5-Add ScriptManager Control to your aspx file then reference the Web service by adding an asp:ServiceReference child element to the ScriptManager control and setting its path attribute to point to the Web service, That generate a JavaScript proxy class for calling the specified Web service from client script.   <asp:ScriptManager runat="server" ID="scriptManager"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     6-Define the JavaScript code to call the Web Service :   <script language="javascript" type="text/javascript">   // This function calls the Web service method // passing simple type parameters and the // callback function function CallWebMethod() { var User_Name = document.getElementById('<%=txtUserName.ClientID %>').value; WebService.CheckDuplicate(User_Name, OnSucceeded, OnError); }   // This is the callback function invoked if the Web service // succeeded function OnSucceeded(result) { var rsltElement = document.getElementById("lblDuplicate"); if (result == 1) rsltElement.innerHTML = "This User Name is exist"; else rsltElement.innerHTML = "";   }   function OnError(error) { // Display the error. alert("Service Error: " + error.get_message()); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   This call references the WebService Class and CheckDuplicate Web Method defined in the service. It passes a User_Name value obtained from a textbox as well as a callback function named OnSucceeded that should be invoked when the asynchronous Web Service call returns. If the Web Service in different Namespace you can refer it before the class name this Main formula may help you :  NameSpaceName.ClassName.WebMethdName(Parameters , Success callback function, Error callback function); Parameters: you can pass one or many parameters. Success callback function :handles returned data from the service . Error callback function :Any errors that occur when the Web Service is called will trigger in this function. Using Error Callback function is optional.   Hope these steps help you to understand this approach.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • April 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m excited to announce the April 2013 release of the Ajax Control Toolkit. For this release, we focused on improving two controls: the AjaxFileUpload and the MaskedEdit controls. You can download the latest release from CodePlex at http://AjaxControlToolkit.CodePlex.com or, better yet, you can execute the following NuGet command within Visual Studio 2010/2012: There are three builds of the Ajax Control Toolkit: .NET 3.5, .NET 4.0, and .NET 4.5. A Better AjaxFileUpload Control We completely rewrote the AjaxFileUpload control for this release. We had two primary goals. First, we wanted to support uploading really large files. In particular, we wanted to support uploading multi-gigabyte files such as video files or application files. Second, we wanted to support showing upload progress on as many browsers as possible. The previous version of the AjaxFileUpload could show upload progress when used with Google Chrome or Mozilla Firefox but not when used with Apple Safari or Microsoft Internet Explorer. The new version of the AjaxFileUpload control shows upload progress when used with any browser. Using the AjaxFileUpload Control Let me walk-through using the AjaxFileUpload in the most basic scenario. And then, in following sections, I can explain some of its more advanced features. Here’s how you can declare the AjaxFileUpload control in a page: <ajaxToolkit:ToolkitScriptManager runat="server" /> <ajaxToolkit:AjaxFileUpload ID="AjaxFileUpload1" AllowedFileTypes="mp4" OnUploadComplete="AjaxFileUpload1_UploadComplete" runat="server" /> The exact appearance of the AjaxFileUpload control depends on the features that a browser supports. In the case of Google Chrome, which supports drag-and-drop upload, here’s what the AjaxFileUpload looks like: Notice that the page above includes two Ajax Control Toolkit controls: the AjaxFileUpload and the ToolkitScriptManager control. You always need to include the ToolkitScriptManager with any page which uses Ajax Control Toolkit controls. The AjaxFileUpload control declared in the page above includes an event handler for its UploadComplete event. This event handler is declared in the code-behind page like this: protected void AjaxFileUpload1_UploadComplete(object sender, AjaxControlToolkit.AjaxFileUploadEventArgs e) { // Save uploaded file to App_Data folder AjaxFileUpload1.SaveAs(MapPath("~/App_Data/" + e.FileName)); } This method saves the uploaded file to your website’s App_Data folder. I’m assuming that you have an App_Data folder in your project – if you don’t have one then you need to create one or you will get an error. There is one more thing that you must do in order to get the AjaxFileUpload control to work. The AjaxFileUpload control relies on an HTTP Handler named AjaxFileUploadHandler.axd. You need to declare this handler in your application’s root web.config file like this: <configuration> <system.web> <compilation debug="true" targetFramework="4.5" /> <httpRuntime targetFramework="4.5" maxRequestLength="42949672" /> <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </httpHandlers> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </handlers> <security> <requestFiltering> <requestLimits maxAllowedContentLength="4294967295"/> </requestFiltering> </security> </system.webServer> </configuration> Notice that the web.config file above also contains configuration settings for the maxRequestLength and maxAllowedContentLength. You need to assign large values to these configuration settings — as I did in the web.config file above — in order to accept large file uploads. Supporting Chunked File Uploads Because one of our primary goals with this release was support for large file uploads, we added support for client-side chunking. When you upload a file using a browser which fully supports the HTML5 