Search Results

Search found 6612 results on 265 pages for 'seconds'.

Page 16/265 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • For simple C cmd programs: how to add "program executed in 12,345 seconds" ?

    - by WoodsieLord
    I'm a windows user, and I'm learning C. I use Codeblocks and visual c++ 2008 express at home to write simple C command line programs (I'm a beginner) and I find really useful when codeblocks adds a few lines at the end with the time it takes (example: "Process returned 0 (0x0) execution time : 6.848 s"). I want to add this functionality to the .exe so I can 'benchmark' or 'test' the program on a few computers. I tried using time(NULL) but it only works with 1 second precision. I also found very interesting answers here (I'm actually looking for the same thing): http://stackoverflow.com/questions/2173323/calculating-time-by-the-c-code The solution proposed by Mark Wilkins, works fine on visual c++ 2008 express on my windows 64 bit PC, but the .exe does not work anywhere else. Am I doing something wrong? I would like a method to count elapsed wall time for my programs, that must have 32bit compatibility. Thanks in advance!

    Read the article

  • ??11.2 RAC??OCR?Votedisk??ASM Diskgroup?????

    - by Liu Maclean(???)
    ????????Oracle Allstarts??????????ocr?votedisk?ASM diskgroup??11gR2 RAC cluster?????????,????«?11gR2 RAC???ASM DISK Path????»??????,??????CRS??????11.2??ASM???????, ????????????”crsctl start crs -excl -nocrs “; ?????????,??ASM????ocr?????votedisk?????,??11.2????ocr?votedisk???ASM?,?ASM???????ocr?votedisk,?????ocr?votedisk????????cluter??????;???????????CRS????,?????diskgroup??????????,?????????????????? ??:?????????????????ASM LUN DISK,???OCR?????,????????4??????????,???????$GI_HOME,?????????;????votedisk?? ????: ??dd????ocr?votedisk??diskgroup header,??diskgroup corruption: 1. ??votedisk? ocr?? [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE a853d6204bbc4feabfd8c73d4c3b3001 (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE a5b37704c3574f0fbf21d1d9f58c4a6b (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 36e5c51ff0294fc3bf2a042266650331 (/dev/asm-diski) [SYSTEMDG] 4. ONLINE af337d1512824fe4bf6ad45283517aaa (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3c4a349e2e304ff6bf64b2b1c9d9cf5d (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). su - grid [grid@vrh1 ~]$ ocrconfig -showbackup PROT-26: Oracle Cluster Registry backup locations were retrieved from a local copy vrh1 2012/08/09 01:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup00.ocr vrh1 2012/08/08 21:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup01.ocr vrh1 2012/08/08 17:59:55 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup02.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/day.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/week.ocr PROT-25: Manual backups for the Oracle Cluster Registry are not available 2. ??????????clusterware ,OHASD crsctl stop has -f 3. GetAsmDH.sh ==> GetAsmDH.sh?ASM disk header????? ????????,????????asm header [grid@vrh1 ~]$ ./GetAsmDH.sh ############################################ 1) Collecting Information About the Disks: ############################################ SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 03:28:13 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. SQL> Connected. SQL> SQL> SQL> SQL> SQL> SQL> SQL> 1 0 /dev/asm-diske 1 1 /dev/asm-diskd 2 0 /dev/asm-diskb 2 1 /dev/asm-diskc 2 2 /dev/asm-diskf 3 0 /dev/asm-diskh 3 1 /dev/asm-diskg 3 2 /dev/asm-diski 3 3 /dev/asm-diskj 3 4 /dev/asm-diskk SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options -rw-r--r-- 1 grid oinstall 1048 Aug 9 03:28 /tmp/HC/asmdisks.lst ############################################ 2) Generating asm_diskh.sh script. ############################################ -rwx------ 1 grid oinstall 666 Aug 9 03:28 /tmp/HC/asm_diskh.sh ############################################ 3) Executing asm_diskh.sh script to generate dd dumps. ############################################ -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_3.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_4.dd ############################################ 4) Compressing dd dumps in the next format: (asm_dd_header_all_.tar) ############################################ /tmp/HC/dsk_1_0.dd /tmp/HC/dsk_1_1.dd /tmp/HC/dsk_2_0.dd /tmp/HC/dsk_2_1.dd /tmp/HC/dsk_2_2.dd /tmp/HC/dsk_3_0.dd /tmp/HC/dsk_3_1.dd /tmp/HC/dsk_3_2.dd /tmp/HC/dsk_3_3.dd /tmp/HC/dsk_3_4.dd ./GetAsmDH.sh: line 81: compress: command not found ls: /tmp/HC/*.Z: No such file or directory [grid@vrh1 ~]$ 4. ??dd ?? ??ocr?votedisk??diskgroup [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskh bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00423853 seconds, 247 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskg bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0045179 seconds, 232 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diski bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00469976 seconds, 223 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskj bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00344262 seconds, 305 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskk bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0053518 seconds, 196 MB/s 5. ????????????HAS [root@vrh1 ~]# crsctl start has CRS-4123: Oracle High Availability Services has been started. ????ocr?votedisk??diskgroup??,??CSS???????,???????: alertvrh1.log [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:41.207 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:56.240 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:11.284 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:26.305 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:41.328 ocssd.log 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmReadDiscoveryProfile: voting file discovery string(/dev/asm*) 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmvDDiscThread: using discovery string /dev/asm* for initial discovery 2012-08-09 03:40:26.662: [ SKGFD][1078700352]Discovery with str:/dev/asm*: 2012-08-09 03:40:26.662: [ SKGFD][1078700352]UFS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskb: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskj: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskh: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskc: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskd: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diske: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskg: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diski: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskk: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]OSS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xdf22a0 from lib :UFS:: for disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xf412a0 from lib :UFS:: for disk :/dev/asm-diskb: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf3a680 from lib :UFS:: for disk :/dev/asm-diskj: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf93da0 from lib :UFS:: for disk :/dev/asm-diskh: 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvDiskVerify: Successful discovery of 0 disks 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmCompleteInitVFDiscovery: Completing initial voting file discovery 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvFindInitialConfigs: No voting files found 2012-08-09 03:40:26.667: [ CSSD][1078700352](:CSSNM00070:)clssnmCompleteInitVFDiscovery: Voting file not found. Retrying discovery in 15 seconds ?????ocr?votedisk??diskgroup?????: 1. ?