File API — such as Google Chrome or Mozilla Firefox — then the file is uploaded in multiple chunks. You can see chunking in action by opening F12 Developer Tools in your browser and observing the Network tab: Notice that there is a crazy number of distinct post requests made (about 360 distinct requests for a 1 gigabyte file). Each post request looks like this: http://localhost:24338/AjaxFileUploadHandler.axd?contextKey={DA8BEDC8-B952-4d5d-8CC2-59FE922E2923}&fileId=B7CCE31C-6AB1-BB28-2940-49E0C9B81C64 &fileName=Sita_Sings_the_Blues_480p_2150kbps.mp4&chunked=true&firstChunk=false Each request posts another chunk of the file being uploaded. Notice that the request URL includes a chunked=true parameter which indicates that the browser is breaking the file being uploaded into multiple chunks. Showing Upload Progress on All Browsers The previous version of the AjaxFileUpload control could display upload progress only in the case of browsers which fully support the HTML5 File API. The new version of the AjaxFileUpload control can display upload progress in the case of all browsers. If a browser does not fully support the HTML5 File API then the browser polls the server every few seconds with an Ajax request to determine the percentage of the file that has been uploaded. This technique of displaying progress works with any browser which supports making Ajax requests. There is one catch. Be warned that this new feature only works with the .NET 4.0 and .NET 4.5 versions of the AjaxControlToolkit. To show upload progress, we are taking advantage of the new ASP.NET HttpRequest.GetBufferedInputStream() and HttpRequest.GetBufferlessInputStream() methods which are not supported by .NET 3.5. For example, here is what the Network tab looks like when you use the AjaxFileUpload with Microsoft Internet Explorer: Here’s what the requests in the Network tab look like: GET /WebForm1.aspx?contextKey={DA8BEDC8-B952-4d5d-8CC2-59FE922E2923}&poll=1&guid=9206FF94-76F9-B197-D1BC-EA9AD282806B HTTP/1.1 Notice that each request includes a poll=1 parameter. This parameter indicates that this is a polling request to get the size of the file buffered on the server. Here’s what the response body of a request looks like when about 20% of a file has been uploaded: Buffering to a Temporary File When you upload a file using the AjaxFileUpload control, the file upload is buffered to a temporary file located at Path.GetTempPath(). When you call the SaveAs() method, as we did in the sample page above, the temporary file is copied to a new file and then the temporary file is deleted. If you don’t call the SaveAs() method, then you must ensure that the temporary file gets deleted yourself. For example, if you want to save the file to a database then you will never call the SaveAs() method and you are responsible for deleting the file. The easiest way to delete the temporary file is to call the AjaxFileUploadEventArgs.DeleteTemporaryData() method in the UploadComplete handler: protected void AjaxFileUpload1_UploadComplete(object sender, AjaxControlToolkit.AjaxFileUploadEventArgs e) { // Save uploaded file to a database table e.DeleteTemporaryData(); } You also can call the static AjaxFileUpload.CleanAllTemporaryData() method to delete all temporary data and not only the temporary data related to the current file upload. For example, you might want to call this method on application start to ensure that all temporary data is removed whenever your application restarts. A Better MaskedEdit Extender This release of the Ajax Control Toolkit contains bug fixes for the top-voted issues related to the MaskedEdit control. We closed over 25 MaskedEdit issues. Here is a complete list of the issues addressed with this release: · 17302 MaskedEditExtender MaskType=Date, Mask=99/99/99 Undefined JS Error · 11758 MaskedEdit causes error in JScript when working with 2-digits year · 18810 Maskededitextender/validator Date validation issue · 23236 MaskEditValidator does not work with date input using format dd/mm/yyyy · 23042 Webkit based browsers (Safari, Chrome) and MaskedEditExtender · 26685 MaskedEditExtender@(ClearMaskOnLostFocus=false) adds a zero character when you each focused to target textbox · 16109 MaskedEditExtender: Negative amount, followed by decimal, sets value to positive · 11522 MaskEditExtender of AjaxtoolKit-1.0.10618.0 does not work properly for Hungarian Culture · 25988 MaskedEditExtender – CultureName (HU-hu) > DateSeparator · 23221 MaskedEditExtender date separator problem · 15233 Day and month swap in Dynamic user control · 15492 MaskedEditExtender with ClearMaskOnLostFocus and with MaskedEditValidator with ClientValidationFunction · 9389 MaskedEditValidator – when on no entry · 11392 MaskedEdit Number format messed up · 11819 MaskedEditExtender erases all values beyond first comma separtor · 13423 MaskedEdit(Extender/Validator) combo problem · 16111 MaskedEditValidator cannot validate date with DayMonthYear in UserDateFormat of MaskedEditExtender · 10901 MaskedEdit: The months and date fields swap values when you hit submit if UserDateFormat is set. · 15190 MaskedEditValidator can’t make use of MaskedEditExtender’s UserDateFormat property · 13898 MaskedEdit Extender with custom date type mask gives javascript error · 14692 MaskedEdit error in “yy/MM/dd” format. · 16186 MaskedEditExtender does not handle century properly in a date mask · 26456 MaskedEditBehavior. ConvFmtTime : function(input,loadFirst) fails if this._CultureAMPMPlaceholder == “” · 21474 Error on MaskedEditExtender working with number format · 23023 MaskedEditExtender’s ClearMaskOnLostFocus property causes problems for MaskedEditValidator when set to false · 13656 MaskedEditValidator Min/Max Date value issue Conclusion This latest release of the Ajax Control Toolkit required many hours of work by a team of talented developers. I want to thank the members of the Superexpert team for the long hours which they put into this release.