-excl -nocrs ????cluster,??????ASM?? ????CRS [root@vrh1 vrh1]# crsctl start crs -excl -nocrs CRS-4123: Oracle High Availability Services has been started. CRS-2672: Attempting to start 'ora.mdnsd' on 'vrh1' CRS-2676: Start of 'ora.mdnsd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.gpnpd' on 'vrh1' CRS-2676: Start of 'ora.gpnpd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssdmonitor' on 'vrh1' CRS-2672: Attempting to start 'ora.gipcd' on 'vrh1' CRS-2676: Start of 'ora.cssdmonitor' on 'vrh1' succeeded CRS-2676: Start of 'ora.gipcd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssd' on 'vrh1' CRS-2672: Attempting to start 'ora.diskmon' on 'vrh1' CRS-2676: Start of 'ora.diskmon' on 'vrh1' succeeded CRS-2676: Start of 'ora.cssd' on 'vrh1' succeeded CRS-2679: Attempting to clean 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2672: Attempting to start 'ora.ctssd' on 'vrh1' CRS-2681: Clean of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2676: Start of 'ora.ctssd' on 'vrh1' succeeded CRS-2676: Start of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.asm' on 'vrh1' CRS-2676: Start of 'ora.asm' on 'vrh1' succeeded 2.???ocr?votedisk??diskgroup,??compatible.asm???11.2: [root@vrh1 vrh1]# su - grid [grid@vrh1 ~]$ sqlplus / as sysasm SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 04:16:58 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options SQL> create diskgroup systemdg high redundancy disk '/dev/asm-diskh','/dev/asm-diskg','/dev/asm-diski','/dev/asm-diskj','/dev/asm-diskk' ATTRIBUTE 'compatible.rdbms' = '11.2', 'compatible.asm' = '11.2'; 3.?ocr backup???ocr??ocrcheck??: [root@vrh1 ~]# ocrconfig -restore /g01/11.2.0/grid/cdata/vrh-cluster/backup00.ocr [root@vrh1 ~]# ocrcheck Status of Oracle Cluster Registry is as follows : Version : 3 Total space (kbytes) : 262120 Used space (kbytes) : 3180 Available space (kbytes) : 258940 ID : 1238458014 Device/File Name : +systemdg Device/File integrity check succeeded Device/File not configured Device/File not configured Device/File not configured Device/File not configured Cluster registry integrity check succeeded Logical corruption check succeeded 4. ????votedisk ,??????????: [grid@vrh1 ~]$ crsctl replace votedisk +SYSTEMDG CRS-4602: Failed 27 to add voting file 2e4e0fe285924f86bf5473d00dcc0388. CRS-4602: Failed 27 to add voting file 4fa54bb0cc5c4fafbf1a9be5479bf389. CRS-4602: Failed 27 to add voting file a109ead9ea4e4f28bfe233188623616a. CRS-4602: Failed 27 to add voting file 042c9fbd71b54f5abfcd3ab3408f3cf3. CRS-4602: Failed 27 to add voting file 7b5a8cd24f954fafbf835ad78615763f. Failed to replace voting disk group with +SYSTEMDG. CRS-4000: Command Replace failed, or completed with errors. ????????ASM???,???ASM: SQL> alter system set asm_diskstring='/dev/asm*'; System altered. SQL> create spfile from memory; File created. SQL> startup force mount; ORA-32004: obsolete or deprecated parameter(s) specified for ASM instance ASM instance started Total System Global Area 283930624 bytes Fixed Size 2227664 bytes Variable Size 256537136 bytes ASM Cache 25165824 bytes ASM diskgroups mounted SQL> show parameter spfile NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ spfile string /g01/11.2.0/grid/dbs/spfile+AS M1.ora [grid@vrh1 trace]$ crsctl replace votedisk +SYSTEMDG CRS-4256: Updating the profile Successful addition of voting disk 85edc0e82d274f78bfc58cdc73b8c68a. Successful addition of voting disk 201ffffc8ba44faabfe2efec2aa75840. Successful addition of voting disk 6f2a25c589964faabf6980f7c5f621ce. Successful addition of voting disk 93eb315648454f25bf3717df1a2c73d5. Successful addition of voting disk 3737240678964f88bfbfbd31d8b3829f. Successfully replaced voting disk group with +SYSTEMDG. CRS-4256: Updating the profile CRS-4266: Voting file(s) successfully replaced 5. ??has??,??cluster????: [root@vrh1 ~]# crsctl check crs CRS-4638: Oracle High Availability Services is online CRS-4537: Cluster Ready Services is online CRS-4529: Cluster Synchronization Services is online CRS-4533: Event Manager is online [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE 85edc0e82d274f78bfc58cdc73b8c68a (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE 201ffffc8ba44faabfe2efec2aa75840 (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 6f2a25c589964faabf6980f7c5f621ce (/dev/asm-diski) [SYSTEMDG] 4. ONLINE 93eb315648454f25bf3717df1a2c73d5 (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3737240678964f88bfbfbd31d8b3829f (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). [root@vrh1 ~]# crsctl stat res -t -------------------------------------------------------------------------------- NAME TARGET STATE SERVER STATE_DETAILS -------------------------------------------------------------------------------- Local Resources -------------------------------------------------------------------------------- ora.BACKUPDG.dg ONLINE ONLINE vrh1 ora.DATA.dg ONLINE ONLINE vrh1 ora.LISTENER.lsnr ONLINE ONLINE vrh1 ora.LSN_MACLEAN.lsnr ONLINE ONLINE vrh1 ora.SYSTEMDG.dg ONLINE ONLINE vrh1 ora.asm ONLINE ONLINE vrh1 Started ora.gsd OFFLINE OFFLINE vrh1 ora.net1.network ONLINE ONLINE vrh1 ora.ons ONLINE ONLINE vrh1 -------------------------------------------------------------------------------- Cluster Resources -------------------------------------------------------------------------------- ora.LISTENER_SCAN1.lsnr http://www.askmaclean.com 1 ONLINE ONLINE vrh1 ora.cvu 1 OFFLINE OFFLINE ora.oc4j 1 OFFLINE OFFLINE ora.scan1.vip 1 ONLINE ONLINE vrh1 ora.vprod.db 1 ONLINE OFFLINE 2 ONLINE OFFLINE ora.vrh1.vip 1 ONLINE ONLINE vrh1 ora.vrh2.vip 1 ONLINE INTERMEDIATE vrh1 FAILED OVER

    Read the article

  • ??11.2 RAC??OCR?Votedisk??ASM Diskgroup?????