    Read the article

  • CodePlex Daily Summary for Monday, June 10, 2013

    CodePlex Daily Summary for Monday, June 10, 2013Popular ReleasesNexusCamera: NexusCamera: Nexus Camera is a control for Windows Phone 7 & 8, which can be used as a menu on the Camera. The idea in making this control when we use a camera nexus. Thanks for Nexus. Need Windows Phone Toolkit https://phone.codeplex.com/ View Sample Camera http://tctechcrunch2011.files.wordpress.com/2012/11/nexus4-camera.jpgVR Player: VR Player 0.3 ALPHA: New plugin system with individual folders TrackIR support Maya and 3ds max formats support Dual screen support Mono layouts (left and right) Cylinder height parameter Barel effect factor parameter Razer hydra filter parameter VRPN bug fixes UI improvements Performances improvements Stabilization and logging with Log4Net New default values base on users feedback CTRL key to open menuZXMAK2: Version 2.7.5.4: - add hayes modem device (thanks to Eltaron) - add host joystick selection - fix joystick bits (swapped in previous version)SimCityPak: SimCityPak 0.1.0.8: SimCityPak 0.1.0.8 New features: Import BMP color palettes for vehicles Import RASTER file (uncompressed 8.8.8.8 DDS files) View different channels of RASTER files or preview of all layers combined Find text in javascripts TGA viewer Ground textures added to lot editor Many additional identified instances and propertiesWsus Package Publisher: Release v1.2.1306.09: Add more verifications on certificate validation. WPP will not let user to try publishing an update until the certificate is valid. Add certificate expiration date on the 'About' form. Filter Approbation to avoid a user to try to approve an update for uninstallation when the update do not support uninstallation. Add the server and console version on the 'About' form. WPP will not let user to publish an update until the server and console are not at the same level. WPP do not let user ...AJAX Control Toolkit: June 2013 Release: AJAX Control Toolkit Release Notes - June 2013 Release Version 7.0607June 2013 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - Instructions for using the AJAX Control Toolkit with ASP.NET 4.5 can be found at...Rawr: Rawr 5.2.1: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...VG-Ripper & PG-Ripper: PG-Ripper 1.4.13: changes NEW: Added Support for "ImageJumbo.com" links FIXED: Ripping of Threads with multiple pagesXomega Framework: Xomega.Framework 1.4: Adding support for Visual Studio 2012 and .Net framework 4.5. Minor bug fixes and enhancements.sb0t v.5: sb0t 5.14: Stability fix in script engine. Avatar.exists property fixed in scripting. cb0t custom font protocol re-added and updated to support new Ares.ASP.NET MVC Forum: MVCForum v1.3.5: This is a bug release version, with a couple of small usability features and UI changes. All the small amount of bugs reported in v1.3 have been fixed, no upgrade needed just overwrite the files and everything should just work.Json.NET: Json.NET 5.0 Release 6: New feature - Added serialized/deserialized JSON to verbose tracing New feature - Added support for using type name handling with ISerializable content Fix - Fixed not using default serializer settings with primitive values and JToken.ToObject Fix - Fixed error writing BigIntegers with JsonWriter.WriteToken Fix - Fixed serializing and deserializing flag enums with EnumMember attribute Fix - Fixed error deserializing interfaces with a valid type converter Fix - Fixed error deser...Christoc's DotNetNuke Module Development Template: DotNetNuke 7 Project Templates V2.3 for VS2012: V2.3 - Release Date 6/5/2013 Items addressed in this 2.3 release Fixed bad namespace for BusinessController in one of the C# templates. Updated documentation in all templates. Setting up your DotNetNuke Module Development Environment Installing Christoc's DotNetNuke Module Development Templates Customizing the latest DotNetNuke Module Development Project TemplatesPulse: Pulse 0.6.7.0: A number of small bug fixes to stabilize the previous Beta. Sorry about the never ending "New Version" bug!QlikView Extension - Animated Scatter Chart: Animated Scatter Chart - v1.0: Version 1.0 including Source Code qar File Example QlikView application Tested With: Browser Firefox 20 (x64) Google Chrome 27 (x64) Internet Explorer 9 QlikView QlikView Desktop 11 - SR2 (x64) QlikView Desktop 11.2 - SR1 (x64) QlikView Ajax Client 11.2 - SR2 (based on x64)BarbaTunnel: BarbaTunnel 7.2: Warning: HTTP Tunnel is not compatible with version 6.x and prior, HTTP packet format has been changed. Check Version History for more information about this release.SuperWebSocket, a .NET WebSocket Server: SuperWebSocket 0.8: This release includes these changes below: Upgrade SuperSocket to 1.5.3 which is much more stable Added handshake request validating api (WebSocketServer.ValidateHandshake(TWebSocketSession session, string origin)) Fixed a bug that the m_Filters in the SubCommandBase can be null if the command's method LoadSubCommandFilters(IEnumerable<SubCommandFilterAttribute> globalFilters) is not invoked Fixed the compatibility issue on Origin getting in the different version protocols Marked ISub...BlackJumboDog: Ver5.9.0: 2013.06.04 Ver5.9.0 (1) ?????????????????????????????????($Remote.ini Tmp.ini) (2) ThreadBaseTest?? (3) ????POP3??????SMTP???????????????? (4) Web???????、?????????URL??????????????? (5) Ftp???????、LIST?????????????? (6) ?????????????????????Media Companion: Media Companion MC3.569b: New* Movies - Autoscrape/Batch Rescrape extra fanart and or extra thumbs. * Movies - Alternative editor can add manually actors. * TV - Batch Rescraper, AutoScrape extrafanart, if option enabled. Fixed* Movies - Slow performance switching to movie tab by adding option 'Disable "Not Matching Rename Pattern"' to Movie Preferences - General. * Movies - Fixed only actors with images were scraped and added to nfo * Movies - Fixed filter reset if selected tab was above Home Movies. * Updated Medi...Nearforums - ASP.NET MVC forum engine: Nearforums v9.0: Version 9.0 of Nearforums with great new features for users and developers: SQL Azure support Admin UI for Forum Categories Avoid html validation for certain roles Improve profile picture moderation and support Warn, suspend, and ban users Web administration of site settings Extensions support Visit the Roadmap for more details. Webdeploy package sha1 checksum: 9.0.0.0: e687ee0438cd2b1df1d3e95ecb9d66e7c538293b New ProjectsASP.NET MVC 4 and RequireJS: ASP.NET MVC 4 application with Areas and RequireJSBaseX - Base converter and calculator: Dealing with numbers of any