    - by Liu Maclean(???)
    ????????Oracle Allstarts??????????ocr?votedisk?ASM diskgroup??11gR2 RAC cluster?????????,????«?11gR2 RAC???ASM DISK Path????»??????,??????CRS??????11.2??ASM???????, ????????????”crsctl start crs -excl -nocrs “; ?????????,??ASM????ocr?????votedisk?????,??11.2????ocr?votedisk???ASM?,?ASM???????ocr?votedisk,?????ocr?votedisk????????cluter??????;???????????CRS????,?????diskgroup??????????,?????????????????? ??:?????????????????ASM LUN DISK,???OCR?????,????????4??????????,???????$GI_HOME,?????????;????votedisk?? ????: ??dd????ocr?votedisk??diskgroup header,??diskgroup corruption: 1. ??votedisk? ocr?? [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE a853d6204bbc4feabfd8c73d4c3b3001 (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE a5b37704c3574f0fbf21d1d9f58c4a6b (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 36e5c51ff0294fc3bf2a042266650331 (/dev/asm-diski) [SYSTEMDG] 4. ONLINE af337d1512824fe4bf6ad45283517aaa (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3c4a349e2e304ff6bf64b2b1c9d9cf5d (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). su - grid [grid@vrh1 ~]$ ocrconfig -showbackup PROT-26: Oracle Cluster Registry backup locations were retrieved from a local copy vrh1 2012/08/09 01:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup00.ocr vrh1 2012/08/08 21:59:56 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup01.ocr vrh1 2012/08/08 17:59:55 /g01/11.2.0/maclean/grid/cdata/vrh-cluster/backup02.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/day.ocr vrh1 2012/08/08 05:59:54 /g01/11.2.0/grid/cdata/vrh-cluster/week.ocr PROT-25: Manual backups for the Oracle Cluster Registry are not available 2. ??????????clusterware ,OHASD crsctl stop has -f 3. GetAsmDH.sh ==> GetAsmDH.sh?ASM disk header????? ????????,????????asm header [grid@vrh1 ~]$ ./GetAsmDH.sh ############################################ 1) Collecting Information About the Disks: ############################################ SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 03:28:13 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. SQL> Connected. SQL> SQL> SQL> SQL> SQL> SQL> SQL> 1 0 /dev/asm-diske 1 1 /dev/asm-diskd 2 0 /dev/asm-diskb 2 1 /dev/asm-diskc 2 2 /dev/asm-diskf 3 0 /dev/asm-diskh 3 1 /dev/asm-diskg 3 2 /dev/asm-diski 3 3 /dev/asm-diskj 3 4 /dev/asm-diskk SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options -rw-r--r-- 1 grid oinstall 1048 Aug 9 03:28 /tmp/HC/asmdisks.lst ############################################ 2) Generating asm_diskh.sh script. ############################################ -rwx------ 1 grid oinstall 666 Aug 9 03:28 /tmp/HC/asm_diskh.sh ############################################ 3) Executing asm_diskh.sh script to generate dd dumps. ############################################ -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_1_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_2_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_0.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_1.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_2.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_3.dd -rw-r--r-- 1 grid oinstall 1048576 Aug 9 03:28 /tmp/HC/dsk_3_4.dd ############################################ 4) Compressing dd dumps in the next format: (asm_dd_header_all_.tar) ############################################ /tmp/HC/dsk_1_0.dd /tmp/HC/dsk_1_1.dd /tmp/HC/dsk_2_0.dd /tmp/HC/dsk_2_1.dd /tmp/HC/dsk_2_2.dd /tmp/HC/dsk_3_0.dd /tmp/HC/dsk_3_1.dd /tmp/HC/dsk_3_2.dd /tmp/HC/dsk_3_3.dd /tmp/HC/dsk_3_4.dd ./GetAsmDH.sh: line 81: compress: command not found ls: /tmp/HC/*.Z: No such file or directory [grid@vrh1 ~]$ 4. ??dd ?? ??ocr?votedisk??diskgroup [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskh bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00423853 seconds, 247 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskg bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0045179 seconds, 232 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diski bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00469976 seconds, 223 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskj bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.00344262 seconds, 305 MB/s [root@vrh1 ~]# dd if=/dev/zero of=/dev/asm-diskk bs=1024k count=1 1+0 records in 1+0 records out 1048576 bytes (1.0 MB) copied, 0.0053518 seconds, 196 MB/s 5. ????????????HAS [root@vrh1 ~]# crsctl start has CRS-4123: Oracle High Availability Services has been started. ????ocr?votedisk??diskgroup??,??CSS???????,???????: alertvrh1.log [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:41.207 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:35:56.240 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:11.284 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:26.305 [cssd(5162)]CRS-1714:Unable to discover any voting files, retrying discovery in 15 seconds; Details at (:CSSNM00070:) in /g01/11.2.0/grid/log/vrh1/cssd/ocssd.log 2012-08-09 03:36:41.328 ocssd.log 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmReadDiscoveryProfile: voting file discovery string(/dev/asm*) 2012-08-09 03:40:26.662: [ CSSD][1078700352]clssnmvDDiscThread: using discovery string /dev/asm* for initial discovery 2012-08-09 03:40:26.662: [ SKGFD][1078700352]Discovery with str:/dev/asm*: 2012-08-09 03:40:26.662: [ SKGFD][1078700352]UFS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskb: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskj: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskh: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskc: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskd: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diske: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskg: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diski: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Fetching UFS disk :/dev/asm-diskk: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]OSS discovery with :/dev/asm*: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xdf22a0 from lib :UFS:: for disk :/dev/asm-diskf: 2012-08-09 03:40:26.665: [ SKGFD][1078700352]Handle 0xf412a0 from lib :UFS:: for disk :/dev/asm-diskb: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf3a680 from lib :UFS:: for disk :/dev/asm-diskj: 2012-08-09 03:40:26.666: [ SKGFD][1078700352]Handle 0xf93da0 from lib :UFS:: for disk :/dev/asm-diskh: 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvDiskVerify: Successful discovery of 0 disks 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmCompleteInitVFDiscovery: Completing initial voting file discovery 2012-08-09 03:40:26.667: [ CSSD][1078700352]clssnmvFindInitialConfigs: No voting files found 2012-08-09 03:40:26.667: [ CSSD][1078700352](:CSSNM00070:)clssnmCompleteInitVFDiscovery: Voting file not found. Retrying discovery in 15 seconds ?????ocr?votedisk??diskgroup?????: 1. ?-excl -nocrs ????cluster,??????ASM?? ????CRS [root@vrh1 vrh1]# crsctl start crs -excl -nocrs CRS-4123: Oracle High Availability Services has been started. CRS-2672: Attempting to start 'ora.mdnsd' on 'vrh1' CRS-2676: Start of 'ora.mdnsd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.gpnpd' on 'vrh1' CRS-2676: Start of 'ora.gpnpd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssdmonitor' on 'vrh1' CRS-2672: Attempting to start 'ora.gipcd' on 'vrh1' CRS-2676: Start of 'ora.cssdmonitor' on 'vrh1' succeeded CRS-2676: Start of 'ora.gipcd' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cssd' on 'vrh1' CRS-2672: Attempting to start 'ora.diskmon' on 'vrh1' CRS-2676: Start of 'ora.diskmon' on 'vrh1' succeeded CRS-2676: Start of 'ora.cssd' on 'vrh1' succeeded CRS-2679: Attempting to clean 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2672: Attempting to start 'ora.ctssd' on 'vrh1' CRS-2681: Clean of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.cluster_interconnect.haip' on 'vrh1' CRS-2676: Start of 'ora.ctssd' on 'vrh1' succeeded CRS-2676: Start of 'ora.cluster_interconnect.haip' on 'vrh1' succeeded CRS-2672: Attempting to start 'ora.asm' on 'vrh1' CRS-2676: Start of 'ora.asm' on 'vrh1' succeeded 2.???ocr?votedisk??diskgroup,??compatible.asm???11.2: [root@vrh1 vrh1]# su - grid [grid@vrh1 ~]$ sqlplus / as sysasm SQL*Plus: Release 11.2.0.3.0 Production on Thu Aug 9 04:16:58 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Real Application Clusters and Automatic Storage Management options SQL> create diskgroup systemdg high redundancy disk '/dev/asm-diskh','/dev/asm-diskg','/dev/asm-diski','/dev/asm-diskj','/dev/asm-diskk' ATTRIBUTE 'compatible.rdbms' = '11.2', 'compatible.asm' = '11.2'; 3.?ocr backup???ocr??ocrcheck??: [root@vrh1 ~]# ocrconfig -restore /g01/11.2.0/grid/cdata/vrh-cluster/backup00.ocr [root@vrh1 ~]# ocrcheck Status of Oracle Cluster Registry is as follows : Version : 3 Total space (kbytes) : 262120 Used space (kbytes) : 3180 Available space (kbytes) : 258940 ID : 1238458014 Device/File Name : +systemdg Device/File integrity check succeeded Device/File not configured Device/File not configured Device/File not configured Device/File not configured Cluster registry integrity check succeeded Logical corruption check succeeded 4. ????votedisk ,??????????: [grid@vrh1 ~]$ crsctl replace votedisk +SYSTEMDG CRS-4602: Failed 27 to add voting file 2e4e0fe285924f86bf5473d00dcc0388. CRS-4602: Failed 27 to add voting file 4fa54bb0cc5c4fafbf1a9be5479bf389. CRS-4602: Failed 27 to add voting file a109ead9ea4e4f28bfe233188623616a. CRS-4602: Failed 27 to add voting file 042c9fbd71b54f5abfcd3ab3408f3cf3. CRS-4602: Failed 27 to add voting file 7b5a8cd24f954fafbf835ad78615763f. Failed to replace voting disk group with +SYSTEMDG. CRS-4000: Command Replace failed, or completed with errors. ????????ASM???,???ASM: SQL> alter system set asm_diskstring='/dev/asm*'; System altered. SQL> create spfile from memory; File created. SQL> startup force mount; ORA-32004: obsolete or deprecated parameter(s) specified for ASM instance ASM instance started Total System Global Area 283930624 bytes Fixed Size 2227664 bytes Variable Size 256537136 bytes ASM Cache 25165824 bytes ASM diskgroups mounted SQL> show parameter spfile NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ spfile string /g01/11.2.0/grid/dbs/spfile+AS M1.ora [grid@vrh1 trace]$ crsctl replace votedisk +SYSTEMDG CRS-4256: Updating the profile Successful addition of voting disk 85edc0e82d274f78bfc58cdc73b8c68a. Successful addition of voting disk 201ffffc8ba44faabfe2efec2aa75840. Successful addition of voting disk 6f2a25c589964faabf6980f7c5f621ce. Successful addition of voting disk 93eb315648454f25bf3717df1a2c73d5. Successful addition of voting disk 3737240678964f88bfbfbd31d8b3829f. Successfully replaced voting disk group with +SYSTEMDG. CRS-4256: Updating the profile CRS-4266: Voting file(s) successfully replaced 5. ??has??,??cluster????: [root@vrh1 ~]# crsctl check crs CRS-4638: Oracle High Availability Services is online CRS-4537: Cluster Ready Services is online CRS-4529: Cluster Synchronization Services is online CRS-4533: Event Manager is online [root@vrh1 ~]# crsctl query css votedisk ## STATE File Universal Id File Name Disk group -- ----- ----------------- --------- --------- 1. ONLINE 85edc0e82d274f78bfc58cdc73b8c68a (/dev/asm-diskh) [SYSTEMDG] 2. ONLINE 201ffffc8ba44faabfe2efec2aa75840 (/dev/asm-diskg) [SYSTEMDG] 3. ONLINE 6f2a25c589964faabf6980f7c5f621ce (/dev/asm-diski) [SYSTEMDG] 4. ONLINE 93eb315648454f25bf3717df1a2c73d5 (/dev/asm-diskj) [SYSTEMDG] 5. ONLINE 3737240678964f88bfbfbd31d8b3829f (/dev/asm-diskk) [SYSTEMDG] Located 5 voting disk(s). [root@vrh1 ~]# crsctl stat res -t -------------------------------------------------------------------------------- NAME TARGET STATE SERVER STATE_DETAILS -------------------------------------------------------------------------------- Local Resources -------------------------------------------------------------------------------- ora.BACKUPDG.dg ONLINE ONLINE vrh1 ora.DATA.dg ONLINE ONLINE vrh1 ora.LISTENER.lsnr ONLINE ONLINE vrh1 ora.LSN_MACLEAN.lsnr ONLINE ONLINE vrh1 ora.SYSTEMDG.dg ONLINE ONLINE vrh1 ora.asm ONLINE ONLINE vrh1 Started ora.gsd OFFLINE OFFLINE vrh1 ora.net1.network ONLINE ONLINE vrh1 ora.ons ONLINE ONLINE vrh1 -------------------------------------------------------------------------------- Cluster Resources -------------------------------------------------------------------------------- ora.LISTENER_SCAN1.lsnr http://www.askmaclean.com 1 ONLINE ONLINE vrh1 ora.cvu 1 OFFLINE OFFLINE ora.oc4j 1 OFFLINE OFFLINE ora.scan1.vip 1 ONLINE ONLINE vrh1 ora.vprod.db 1 ONLINE OFFLINE 2 ONLINE OFFLINE ora.vrh1.vip 1 ONLINE ONLINE vrh1 ora.vrh2.vip 1 ONLINE INTERMEDIATE vrh1 FAILED OVER