base in .NET.C# Exercises: C# ExercisesClassfinder: ClassfinderCreative OS ALPHA: This is a OS!!!!CSS Exercises: CSS ExercisesCustom Workflow Action: Project showing how to create and use Custom Workflow Action for SharePoint Designer 2013.Devshed Tools: Provides easy to use and compile-time-support solution for various type of projects on the .NET framework. Currently Devshed.Web is in development.Envar Editor: Edit environment variables easily on windowsExcel To Sql: A simplified tool for importing Excel data into SQL.HTML Exercises: HTML ExercisesKnockout.js with ASP.NET MVC: This project implements a system which maps .NET ViewModels to javascript ViewModels for use with knockout.js, using Razor markup syntax.LogoBids: LOGO??????,ORM??OpenAccess ORMManagistics: Management Logistics Application (including: Warehouse, Sale, Purchase, ...)Matrix Switch Preset Utility: A small utility for managing the inputs and outputs from a matrix switch via RS-232. Developed in WPF (VB9) and running on the .Net3.5SP1 framework.MvcSystemsCommander: An ASP.NET C# MVC4 webapp to help systems administrators consolidate common systems administration tasksNewspaperAgent: My small projectOutlook Recovery Software - Efficiently Repair Damaged PST File: This project tells you the easiest way to recover PST file of Outlook. Complete information has been given here to help users.Pattern: Testprocedure: a new procedural programming framework based on .net, by using lambda expression, it can handle async io friendly and provide a full lock-free solutionSharePoint 2013 custom field samples: SharePoint 2013 custom field samples is a research project aims to provide samples for developing custom fields in SharePoint 2013.SharePoint 2013 List Forms: This small framework allows you to manage custom list forms using rendering templates and controls stored in a SharePoint library.The Coconut Cranium Decision Engine: The Coconut Cranium Decision Engine is a boolean decision engine using the most mind-bendingly worse way of working.TxtToSeq: Command line utility to convert Commodore SEQ files to TXT files and vice-versa.ultgw: ult gw

    Read the article

  • Metro: Promises

    - by Stephen.Walther
    The goal of this blog entry is to describe the Promise class in the WinJS library. You can use promises whenever you need to perform an asynchronous operation such as retrieving data from a remote website or a file from the file system. Promises are used extensively in the WinJS library. Asynchronous Programming Some code executes immediately, some code requires time to complete or might never complete at all. For example, retrieving the value of a local variable is an immediate operation. Retrieving data from a remote website takes longer or might not complete at all. When an operation might take a long time to complete, you should write your code so that it executes asynchronously. Instead of waiting for an operation to complete, you should start the operation and then do something else until you receive a signal that the operation is complete. An analogy. Some telephone customer service lines require you to wait on hold – listening to really bad music – until a customer service representative is available. This is synchronous programming and very wasteful of your time. Some newer customer service lines enable you to enter your telephone number so the customer service representative can call you back when a customer representative becomes available. This approach is much less wasteful of your time because you can do useful things while waiting for the callback. There are several patterns that you can use to write code which executes asynchronously. The most popular pattern in JavaScript is the callback pattern. When you call a function which might take a long time to return a result, you pass a callback function to the function. For example, the following code (which uses jQuery) includes a function named getFlickrPhotos which returns photos from the Flickr website which match a set of tags (such as “dog” and “funny”): function getFlickrPhotos(tags, callback) { $.getJSON( "http://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=?", { tags: tags, tagmode: "all", format: "json" }, function (data) { if (callback) { callback(data.items); } } ); } getFlickrPhotos("funny, dogs", function(data) { $.each(data, function(index, item) { console.log(item); }); }); The getFlickr() function includes a callback parameter. When you call the getFlickr() function, you pass a function to the callback parameter which gets executed when the getFlicker() function finishes retrieving the list of photos from the Flickr web service. In the code above, the callback function simply iterates through the results and writes each result to the console. Using callbacks is a natural way to perform asynchronous programming with JavaScript. Instead of waiting for an operation to complete, sitting there and listening to really bad music, you can get a callback when the operation is complete. Using Promises The CommonJS website defines a promise like this (http://wiki.commonjs.org/wiki/Promises): “Promises provide a well-defined interface for interacting with an object that represents the result of an action that is performed asynchronously, and may or may not be finished at any given point in time. By utilizing a standard interface, different components can return promises for asynchronous actions and consumers can utilize the promises in a predictable manner.” A promise provides a standard pattern for specifying callbacks. In the WinJS library, when you create a promise, you can specify three callbacks: a complete callback, a failure callback, and a progress callback. Promises are used extensively in the WinJS library. The methods in the animation library, the control library, and the binding library all use promises. For example, the xhr() method included in the WinJS base library returns a promise. The xhr() method wraps calls to the standard XmlHttpRequest object in a promise. The following code illustrates how you can use the xhr() method to perform an Ajax request which retrieves a file named Photos.txt: var options = { url: "/data/photos.txt" }; WinJS.xhr(options).then( function (xmlHttpRequest) { console.log("success"); var data = JSON.parse(xmlHttpRequest.responseText); console.log(data); }, function(xmlHttpRequest) { console.log("fail"); }, function(xmlHttpRequest) { console.log("progress"); } ) The WinJS.xhr() method returns a promise. The Promise class includes a then() method which accepts three callback functions: a complete callback, an error