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • jquery countdown/countUP with server side values

    - by basit.
    script: http://keith-wood.name/countdown.htm daily json response: items: { fajr: '5:23 am', sharooq: '7:23 am', dhur: '1:34 pm', asr: '4:66 pm': magrib: '6:23 pm', isha: '8:01 pm'} when site loads i make ajax request and get the above response times, these are events that happens daily for everyday, but different timing. i want to get that time and put a count down on how many minitues left or hours or seconds and show that and once the seconds are done, then show how many minitues ago that event took place, after 15 minitues later show new even count down. so following on how it will look on display dhur 2 hours left dhur 2 minutes left (if no longer hours left) dhur 55 seconds left (if no longer minutes left) dhur 5 seconds ago (if count down finished and then show how many seconds ago) dhur 9 minutes ago (if extended more then seconds, then show how many minutes ago) asr 1 hour left (after 15 minutes later time changes to new event) this is kind of very simple for pro in javascript and really complicated for me, so need your guys help, if the script im using not good and you prefer some other script for this kind of task, please share with me, it dont have to be jquery script, but helps if its jquery.

    Read the article

  • DataContractSerializer sensitive to order of XML??

    - by e28Makaveli
    I have the following serialized XML: DataDescriptor <d5p1:TimePastToInitializeData > <d5p1:Hours>2</d5p1:Hours> <d5p1:Minutes>10</d5p1:Minutes> <d5p1:Seconds>5</d5p1:Seconds> </d5p1:TimePastToInitializeData> <d5p1:PollRate > <d5p1:Hours>2</d5p1:Hours> <d5p1:Minutes>10</d5p1:Minutes> <d5p1:Seconds>5</d5p1:Seconds> </d5p1:PollRate> </Value> </KeyValueOfstringanyType> With this order, the PollRate property is not constructed and the resulting deserialized object has a null value for this field. If, however, I change the order as follows: DataDescriptor <d5p1:PollRate > <d5p1:Hours>2</d5p1:Hours> <d5p1:Minutes>10</d5p1:Minutes> <d5p1:Seconds>5</d5p1:Seconds> </d5p1:PollRate> <d5p1:TimePastToInitializeData > <d5p1:Hours>2</d5p1:Hours> <d5p1:Minutes>10</d5p1:Minutes> <d5p1:Seconds>5</d5p1:Seconds> </d5p1:TimePastToInitializeData> </Value> </KeyValueOfstringanyType> both properties PollRate and TimePastToInitializeData are constructed and initialized properly. public class DataDescriptor { RefreshRate pastTime; [DataMember] public RefreshRate TimePastToInitializeData { get; set; } RefreshRate pollRate; [DataMember] public RefreshRate PollRate { get; set; } [OnDeserializing] void Initialize(StreamingContext c) { // should I do this?? } } And RefreshRate: [DataContract( Namespace = "http//www.emssatcom.com/occ600")] [Serializable] public class RefreshRate : Observable { public RefreshRate() { } int hours; [DataMember] public int Hours { get; set; } int mins; [DataMember] public int Minutes { get; set; } int secs; [DataMember] public int Seconds { get; set; } int ms; [DataMember] public int MilliSeconds { get; set; } }

    Read the article

  • How do I erase printed characters in a console application(Linux)?

    - by Binny V A
    Hi all, I am creating a small console app that needs a progress bar. Something like... Conversion: 175/348 Seconds |========== | 50% My question is, how do you erase characters already printed to the console? When I reach the 51st percentage, I have to erase this line from the console and insert a new line. In my current solution, this is what happens... Conversion: 175/348 Seconds |========== | 50% Conversion: 179/348 Seconds |========== | 52% Conversion: 183/348 Seconds |========== | 54% Conversion: 187/348 Seconds |=========== | 56% Code I use is... print "Conversion: $converted_seconds/$total_time Seconds $progress_bar $converted_percentage%\n"; I am doing this in Linux using PHP(only I will use the app - so please excuse the language choice). So, the solution should work on the Linux platform - but if you have a solution that's cross platform, that would be preferable.

    Read the article

  • PHP's page generation time takes 0.01s. 1/0.01 = 100; however i'm having problems reaching that number of request per seconds. Why?

    - by cedivad
    On average, my PHP page generation time is 10ms. So i should be able to execute 100 requests one after the other one (using a single core on the server, since that php is not multithreaded). However, i'm having problems reaching 50 pages per seconds. As of now i do 25 on avg., with a medium load. The application is really light, it consist in a read (<5KB) from a pool of SSDs, some read queries solved by indexes. Where should i look to solve this bottleneck?

    Read the article

  • MySQL 5.5 on Windows server is horribly slow

    - by Brad
    I have had no luck getting MySQL 5.5 to be as fast as 5.1 or MariaDB on the exact same hardware/database/environment under Windows server 2003R2 or 2008R2. My benchmarks from our application: MySQL 5.5 + CentOS 5.2 (XenServer Virtual) = 28 seconds (box is "busy" not buried) MariaDB (5.1) + Windows 2003 (Physical box) = 130 seconds (box is 2% busy) MySQL 5.1 + Windows 2003 (Physical box) = 170 seconds (box is 2% busy) MySQL 5.5 + Windows 2003 (Physical box) = 305 seconds (As high as 600 seconds...) (box is 2% busy) The only difference between these runs is the removal of skip-locking and the running of mysql_upgrade.exe to update some tables for stored procs on 5.5. Yes, I know it's a release candidate, I'm feeding that back to MySQL as well. No slow queries are logged, it doesn't think it's being slow, it just is. I'm going to start tearing into the queries themselves to see if the INSERT/SELECT plans have gone buggo on 5.5. Any help would be appreciated! Thanks

    Read the article

  • GIMP Slow Startup

    - by muntoo
    Is there any way to speed up GIMP's startup time on Windows Vista Home Premium 32-Bit 1.6 [Dual] Intel Processors? On XP [different computer], it loads in less than 3 seconds. On Vista, it takes 20 seconds: 2 Seconds (other - fonts, brushes, etc) 18 Seconds (extension-script-fu) It just freezes at extension-script-fu. Looking at ProcessExplorer (or Task Manager, whatever), I see that it's not taking any CPU. EDIT: it does seem to be taking 50% of the CPU. It gets stuck for about 18 seconds, then starts working again, and the actual GIMP program pops up [...finally]. I have the latest stable version running (I think). I tried it with XP SP2 Compatibiliy mode and/or Run As Administrator, but that didn't help. EDIT: One way would be to disable script-fu. Does anyone know how to disable it at startup? (NOTE: Just wanted to point out that the title and the tags are the same. :D )

    Read the article

  • Does Google include the time to load images, for a single page, as part of the page speed?

    - by Pure.Krome
    we all know that Google's affects your page rank with the load time of a page. How? That's part of the secret sauce. But we know that page speed is a serious factor. So - what is considered the speed of a page? Is it just the first (and main) html file which the GET receives? Or does it also include loading of images as part of that speed. so for example... GET /index.htm <- takes 0.45 seconds to retrieve (including DNS lookup before). robot parses page.. see's there's a single main image.... GET /img/main.png <- takes 5 seconds to download. is the page speed for that resource, 0.45 seconds OR 5.45 seconds? I understand Javascript is not fired .. but are any of these external resources all downloaded and part of the page speed?

    Read the article

  • i don't receive mail notification...Nagios Core 4

    - by alessio
    I have a problem with automatically mail notification in Nagios Core 4 installed on ubuntu 12 .04 lts server... i have tried to send mail with nagios user and root user with the command: echo "test" | mail -s "test mail" [email protected] and i received mail correctly... but i don't receive any automatically mail notification... i don't know how can i do to resolve this issue! :( these are my configuration files (commands.cfg, contacts.cfg, nagios.log, mail.log): commands.cfg (the path /usr/bin/mail is the right path): # 'notify-host-by-email' command definition define command{ command_name notify-host-by-email command_line /usr/bin/printf "%b" "***** Nagios *****\n\nNotification Type: $NOTIFICATIONTYPE$\nHost: $HOSTNAME$\nState: $HOSTSTATE$\nAddress: $HOSTADDRESS$\nInfo: $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" | /usr/bin/mail -s "** $NOTIFICATIONTYPE$ Host Alert: $HOSTNAME$ is $HOSTSTATE$ **" $CONTACTEMAIL$ } # 'notify-service-by-email' command definition define command{ command_name notify-service-by-email command_line /usr/bin/printf "%b" "***** Nagios *****\n\nNotification Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $LONGDATETIME$\n\nAdditional Info:\n\n$SERVICEOUTPUT$\n" | /usr/bin/mail -s "** $NOTIFICATIONTYPE$ Service Alert: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **" $CONTACTEMAIL$ } # 'process-host-perfdata' command definition define command{ command_name process-host-perfdata command_line /usr/bin/printf "%b" "$LASTHOSTCHECK$\t$HOSTNAME$\t$HOSTSTATE$\t$HOSTATTEMPT$\t$HOSTSTATETYPE$\t$HOSTEXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$\n" >> /usr/local/nagios/var/host-perfdata.out } # 'process-service-perfdata' command definition define command{ command_name process-service-perfdata command_line /usr/bin/printf "%b" "$LASTSERVICECHECK$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICESTATE$\t$SERVICEATTEMPT$\t$SERVICESTATETYPE$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$\n" >> /usr/local/nagios/var/service-perfdata.out } contacts.cfg: define contact{ contact_name supporto alias Supporto Clienti DEA service_notification_period 24x7 host_notification_period 24x7 service_notification_options w,u,c,r host_notification_options d,r service_notification_commands notify-service-by-email host_notification_commands notify-host-by-email email [email protected] } define contactgroup{ contactgroup_name admins alias Nagios Administrators members supporto } nagios.log: [1401871412] SERVICE ALERT: fileserver;Current Users;OK;SOFT;2;USERS OK - 1 users currently logged in [1401871953] SERVICE ALERT: backups;Nagios Status;WARNING;SOFT;1;NAGIOS WARNING: 36 processes, status log updated 541 seconds ago [1401872133] SERVICE ALERT: backups;Nagios Status;OK;SOFT;2;NAGIOS OK: 36 processes, status log updated 180 seconds ago [1401872321] SERVICE ALERT: posta;Swap Usage;CRITICAL;SOFT;1;CRITICAL - Plugin timed out after 10 seconds [1401872322] SERVICE ALERT: fileserver;Current Users;CRITICAL;SOFT;1;CRITICAL - Plugin timed out after 10 seconds [1401872420] SERVICE ALERT: archivio;Disk Space;CRITICAL;SOFT;1;CRITICAL - Plugin timed out after 10 seconds [1401872492] SERVICE ALERT: fileserver;Current Users;OK;SOFT;2;USERS OK - 1 users currently logged in [1401872492] SERVICE ALERT: posta;Swap Usage;OK;SOFT;2;SWAP OK: 100% free (1984 MB out of 1984 MB) [1401872590] SERVICE ALERT: archivio;Disk Space;OK;SOFT;2;DISK OK [1401872931] Auto-save of retention data completed successfully. [1401873333] SERVICE ALERT: backups;Nagios Status;WARNING;SOFT;1;NAGIOS WARNING: 36 processes, status log updated 402 seconds ago [1401873513] SERVICE ALERT: backups;Nagios Status;OK;SOFT;2;NAGIOS OK: 36 processes, status log updated 180 seconds ago mail.log (i think that the problem is here but i don't know how to resolve it): Jun 4 10:00:01 backups sm-msp-queue[6109]: My unqualified host name (backups) unknown; sleeping for retry Jun 4 10:01:01 backups sm-msp-queue[6109]: unable to qualify my own domain name (backups) -- using short name Jun 4 10:20:01 backups sm-msp-queue[7247]: My unqualified host name (backups) unknown; sleeping for retry Jun 4 10:21:01 backups sm-msp-queue[7247]: unable to qualify my own domain name (backups) -- using short name Jun 4 10:40:01 backups sm-msp-queue[8327]: My unqualified host name (backups) unknown; sleeping for retry Jun 4 10:41:01 backups sm-msp-queue[8327]: unable to qualify my own domain name (backups) -- using short name Jun 4 11:00:01 backups sm-msp-queue[9549]: My unqualified host name (backups) unknown; sleeping for retry Jun 4 11:01:01 backups sm-msp-queue[9549]: unable to qualify my own domain name (backups) -- using short name Jun 4 11:20:01 backups sm-msp-queue[10678]: My unqualified host name (backups) unknown; sleeping for retry Jun 4 11:21:01 backups sm-msp-queue[10678]: unable to qualify my own domain name (backups) -- using short name i'm at the last step and i want to finish this Nagios Core! :) Any help be appreciate!:) host definition (this host have the disk almost full and it is in hard state but non notification) : define host{ use generic-host ; Name of host template to use host_name posta alias Server Posta ESA address 10.10.2.102 parents xen1, xen2 icon_image redhat.png statusmap_image redhat.gd2 } service definition: define service{ use generic-service host_name xen1, maestro, xen2, posta, nas002, serv2, esasrvmi02, esaubuntumi service_description Disk Space check_command ssh_all_disks!10%!5% } Notification is allowed for the contact definition you gave, but is it also allowed at the the service level ? sorry but i don't understand this thing! :(

    Read the article

  • Taking 10 minutes to boot up!