callback, and a progress callback: Promise.then(completeCallback, errorCallback, progressCallback) In the code above, three anonymous functions are passed to the then() method. The three callbacks simply write a message to the JavaScript Console. The complete callback also dumps all of the data retrieved from the photos.txt file. Creating Promises You can create your own promises by creating a new instance of the Promise class. The constructor for the Promise class requires a function which accepts three parameters: a complete, error, and progress function parameter. For example, the code below illustrates how you can create a method named wait10Seconds() which returns a promise. The progress function is called every second and the complete function is not called until 10 seconds have passed: (function () { "use strict"; var app = WinJS.Application; function wait10Seconds() { return new WinJS.Promise(function (complete, error, progress) { var seconds = 0; var intervalId = window.setInterval(function () { seconds++; progress(seconds); if (seconds > 9) { window.clearInterval(intervalId); complete(); } }, 1000); }); } app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { wait10Seconds().then( function () { console.log("complete") }, function () { console.log("error") }, function (seconds) { console.log("progress:" + seconds) } ); } } app.start(); })(); All of the work happens in the constructor function for the promise. The window.setInterval() method is used to execute code every second. Every second, the progress() callback method is called. If more than 10 seconds have passed then the complete() callback method is called and the clearInterval() method is called. When you execute the code above, you can see the output in the Visual Studio JavaScript Console. Creating a Timeout Promise In the previous section, we created a custom Promise which uses the window.setInterval() method to complete the promise after 10 seconds. We really did not need to create a custom promise because the Promise class already includes a static method for returning promises which complete after a certain interval. The code below illustrates how you can use the timeout() method. The timeout() method returns a promise which completes after a certain number of milliseconds. WinJS.Promise.timeout(3000).then( function(){console.log("complete")}, function(){console.log("error")}, function(){console.log("progress")} ); In the code above, the Promise completes after 3 seconds (3000 milliseconds). The Promise returned by the timeout() method does not support progress events. Therefore, the only message written to the console is the message “complete” after 10 seconds. Canceling Promises Some promises, but not all, support cancellation. When you cancel a promise, the promise’s error callback is executed. For example, the following code uses the WinJS.xhr() method to perform an Ajax request. However, immediately after the Ajax request is made, the request is cancelled. // Specify Ajax request options var options = { url: "/data/photos.txt" }; // Make the Ajax request var request = WinJS.xhr(options).then( function (xmlHttpRequest) { console.log("success"); }, function (xmlHttpRequest) { console.log("fail"); }, function (xmlHttpRequest) { console.log("progress"); } ); // Cancel the Ajax request request.cancel(); When you run the code above, the message “fail” is written to the Visual Studio JavaScript Console. Composing Promises You can build promises out of other promises. In other words, you can compose promises. There are two static methods of the Promise class which you can use to compose promises: the join() method and the any() method. When you join promises, a promise is complete when all of the joined promises are complete. When you use the any() method, a promise is complete when any of the promises complete. The following code illustrates how to use the join() method. A new promise is created out of two timeout promises. The new promise does not complete until both of the timeout promises complete: WinJS.Promise.join([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)]) .then(function () { console.log("complete"); }); The message “complete” will not be written to the JavaScript Console until both promises passed to the join() method completes. The message won’t be written for 5 seconds (5,000 milliseconds). The any() method completes when any promise passed to the any() method completes: WinJS.Promise.any([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)]) .then(function () { console.log("complete"); }); The code above writes the message “complete” to the JavaScript Console after 1 second (1,000 milliseconds). The message is written to the JavaScript console immediately after the first promise completes and before the second promise completes. Summary The goal of this blog entry was to describe WinJS promises. First, we discussed how promises enable you to easily write code which performs asynchronous actions. You learned how to use a promise when performing an Ajax request. Next, we discussed how you can create your own promises. You learned how to create a new promise by creating a constructor function with complete, error, and progress parameters. Finally, you learned about several advanced methods of promises. You learned how to use the timeout() method to create promises which complete after an interval of time. You also learned how to cancel promises and compose promises from other promises.

    Read the article

  • In Which We Demystify A Few Docupresentment Settings And Learn the Ethos of the Author

    - by Andy Little
    It's no secret that Docupresentment (part of the Oracle Documaker suite) is powerful tool for integrating on-demand and interactive applications for publishing with the Oracle Documaker framework.  It's also no secret there are are many details with respect to the configuration of Docupresentment that can elude even the most erudite of of techies.  To be sure, Docupresentment will work for you right out of the box, and in most cases will suit your needs without toying with a configuration file.  But, where's the adventure in that?   With this inaugural post to That's The Way, I'm going to introduce myself, and what my aim is with this blog.  If you didn't figure it out already by checking out my profile, my name is Andy and I've been with Oracle (nee Skywire Software nee Docucorp nee Formmaker) since the formative years of 1998.  Strangely, it doesn't seem that long ago, but it's certainly a lifetime in the age of technology.  I recall running a BBS from my parent's basement on a 1200 baud modem, and the trepidation and sweaty-palmed excitement of upgrading to the power and speed of 2400 baud!  Fine, I'll admit that perhaps I'm inflating the experience a bit, but I was kid!  This is the stuff of War Games and King's Quest I and the demise of TI-99 4/A.  Exciting times.  So fast-forward a bit and I'm 12 years into a career in the world of document automation and publishing working for the best (IMHO) software company on the planet.  With That's The Way I hope to shed a little light and peek under the covers of some of the more interesting aspects of implementations involving the tech space within the Oracle Insurance Global Business Unit (IGBU), which includes Oracle Documaker, Rating & Underwriting, and Policy Administration to name a few.  I may delve off course a bit, and you'll likely get a dose of humor (at least in my mind) but I hope you'll glean at least a tidbit of usefulness with each post.  Feel free to comment as I'm a fairly conversant guy and happy to talk -- it's stopping the talking that's the hard part... So, back to our regularly-scheduled post, already in progress.  By this time you've visited Oracle's E-Delivery site and acquired your properly-licensed version of Oracle Documaker.  Wait -- you didn't find it?  Understandable -- navigating the voluminous download library within Oracle can be a daunting task.  It's pretty simple once you’ve done it a few times.  Login to the e-delivery site, and accept the license terms and restrictions.  Then, you’ll be able to select the Oracle Insurance Applications product pack and your appropriate platform. Click Go and you’ll see a list of applicable products, and you’ll click on Oracle Documaker Media Pack (as I went to press with this article the version is 11.4): Finally, click the Download button next to Docupresentment (again, version at press time is 2.2 p5). This should give you a ZIP file that contains the installation packages for the Docupresentment Server and Client, cryptically named IDSServer22P05W32.exe and IDSClient22P05W32.exe. At this time, I’d like to take a little detour and explain that the world of Oracle, like most technical companies, is rife with acronyms.  One of the reasons Skywire Software was a appealing to Oracle was our use of many acronyms, including the occasional use of multiple acronyms with the same meaning.  I apologize in advance and will try to point these out along the way.  Here’s your first sticky note to go along with that: IDS = Internet Document Server = Docupresentment Once you’ve completed the installation, you’ll have a shiny new Docupresentment server and client, and if you installed the default location it will be living in c:\docserv. Unix users, I’m one of you!  You’ll find it by default in  ~/docupresentment/docserv.  Forging onward with the meat of this post is learning about some special configuration options.  By now you’ve read the documentation included with the download (specifically ids_book.pdf) which goes into some detail of the rubric of the configuration file and in fact there’s even a handy utility that provides an interface to the configuration file (see Running IDSConfig in the documentation).  But who wants to deal with a configuration utility when we have the tools and technology to edit the file <gasp> by hand! I shall now proceed with the standard Information Technology Under the Hood Disclaimer: Please remember to back up any files before you make changes.  I am not responsible for any havoc you may wreak! Go to your installation directory, and locate your docserv.xml file.  Open it in your favorite XML editor.  I happen to be fond of Notepad++ with the XML Tools plugin.  Almost immediately you will behold the splendor of the configuration file.  Just take a moment and let that sink in.  Ok – moving on.  If you reviewed the documentation you know that inside the root <configuration> node there are multiple <section> nodes, each containing a specific group of settings.  Let’s take a look at <section name=”DocumentServer”>: There are a few entries I’d like to discuss.  First, <entry name=”StartCommand”>. This should be pretty self-explanatory; it’s the name of the executable that’s run when you fire up Docupresentment.  Immediately following that is <entry name=”StartArguments”> and as you might imagine these are the arguments passed to the executable.  A few things to point out: The –Dids.configuration=docserv.xml parameter specifies the name of your configuration file. The –Dlogging.configuration=logconf.xml parameter specifies the name of your logging configuration file (this uses log4j so bone up on that before you delve here). The -Djava.endorsed.dirs=lib/endorsed parameter specifies the path where 3rd party Java libraries can be located for use with Docupresentment.  More on that in another post. The <entry name=”Instances”> allows you to specify the number of instances of Docupresentment that will be started.  By default this is two, and generally two instances per CPU is adequate, however you will always need to perform load testing to determine the sweet spot based on your hardware and types of transactions.  You may have many, many more instances than 2. Time for a sidebar on instances.  An instance is nothing more than a separate process of Docupresentment.  The Docupresentment service that you fire up with docserver.bat or docserver.sh actually starts a watchdog process, which is then responsible for starting up the actual Docupresentment processes.  Each of these act independently from one another, so if one crashes, it does not affect any others.  In the case of a crashed process, the watchdog will start up another instance so the number of configured instances are always running.  Bottom line: instance = Docupresentment process. And now, finally, to the settings which gave me pause on an not-too-long-ago implementation!  Docupresentment includes a feature that watches configuration files (such as docserv.xml and logconf.xml) and will automatically restart its instances to load the changes.  You can configure the time that Docupresentment waits to check these files using the setting <entry name=”FileWatchTimeMillis”>.  By default the number is 12000ms, or 12 seconds.  You can save yourself a few CPU cycles by extending this time, or by disabling  the check altogether by setting the value to 0.  This may or may not be appropriate for your environment; if you have 100% uptime requirements then you probably don’t want to bring down an entire set of processes just to accept a new configuration value, so it’s best to leave this somewhere between 12 seconds to a few minutes.  