    - by oshirowanen
    Just added 2 pci-e to ide cards in my computer so I can use 2 old ide hard drives. Everything works fine, except the OS booting time has gone from about 10 seconds to about 10 minutes... I'f I remove both cards, it takes about 10 seconds to boot up, if I add either 1 of the cards back in, it still takes 10 seconds to boot up, but as soon as I have both cards in, it takes about 10 minutes. Why would this be happening?

    Read the article

  • php-fpm version 5.4 with nginx constantly restarting

    - by endyourif
    I just upgraded my php version from 5.3.x to 5.4.x and since doing this - memory has dropped signifincantly! - however, I'm constantly getting these in my php5-fpm.log: [18-Sep-2012 15:11:34] WARNING: [pool www] child 8981 exited on signal 11 (SIGSEGV - core dumped) after 65.813370 seconds from start [18-Sep-2012 15:11:34] NOTICE: [pool www] child 8988 started [18-Sep-2012 15:12:09] WARNING: [pool www] child 8988 exited on signal 11 (SIGSEGV - core dumped) after 35.185071 seconds from start [18-Sep-2012 15:12:09] NOTICE: [pool www] child 8990 started [18-Sep-2012 15:12:17] WARNING: [pool www] child 8990 exited on signal 11 (SIGSEGV - core dumped) after 8.277977 seconds from start [18-Sep-2012 15:12:17] NOTICE: [pool www] child 8992 started [18-Sep-2012 15:12:18] WARNING: [pool www] child 8982 exited on signal 11 (SIGSEGV - core dumped) after 109.550089 seconds from start [18-Sep-2012 15:12:18] NOTICE: [pool www] child 8995 started [18-Sep-2012 15:12:18] WARNING: [pool www] child 8985 exited on signal 11 (SIGSEGV - core dumped) after 109.668554 seconds from start [18-Sep-2012 15:12:18] NOTICE: [pool www] child 8996 started From what I can gather this is php silently dying? I'm running basic Wordpress sites that keep popping up with 502 errors while php-fpm is constantly spinning up new processes.

    Read the article

  • Columnstore Case Study #2: Columnstore faster than SSAS Cube at DevCon Security

    - by aspiringgeek
    Preamble This is the second in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in my big deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. See also Columnstore Case Study #1: MSIT SONAR Aggregations Why Columnstore? As stated previously, If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. The Customer DevCon Security provides home & business security services & has been in business for 135 years. I met DevCon personnel while speaking to the Utah County SQL User Group on 20 February 2012. (Thanks to TJ Belt (b|@tjaybelt) & Ben Miller (b|@DBADuck) for the invitation which serendipitously coincided with the height of ski season.) The App: DevCon Security Reporting: Optimized & Ad Hoc Queries DevCon users interrogate a SQL Server 2012 Analysis Services cube via SSRS. In addition, the SQL Server 2012 relational back end is the target of ad hoc queries; this DW back end is refreshed nightly during a brief maintenance window via conventional table partition switching. SSRS, SSAS, & MDX Conventional relational structures were unable to provide adequate performance for user interaction for the SSRS reports. An SSAS solution was implemented requiring personnel to ramp up technically, including learning enough MDX to satisfy requirements. Ad Hoc Queries Even though the fact table is relatively small—only 22 million rows & 33GB—the table was a typical DW table in terms of its width: 137 columns, any of which could be the target of ad hoc interrogation. As is common in DW reporting scenarios such as this, it is often nearly to optimize for such queries using conventional indexing. DevCon DBAs & developers attended PASS 2012 & were introduced to the marvels of columnstore in a session presented by Klaus Aschenbrenner (b|@Aschenbrenner) The Details Classic vs. columnstore before-&-after metrics are impressive. Scenario Conventional Structures Columnstore ? SSRS via SSAS 10 - 12 seconds 1 second >10x Ad Hoc 5-7 minutes (300 - 420 seconds) 1 - 2 seconds >100x Here are two charts characterizing this data graphically.  The first is a linear representation of Report Duration (in seconds) for Conventional Structures vs. Columnstore Indexes.  As is so often the case when we chart such significant deltas, the linear scale doesn’t expose some the dramatically improved values corresponding to the columnstore metrics.  Just to make it fair here’s the same data represented logarithmically; yet even here the values corresponding to 1 –2 seconds aren’t visible.  The Wins Performance: Even prior to columnstore implementation, at 10 - 12 seconds canned report performance against the SSAS cube was tolerable. Yet the 1 second performance afterward is clearly better. As significant as that is, imagine the user experience re: ad hoc interrogation. The difference between several minutes vs. one or two seconds is a game changer, literally changing the way users interact with their data—no mental context switching, no wondering when the results will appear, no preoccupation with the spinning mind-numbing hurry-up-&-wait indicators.  As we’ve commonly found elsewhere, columnstore indexes here provided performance improvements of one, two, or more orders of magnitude. Simplified Infrastructure: Because in this case a nonclustered columnstore index on a conventional DW table was faster than an Analysis Services cube, the entire SSAS infrastructure was rendered superfluous & was retired. PASS Rocks: Once again, the value of attending PASS is proven out. The trip to Charlotte combined with eager & enquiring minds let directly to this success story. Find out more about the next PASS Summit here, hosted this year in Seattle on November 4 - 7, 2014. DevCon BI Team Lead Nathan Allan provided this unsolicited feedback: “What we found was pretty awesome. It has been a game changer for us in terms of the flexibility we can offer people that would like to get to the data in different ways.” Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the second in a series of reports on columnstore implementations, results from DevCon Security, a live customer production app for which performance increased by factors of from 10x to 100x for all report queries, including canned queries as well as reducing time for results for ad hoc queries from 5 - 7 minutes to 1 - 2 seconds. As a result of columnstore performance, the customer retired their SSAS infrastructure. I invite you to consider leveraging columnstore in your own environment. Let me know if you have any questions.