Another point to keep in mind: if you are using Documaker real-time processing under Docupresentment the Master Resource Library (MRL) files and INI options are cached, and if you need to affect a change, you’ll have to “restart” Docupresentment.  Touching the docserv.xml file is an easy way to do this (other methods including using the RSS request, but that’s another post). The next item up: <entry name=”FilePurgeTimeSeconds”>.  You may already know that the Docupresentment system can generate many temporary files based on certain request types that are processed through the system.  What you may not know is how those files are cleaned up.  There are many rules in Docupresentment that cause the creation of temporary files.  When these files are created, Docupresentment writes an entry into a properties file called the file cache.  This file contains the name, creation date, and expiration time of each temporary file created by each instance of Docupresentment.  Periodically Docupresentment will check the file cache to determine if there are files that are past the expiration time, not unlike that block of cheese festering away in the back of my refrigerator.  However, unlike my ‘fridge cleaning tendencies, Docupresentment is quick to remove files that are past their expiration time.  You, my friend, have the power to control how often Docupresentment inspects the file cache.  Simply set the value for <entry name=”FilePurgeTimeSeconds”> to the number of seconds appropriate for your requirements and you’re set.  Note that file purging happens on a separate thread from normal request processing, so this shouldn’t interfere with response times unless the CPU happens to be really taxed at the point of cache processing.  Finally, after all of this, we get to the final setting I’m going to address in this post: <entry name=”FilePurgeList”>.  The default is “filecache.properties”.  This establishes the root name for the Docupresentment file cache that I mentioned previously.  Docupresentment creates a separate cache file for each instance based on this setting.  If you have two instances, you’ll see two files created: filecache.properties.1 and filecache.properties.2.  Feel free to open these up and check them out. I hope you’ve enjoyed this first foray into the configuration file of Docupresentment.  If you did enjoy it, feel free to drop a comment, I welcome feedback.  If you have ideas for other posts you’d like to see, please do let me know.  You can reach me at [email protected]. ‘Til next time! ###

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Unity – Part 5: Injecting Values

    - by Ricardo Peres
    Introduction This is the fifth post on Unity. You can find the introductory post here, the second post, on dependency injection here, a third one on Aspect Oriented Programming (AOP) here and the latest so far, on writing custom extensions, here. This time we will talk about injecting simple values. An Inversion of Control (IoC) / Dependency Injector (DI) container like Unity can be used for things other than injecting complex class dependencies. It can also be used for setting property values or method/constructor parameters whenever a class is built. The main difference is that these values do not have a lifetime manager associated with them and do not come from the regular IoC registration store. Unlike, for instance, MEF, Unity won’t let you register as a dependency a string or an integer, so you have to take a different approach, which I will describe in this post. Scenario Let’s imagine we have a base interface that describes a logger – the same as in previous examples: 1: public interface ILogger 2: { 3: void Log(String message); 4: } And a concrete implementation that writes to a file: 1: public class FileLogger : ILogger 2: { 3: public String Filename 4: { 5: get; 6: set; 7: } 8:  9: #region ILogger Members 10:  11: public void Log(String message) 12: { 13: using (Stream file = File.OpenWrite(this.Filename)) 14: { 15: Byte[] data = Encoding.Default.GetBytes(message); 16: 17: file.Write(data, 0, data.Length); 18: } 19: } 20:  21: #endregion 22: } And let’s say we want the Filename property to come from the application settings (appSettings) section on the Web/App.config file. As usual with Unity, there is an extensibility point that allows us to automatically do this, both with code configuration or statically on the configuration file. Extending Injection We start by implementing a class that will retrieve a value from the appSettings by inheriting from ValueElement: 1: sealed class AppSettingsParameterValueElement : ValueElement, IDependencyResolverPolicy 2: { 3: #region Private methods 4: private Object CreateInstance(Type parameterType) 5: { 6: Object configurationValue = ConfigurationManager.AppSettings[this.AppSettingsKey]; 7:  8: if (parameterType != typeof(String)) 9: { 10: TypeConverter typeConverter = this.GetTypeConverter(parameterType); 11:  12: configurationValue = typeConverter.ConvertFromInvariantString(configurationValue as String); 13: } 14:  15: return (configurationValue); 16: } 17: #endregion 18:  19: #region Private methods 20: private TypeConverter GetTypeConverter(Type parameterType) 21: { 22: if (String.IsNullOrEmpty(this.TypeConverterTypeName) == false) 23: { 24: return (Activator.CreateInstance(TypeResolver.ResolveType(this.TypeConverterTypeName)) as TypeConverter); 25: } 26: else 27: { 28: return (TypeDescriptor.GetConverter(parameterType)); 29: } 30: } 31: #endregion 32:  33: #region Public override methods 34: public override InjectionParameterValue GetInjectionParameterValue(IUnityContainer container, Type parameterType) 35: { 36: Object value = this.CreateInstance(parameterType); 37: return (new InjectionParameter(parameterType, value)); 38: } 39: #endregion 40:  41: #region IDependencyResolverPolicy Members 42:  43: public Object Resolve(IBuilderContext context) 44: { 45: Type parameterType = null; 46:  47: if (context.CurrentOperation is ResolvingPropertyValueOperation) 48: { 49: ResolvingPropertyValueOperation op = (context.CurrentOperation as ResolvingPropertyValueOperation); 50: PropertyInfo prop = op.TypeBeingConstructed.GetProperty(op.PropertyName); 51: parameterType = prop.PropertyType; 52: } 53: else if (context.CurrentOperation is ConstructorArgumentResolveOperation) 54: { 55: ConstructorArgumentResolveOperation op = (context.CurrentOperation as ConstructorArgumentResolveOperation); 56: String args = op.ConstructorSignature.Split('(')[1].Split(')')[0]; 57: Type[] types = args.Split(',').Select(a => Type.GetType(a.Split(' ')[0])).ToArray(); 58: ConstructorInfo ctor = op.TypeBeingConstructed.GetConstructor(types); 59: parameterType = ctor.GetParameters().Where(p => p.Name == op.ParameterName).Single().ParameterType; 60: } 61: else if (context.CurrentOperation is MethodArgumentResolveOperation) 62: { 63: MethodArgumentResolveOperation op = (context.CurrentOperation as MethodArgumentResolveOperation); 64: String methodName = op.MethodSignature.Split('(')[0].Split(' ')[1]; 65: String args = op.MethodSignature.Split('(')[1].Split(')')[0]; 66: Type[] types = args.Split(',').Select(a => Type.GetType(a.Split(' ')[0])).ToArray(); 67: MethodInfo method = op.TypeBeingConstructed.GetMethod(methodName, types); 68: parameterType = method.GetParameters().Where(p => p.Name == op.ParameterName).Single().ParameterType; 69: } 70:  71: return (this.CreateInstance(parameterType)); 72: } 73:  74: #endregion 75:  76: #region Public properties 77: [ConfigurationProperty("appSettingsKey", IsRequired = true)] 78: public String AppSettingsKey 79: { 80: get 81: { 82: return ((String)base["appSettingsKey"]); 83: } 84:  85: set 86: { 87: base["appSettingsKey"] = value; 88: } 89: } 90: #endregion 91: } As you can see from the implementation of the IDependencyResolverPolicy.Resolve method, this will work in three different scenarios: When it is applied to a property; When it is applied to a constructor parameter; When it is applied to an initialization method. The implementation will even try to convert the value to its declared destination, for example, if the destination property is an Int32, it will try to convert the appSettings stored string to an Int32. Injection By Configuration If we want to configure injection by configuration, we need to implement a custom section extension by inheriting from SectionExtension, and registering our custom element with the name “appSettings”: 1: sealed class AppSettingsParameterInjectionElementExtension : SectionExtension 2: { 3: public override void AddExtensions(SectionExtensionContext context) 4: { 5: context.AddElement<AppSettingsParameterValueElement>("appSettings"); 6: } 7: } And on the configuration file, for setting a property, we use it like this: 1: <appSettings> 2: <add key="LoggerFilename" value="Log.txt"/> 3: </appSettings> 4: <unity xmlns="http://schemas.microsoft.com/practices/2010/unity"> 5: <container> 6: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.ConsoleLogger, MyAssembly"/> 7: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.FileLogger, MyAssembly" name="File"> 8: <lifetime type="singleton"/> 9: <property name="Filename"> 10: <appSettings appSettingsKey="LoggerFilename"/> 11: </property> 12: </register> 13: </container> 14: </unity> If we would like to inject the value as a constructor parameter, it would be instead: 1: <unity xmlns="http://schemas.microsoft.com/practices/2010/unity"> 2: <sectionExtension type="MyNamespace.AppSettingsParameterInjectionElementExtension, MyAssembly" /> 3: <container> 4: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.ConsoleLogger, MyAssembly"/> 5: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.FileLogger, MyAssembly" name="File"> 6: <lifetime type="singleton"/> 7: <constructor> 8: <param name="filename" type="System.String"> 9: <appSettings appSettingsKey="LoggerFilename"/> 10: </param> 11: </constructor> 12: </register> 13: </container> 14: </unity> Notice the appSettings section, where we add a LoggerFilename entry, which is the same as the one referred by our AppSettingsParameterInjectionElementExtension extension. For more advanced behavior, you can add a TypeConverterName attribute to the appSettings declaration, where you can pass an assembly qualified name of a class that inherits from TypeConverter. This class will be responsible for converting the appSettings value to a destination type. Injection By Attribute If we would like to use attributes instead, we need to create a custom attribute by inheriting from DependencyResolutionAttribute: 1: [Serializable] 2: [AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Property, AllowMultiple = false, Inherited = true)] 3: public sealed class AppSettingsDependencyResolutionAttribute : DependencyResolutionAttribute 4: { 5: public AppSettingsDependencyResolutionAttribute(String appSettingsKey) 6: { 7: this.AppSettingsKey = appSettingsKey; 8: } 9:  10: public String TypeConverterTypeName 11: { 12: get; 13: set; 14: } 15:  16: public String AppSettingsKey 17: { 18: get; 19: private set; 20: } 21:  22: public override IDependencyResolverPolicy CreateResolver(Type typeToResolve) 23: { 24: return (new AppSettingsParameterValueElement() { AppSettingsKey = this.AppSettingsKey, TypeConverterTypeName = this.TypeConverterTypeName }); 25: } 26: } As for file configuration, there is a mandatory property for setting the appSettings key and an optional TypeConverterName  for setting the name of a TypeConverter. Both the custom attribute and the custom section return an instance of the injector AppSettingsParameterValueElement that we implemented in the first place. Now, the attribute needs to be placed before the injected class’ Filename property: 1: public class FileLogger : ILogger 2: { 3: [AppSettingsDependencyResolution("LoggerFilename")] 4: public String Filename 5: { 6: get; 7: set; 8: } 9:  10: #region ILogger Members 11:  12: public void Log(String message) 13: { 14: using (Stream file = File.OpenWrite(this.Filename)) 15: { 16: Byte[] data = Encoding.Default.GetBytes(message); 17: 18: file.Write(data, 0, data.Length); 19: } 20: } 21:  22: #endregion 23: } Or, if we wanted to use constructor injection: 1: public class FileLogger : ILogger 2: { 3: public String Filename 4: { 5: get; 6: set; 7: } 8:  9: public FileLogger([AppSettingsDependencyResolution("LoggerFilename")] String filename) 10: { 11: this.Filename = filename; 12: } 13:  14: #region ILogger Members 15:  16: public void Log(String message) 17: { 18: using (Stream file = File.OpenWrite(this.Filename)) 19: { 20: Byte[] data = Encoding.Default.GetBytes(message); 21: 22: file.Write(data, 0, data.Length); 23: } 24: } 25:  26: #endregion 27: } Usage Just do: 1: ILogger logger = ServiceLocator.Current.GetInstance<ILogger>("File"); And off you go! A simple way do avoid hardcoded values in component registrations. Of course, this same concept can be applied to registry keys, environment values, XML attributes, etc, etc, just change the implementation of the AppSettingsParameterValueElement class. Next stop: custom lifetime managers.

    Read the article

< Previous Page | 154 155 156 157 158 159 160 161 162 163 164 165  | Next Page >