    Read the article

  • Find largest value of integer in repeating string

    - by dotancohen
    I have a script log file that looks a bit like this: 2012-9-16 Did something Did 345 things Script time: 244 seconds 2012-9-17 Did yet something Did another thing 23 times Script time: 352 seconds 2012-9-18 Did something special for 34 seconds 51 times Did nothing at all Script time: 122 seconds I would like to find the largest value of N in the lines Script time: N seconds. However, I need to keep the context, so simply removing all lines that don't contain Script time in them is not a viable solution. Currently, I am grepping for lines with Script time, then sorting those to find the highest value, then going back to the original file and searching for that value. However, if there is a more straightforward way then I would love to know. This is on Vim 7.3 on a recent CentOS. I would prefer to remain in VIM if possible. Thanks.

    Read the article

  • Eliminating Magic Numbers: When is it time to say "No"?

    - by oosterwal
    We're all aware that magic numbers (hard-coded values) can wreak havoc in your program, especially when it's time to modify a section of code that has no comments, but where do you draw the line? For instance, if you have a function that calculates the number of seconds between two days, do you replace seconds = num_days * 24 * 60 * 60 with seconds = num_days * HOURS_PER_DAY * MINUTES_PER_HOUR * SECONDS_PER_MINUTE At what point do you decide that it is completely obvious what the hard-coded value means and leave it alone?

    Read the article

  • Why does Windows 7 overall performance is better than Ubuntu 11.10?

    - by user37805
    I have a i7 2600 processor, 8Gb DDR3 ram, nVidia GTX570, and Ubuntu takes 45-50 seconds to boot and 32-35 seconds to power off, while windows 7 boots in 20-25 seconds and shuts down in 10 seconds. Both OS with autologin enabled, and in dual boot. Ubuntu is slow with preload too, and doesn't show any boot splash after installing drivers and didn't recognize my nVidia graphics card on jockey GTK, I had to add x swat repository and that didn't worked. I installed proprietary drivers through terminal (nvidia-common, nvidia-settings) in order to have 3d acceleration. But it doesn't make any difference on the speed. I also have a Pentium 4 PC and ubuntu 11.10 is way faster than windows 7 or XP. Also with nvidia graphics card and preload. http://paste.ubuntu.com/924890/ there is my boot script, sorry but some words are in Spanish because my ubuntu is in Spanish. Not using WUBI, Ubuntu has its own partition, 64-bits, and Matlab 2011 has very low performance compared to windows version.

    Read the article

  • Single Sign On 802.1x Wireless - saying “Connecting to <SSID>”, hangs for 10 seconds, fails with “Unable to connect to <SSID>, Logging on…”.

    - by Phaedrus
    We are implementing WiFi on Windows 7 machines in our corporate environment. Machines should be able to log into the domain by WiFi as the Machine (Pre-Logon), and as the User (Post-Logon). We have everything working correctly except for 2 things: 1) Sometimes the login scripts don't run 2) The user VLAN is sometimes different than the machine vlan, and no DHCP renew occurs after user logon. I am clear that both these problems should be fixable by using the "Single Sign On" Option under the 802.1x Wireless Vista GPO, and setting the wireless to connect immediately before user logon and also by enabling "This network uses different VLAN for authentication with machine and user credentials" If I enable these GPO settings in a lab, the computer does authenticate & gets WIFI before the user logs on, so when the login box is displayed, it says “Windows will try to connect to ”, even though it is already connected (which should be ok?). Enter the user credentials and it goes to a screen saying “Connecting to ”, hangs for 10 seconds, fails with “Unable to connect to , Logging on…”. Desktop fires up and then the user re-authenticates with no problem as himself instead of the machine, but by that point, we defeat the point of the WiFi SSO “before user logon”. Also by that point, no DHCP renew seems to occur, and the user is still stuck with the wrong IP address for the new VLAN. When the “Connecting to ” screen comes up, there’s no indication on the AP or the Radius server that anything whatsoever is happening after credentials are entered until after the domain logon. Also with this policy enabled, sometimes windows hangs on a black screen indefinitely until I disable the Wireless NIC, so something is knackered for sure. What have I missed? Suggestions are much appreciated... /P

    Read the article

  • Which of these is pythonic? and Pythonic vs. Speed

    - by Kashyap Nadig
    Hi! I'm new to python and just wrote this module level function: def _interval(patt): """ Converts a string pattern of the form '1y 42d 14h56m' to a timedelta object. y - years (365 days), M - months (30 days), w - weeks, d - days, h - hours, m - minutes, s - seconds""" m = _re.findall(r'([+-]?\d*(?:\.\d+)?)([yMwdhms])', patt) args = {'weeks': 0.0, 'days': 0.0, 'hours': 0.0, 'minutes': 0.0, 'seconds': 0.0} for (n,q) in m: if q=='y': args['days'] += float(n)*365 elif q=='M': args['days'] += float(n)*30 elif q=='w': args['weeks'] += float(n) elif q=='d': args['days'] += float(n) elif q=='h': args['hours'] += float(n) elif q=='m': args['minutes'] += float(n) elif q=='s': args['seconds'] += float(n) return _dt.timedelta(**args) My issue is with the for loop here i.e the long if elif block, and was wondering if there is a more pythonic way of doing it. So I re-wrote the function as: def _interval2(patt): m = _re.findall(r'([+-]?\d*(?:\.\d+)?)([yMwdhms])', patt) args = {'weeks': 0.0, 'days': 0.0, 'hours': 0.0, 'minutes': 0.0, 'seconds': 0.0} argsmap = {'y': ('days', lambda x: float(x)*365), 'M': ('days', lambda x: float(x)*30), 'w': ('weeks', lambda x: float(x)), 'd': ('days', lambda x: float(x)), 'h': ('hours', lambda x: float(x)), 'm': ('minutes', lambda x: float(x)), 's': ('seconds', lambda x: float(x))} for (n,q) in m: args[argsmap[q][0]] += argsmap[q][1](n) return _dt.timedelta(**args) I tested the execution times of both the codes using timeit module and found that the second one took about 5-6 seconds longer (for the default number of repeats). So my question is: 1. Which code is considered more pythonic? 2. Is there still a more pythonic was of writing this function? 3. What about the trade-offs between pythonicity and other aspects (like speed in this case) of programming? p.s. I kinda have an OCD for elegant code. EDITED _interval2 after seeing this answer: argsmap = {'y': ('days', 365), 'M': ('days', 30), 'w': ('weeks', 1), 'd': ('days', 1), 'h': ('hours', 1), 'm': ('minutes', 1), 's': ('seconds', 1)} for (n,q) in m: args[argsmap[q][0]] += float(n)*argsmap[q][1]

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >