Search Results

Search found 11547 results on 462 pages for 'parameter binding'.

Page 161/462 | < Previous Page | 157 158 159 160 161 162 163 164 165 166 167 168  | Next Page >

  • EJB Persist On Master Child Relationship

    - by deepak.siddappa(at)oracle.com
    Let us take scenario where in users wants to persist master child relationship. Here will have two tables dept, emp (using Scott Schema) which are having master child relation.Model Diagram: Here in the above model diagram, Dept is the Master table and Emp is child table and Dept is related to emp by one to n relationship. Lets assume we need to make new entries in emp table using EJB persist method. Create a Emp form manually dropping the fields, where deptno will be dropped as Single Selection -> ADF Select One Choice (which is a foreign key in emp table) from deptFindAll DC. Make sure to bind all field variables in backing bean.Employee Form:Once the Emp form created, If the persistEmp() method is used to commit the record this will persist all the Emp fields into emp table except deptno, because the deptno will be passed as a Object reference in persistEmp method  (Its foreign key reference). So directly deptno can't be passed to the persistEmp method instead deptno should be explicitly set to the emp object, then the persist will save the deptno to the emp table.Below solution is one way of work around to achieve this scenario -Create a method in sessionBean for adding emp records and expose this method in DataControl.     For Ex: Here in the below code 'em" is a EntityManager.            private EntityManager em - will be member variable in sessionEJBBeanpublic void addEmpRecord(String ename, String job, BigDecimal deptno) { Emp emp = new Emp(); emp.setEname(ename); emp.setJob(job); //setting the deptno explicitly Dept dept = new Dept(); dept.setDeptno(deptno); //passing the dept object emp.setDept(dept); //persist the emp object data to Emp table em.persist(emp); }From DataControl palette Drop addEmpRecord as Method ADF button, In Edit action binding window enter the parameter values which are binded in backing bean.     For Ex:     If the name deptno textfield is binded with "deptno" variable in backing bean, then El Expression Builder pass value as "#{backingbean.deptno.value}"Binding:

    Read the article

  • How-to read data from selected tree node

    - by Frank Nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} By default, the SelectionListener property of an ADF bound tree points to the makeCurrent method of the FacesCtrlHierBinding class in ADF to synchronize the current row in the ADF binding layer with the selected tree node. To customize the selection behavior, or just to read the selected node value in Java, you override the default configuration with an EL string pointing to a managed bean method property. In the following I show how you change the selection listener while preserving the default ADF selection behavior. To change the SelectionListener, select the tree component in the Structure Window and open the Oracle JDeveloper Property Inspector. From the context menu, select the Edit option to create a new listener method in a new or an existing managed bean. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} For this example, I created a new managed bean. On tree node select, the managed bean code prints the selected tree node value(s) import java.util.List; import javax.el.ELContext; import javax.el.ExpressionFactory; import javax.el.MethodExpression; import javax.faces.application.Application; import javax.faces.context.FacesContext; import java.util.Iterator; import oracle.adf.view.rich.component.rich.data.RichTree; import oracle.jbo.Row; import oracle.jbo.uicli.binding.JUCtrlHierBinding; import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding; import org.apache.myfaces.trinidad.event.SelectionEvent; import org.apache.myfaces.trinidad.model.CollectionModel; import org.apache.myfaces.trinidad.model.RowKeySet; import org.apache.myfaces.trinidad.model.TreeModel; public class TreeSampleBean { public TreeSampleBean() {} public void onTreeSelect(SelectionEvent selectionEvent) { //original selection listener set by ADF //#{bindings.allDepartments.treeModel.makeCurrent} String adfSelectionListener = "#{bindings.allDepartments.treeModel.makeCurrent}";   //make sure the default selection listener functionality is //preserved. you don't need to do this for multi select trees //as the ADF binding only supports single current row selection     /* START PRESERVER DEFAULT ADF SELECT BEHAVIOR */ FacesContext fctx = FacesContext.getCurrentInstance(); Application application = fctx.getApplication(); ELContext elCtx = fctx.getELContext(); ExpressionFactory exprFactory = application.getExpressionFactory();   MethodExpression me = null;   me = exprFactory.createMethodExpression(elCtx, adfSelectionListener,                                           Object.class, newClass[]{SelectionEvent.class});   me.invoke(elCtx, new Object[] { selectionEvent });     /* END PRESERVER DEFAULT ADF SELECT BEHAVIOR */   RichTree tree = (RichTree)selectionEvent.getSource(); TreeModel model = (TreeModel)tree.getValue();  //get selected nodes RowKeySet rowKeySet = selectionEvent.getAddedSet();   Iterator rksIterator = rowKeySet.iterator();   //for single select configurations,this only is called once   while (rksIterator.hasNext()) {     List key = (List)rksIterator.next();     JUCtrlHierBinding treeBinding = null;     CollectionModel collectionModel = (CollectionModel)tree.getValue();     treeBinding = (JUCtrlHierBinding)collectionModel.getWrappedData();     JUCtrlHierNodeBinding nodeBinding = null;     nodeBinding = treeBinding.findNodeByKeyPath(key);     Row rw = nodeBinding.getRow();     //print first row attribute. Note that in a tree you have to     //determine the node type if you want to select node attributes     //by name and not index      String rowType = rw.getStructureDef().getDefName();       if(rowType.equalsIgnoreCase("DepartmentsView")){      System.out.println("This row is a department: " +                          rw.getAttribute("DepartmentId"));     }     else if(rowType.equalsIgnoreCase("EmployeesView")){      System.out.println("This row is an employee: " +                          rw.getAttribute("EmployeeId"));     }        else{       System.out.println("Huh????");     }     // ... do more useful stuff here   } } -------------------- Download JDeveloper 11.1.2.1 Sample Workspace

    Read the article

  • 14540059 - UPDATE FOR BI PUBLISHER ENTERPRISE 11.1.1.6.0 AUGUST

    - by Tim Dexter
    Its been a while, I know :( I have posts in the pipe just gotta smoke em out! The latest update for BIP 11.1.1.6 was released last week. A bunch of defects have been addressed as you can see below.  13473493 - XMLP TRANSLATION ISSUE OF MILLION (ENG) TO MILLIONES (SPANISH) 13521951 - BIP UPGRADE FROM 10G TO 11.1.1.5.0 IS NOT SUCCESSFULL FOR TIAA-CREF  12542914 - ACC: REPORT VIEWER STRUCTURE HAS ERRORS - NO IFRAME AND NO LANG ATTRIBUTE  13562801 - XML TAG DISPLAY SHOULD DEFAULT TO 'FOLLOW THE DATA 13568043 - BIP QUERY FAILING VALIDATION DUE TO 'COALESCE' KEYWORD 13592901 - THE REPORT IS THROWING AN SQL ERROR THAT REFERENCES CHECKING FOR NULL VALUES 13836696 - BI PUBLISHER REPORT NOT GENERATED WHEN A TEXT FIELD START WITH "E.<SPACE>"  13879206 - DM MIGRATION ISSUES 13888939 - DM: LOV SEARCH CAUSING DB CONNECTION LEAK 13904225 - XSLX ERROR DUE TO URL LINK AND USE OF LIST 13930795 - RTF TEMPLATE GIVING DIFFERENT RESULTS IN DIFFERENT  13942064 - XDOEXCEPTION THROWN WHEN RUNNING PEOPLESOFT TEMPLATES AND XML FILE 13981523 - BI PUBLISHER ON 64-BIT WINDOWS CAN'T CONNECT TO MS ANALYSIS SERVICES CUBE 14039229 - BIP 11.1.1.5.0 REPORTS ARE NOT WORKING ON BIP 11.1.1.6.0  14055793 - BIP 11.1.1.6.0: DATE TYPE INPUT PARAMTER IS NOT DISPLAYING THE CORRECT VALUE USI  14059851 - UNABLE TO GRANT PRIVILEGES TO ROLE: DOMAIN USERS; THE ROLE DOES NOT EXIST 14109967 - LARGE OUTPUT CAUSES OUT OF MEMORY DUE TO LEFT OVER DEBUG CODE 14163973 - ISSUES USING DATA MODEL EDITOR IN BIP 11.1.1.6  14167915 - ORG.XML.SAX.SAXEXCEPTION: DATE FORMAT CANNOT BE NULL  14240045 - EDITING SCHEDULED REPORTS DOES NOT REFLECT VALID VALUES FOR UPGRADED SCHEDULES 14304427 - SEARCH DIALOG NOT BINDING PARAMETER VALUE - INVALID PARAMETER BINDING(S). 14338158 - PASSWORD FIELD SHOULD NOT BE DISPLAYED FOR FMW SECURITY MODEL 14393825 - OBIEE11G: LARGE NUMBER OF OBIPS SESSIONS CREATED WHEN USING SSO AND BI PUB 14558377 - CONT. BUG 14240045:EDITING SCHEDULES IN BI PUBLISHER IS DEFAULTING TO 'ALL' This patch is just for BI Publisher standalone installs. For those of you using BIP within the wider BIEE suite there is the 11.1.1.6.2 BP1 patchset. More details on that here.

    Read the article

  • MySQL Connector/Net 6.8.1 beta has been released

    - by Roberto Garcia
    Dear MySQL users, MySQL Connector/Net 6.8.1, a new version of the all-managed .NET driver for MySQL has been released. This is a beta release for 6.8.x and it's not recommended for production environments. It is appropriate for use with MySQL server versions 5.0-5.6 It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.8.1 version of MySQL Connector/Net has support for Entity Framework 6.0 and includes: - Changed EF migration history table to use a single column as primary key.- Removed installer validation when MySql for Visual Studio is installed.- Added idempotent script for Entity Framework 6 migrations.- Fix for WI #824, Connector/NET writes wrong version for binding redirects.- Fix for WI #825, Connector/NET 6.8.1 writes wrong namespace for binding redirects. The release is available to download at http://dev.mysql.com/downloads/connector/net/#downloads Documentation ------------------------------------- You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.6/en/connector-net.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows You can also post questions on our forums at http://forums.mysql.com/ Enjoy and thanks for the support! Connector/NET Team

    Read the article

  • Introduction to Oracle ADF

    - by Arda Eralp
    The Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies. You can use Oracle ADF to implement enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle ADF simplifies and accelerates development by allowing users to focus on the logic of application creation rather than coding details. Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers the full development lifecycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built in. In line with community best practices, applications you build using the Fusion web technology stack achieve a clean separation of business logic, page navigation, and user interface by adhering to a model-view-controller architecture. MVC architecture: The model layer represents the data values related to the current page The view layer contains the UI pages used to view or modify that data The controller layer processes user input and determines page navigation The business service layer handles data access and encapsulates business logic Each ADF module fits in the Fusion web application architecture. The core module in the framework is ADF Model, a data binding facility. The ADF Model layer enables a unified approach to bind any user interface to any business service, without the need to write code. The other modules that make up a Fusion web application technology stack are: ADF Business Components, which simplifies building business services. ADF Faces rich client, which offers a rich library of AJAX-enabled UI components for web applications built with JavaServer Faces (JSF). ADF Controller, which integrates JSF with ADF Model. The ADF Controller extends the standard JSF controller by providing additional functionality, such as reusable task flows that pass control not only between JSF pages, but also between other activities, for instance method calls or other task flows.

    Read the article

  • Per-vertex animation with VBOs: Stream each frame or use index offset per frame?

    - by charstar
    Scenario Meshes are animated using either skeletons (skinned animation) or some form of morph targets (i.e. per-vertex key frames). However, in either case, the animations are known in full at load-time, that is, there is no physics, IK solving, or any other form of in-game pose solving. The number of character actions (animations) will be limited but rich (hand-animated). There may be multiple characters using a each mesh and its animations simultaneously in-game (they will be at different poses/keyframes at the same time). Assume color and texture coordinate buffers are static. Goal To leverage the richness of well vetted animation tools such as Blender to do the heavy lifting for a small but rich set of animations. I am aware of additive pose blending like that from Naughty Dog and similar techniques but I would prefer to expend a little RAM/VRAM to avoid implementing a thesis-ready pose solver. I would also like to avoid implementing a key-frame + interpolation curve solver (reinventing Blender vertex groups and IPOs). Current Considerations Much like a non-shader-powered pose solver, create a VBO for each character and copy vertex and normal data to each VBO on each frame (VBO in STREAMING). Create one VBO for each animation where each frame (interleaved vertex and normal data) is concatenated onto the VBO. Then each character simply has a buffer pointer offset based on its current animation frame (e.g. pointer offset = (numVertices+numNormals)*frameNumber). (VBO in STATIC) Known Trade-Offs In 1 above: Each VBO would be small but there would be many VBOs and therefore lots of buffer binding and vertex copying each frame. Both client and pipeline intensive. In 2 above: There would be few VBOs therefore insignificant buffer binding and no vertex data getting jammed down the pipe each frame, but each VBO would be quite large. Are there any pitfalls to number 2 (aside from finite memory)? Are there other methods that I am missing?

    Read the article

  • Microsoft Silverlight 4 Data and Services Cookbook &ndash; Book Review (sort of)

    - by Jim Duffy
    I just received my copy of the Microsoft Silverlight 4 Data and Services Cookbook, co-authored by fellow Microsoft Regional Director, Gill Cleeren, and at first glance I like what I see. I’ve always been a fan of the “cookbook” approach to technical books because they are problem/solution oriented. Often developers need solutions to solve specific questions like “how do I send email from within my .NET application” and so on, and yes, that was a blatant plug to my article explaining how to accomplish just that, but I digress. :-) I also enjoy the cookbook approach because you can just start flipping pages and randomly stop somewhere and see what nugget of information is staring up at you from the page. Anyway, what I like about this book is that it focuses on a specific area of Silverlight development, accessing data and services.  The book is broken down into the following chapters: Chapter 1: Learning the Nuts and Bolts of Silverlight 4 Chapter 2: An Introduction to Data Binding Chapter 3: Advanced Data Binding Chapter 4: The Data Grid Chapter 5: The DataForm Chapter 6: Talking to Services Chapter 7: Talking to WCF and ASMX Services Chapter 8: Talking to REST and WCF Data Services Chapter 9: Talking to WCF RIA Services Chapter 10: Converting Your Existing Applications to Use Silverlight As you can see this book is all about working with Silverlight 4 and data. I’m looking forward to taking a closer look at it. Have a day. :-|

    Read the article

  • JEditorPane Code Completion

    - by Geertjan
    Code completion in a JEditorPane: Unfortunately, a lot of this solution depends on the Java Editor support in the IDE. Therefore, to use it, in its current state, you'll need lots of Java Editor related JARs even though your own application probably doesn't include a Java Editor. A key thing one needs to do is implement the NetBeans Code Completion API, using the related tutorial in the NetBeans Platform Learning Trail, but register the CompletionProvider as follows: @MimeRegistration(mimeType = "text/x-dialog-binding", service = CompletionProvider.class) Then in the TopComponent, include this code, which will bind all the completion providers in the above location, i.e., text/x-dialog-binding, to the JEditorPane: EditorKit kit = CloneableEditorSupport.getEditorKit("text/x-java"); jEditorPane1.setEditorKit(kit); FileObject fob; try {     fob = FileUtil.getConfigRoot().createData("tmp.java");     DataObject dob = DataObject.find(fob);     jEditorPane1.getDocument().putProperty(             Document.StreamDescriptionProperty,             dob);     DialogBinding.bindComponentToFile(fob, 0, 0, jEditorPane1);     jEditorPane1.setText("Egypt"); } catch (IOException ex) {     Exceptions.printStackTrace(ex); } Not a perfect solution, a bit hacky, with a high overheard, but a start nonetheless. Someone should look in the NetBeans sources to see how this actually works and then create a generic solution that is not tied to the Java Editor.

    Read the article

  • INDY WebService over SSL contains link with HTTP protocol instead of HTTPS in WSDL

    - by user1437820
    When creating new SOAP WebService server project using Delphi XE2 the wizard allows to set change port and HTTPS properties. Port is set to 443, HTTPS flag is checked, but when trying to connect to created server it returns incorrect transport (HTTP instead of HTTPS) in WSDL and generates HTTP links on the Service Info Page. The auto-generated page is not so important, but wrong information in WSDL file is a problem. Below you can see the returned WSDL - there are no HTTPS: <?xml version="1.0"?> <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema" name="Itest123service" targetNamespace="http://tempuri.org/" xmlns:tns="http://tempuri.org/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:ns1="urn:test123Intf"> <types> <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:test123Intf"> <simpleType name="TEnumTest"> <restriction base="string"> <enumeration value="etNone"/> <enumeration value="etAFew"/> <enumeration value="etSome"/> <enumeration value="etAlot"/> </restriction> </simpleType> <complexType name="TDoubleArray"> <complexContent> <restriction base="soapenc:Array"> <sequence/> <attribute ref="soapenc:arrayType" n1:arrayType="xs:double[]" xmlns:n1="http://schemas.xmlsoap.org/wsdl/"/> </restriction> </complexContent> </complexType> <complexType name="TMyEmployee"> <sequence> <element name="LastName" type="xs:string"/> <element name="FirstName" type="xs:string"/> <element name="Salary" type="xs:double"/> </sequence> </complexType> </schema> </types> <message name="echoEnum0Request"> <part name="Value" type="ns1:TEnumTest"/> </message> <message name="echoEnum0Response"> <part name="return" type="ns1:TEnumTest"/> </message> <message name="echoDoubleArray1Request"> <part name="Value" type="ns1:TDoubleArray"/> </message> <message name="echoDoubleArray1Response"> <part name="return" type="ns1:TDoubleArray"/> </message> <message name="echoMyEmployee2Request"> <part name="Value" type="ns1:TMyEmployee"/> </message> <message name="echoMyEmployee2Response"> <part name="return" type="ns1:TMyEmployee"/> </message> <message name="echoDouble3Request"> <part name="Value" type="xs:double"/> </message> <message name="echoDouble3Response"> <part name="return" type="xs:double"/> </message> <portType name="Itest123"> <operation name="echoEnum"> <input message="tns:echoEnum0Request"/> <output message="tns:echoEnum0Response"/> </operation> <operation name="echoDoubleArray"> <input message="tns:echoDoubleArray1Request"/> <output message="tns:echoDoubleArray1Response"/> </operation> <operation name="echoMyEmployee"> <input message="tns:echoMyEmployee2Request"/> <output message="tns:echoMyEmployee2Response"/> </operation> <operation name="echoDouble"> <input message="tns:echoDouble3Request"/> <output message="tns:echoDouble3Response"/> </operation> </portType> <binding name="Itest123binding" type="tns:Itest123"> <binding xmlns="http://schemas.xmlsoap.org/wsdl/soap/" style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/> <operation name="echoEnum"> <operation xmlns="http://schemas.xmlsoap.org/wsdl/soap/" soapAction="urn:test123Intf-Itest123#echoEnum" style="rpc"/> <input> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </input> <output> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </output> </operation> <operation name="echoDoubleArray"> <operation xmlns="http://schemas.xmlsoap.org/wsdl/soap/" soapAction="urn:test123Intf-Itest123#echoDoubleArray" style="rpc"/> <input> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </input> <output> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </output> </operation> <operation name="echoMyEmployee"> <operation xmlns="http://schemas.xmlsoap.org/wsdl/soap/" soapAction="urn:test123Intf-Itest123#echoMyEmployee" style="rpc"/> <input> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </input> <output> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </output> </operation> <operation name="echoDouble"> <operation xmlns="http://schemas.xmlsoap.org/wsdl/soap/" soapAction="urn:test123Intf-Itest123#echoDouble" style="rpc"/> <input> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </input> <output> <body xmlns="http://schemas.xmlsoap.org/wsdl/soap/" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:test123Intf-Itest123"/> </output> </operation> </binding> <service name="Itest123service"> <port name="Itest123Port" binding="tns:Itest123binding"> <address xmlns="http://schemas.xmlsoap.org/wsdl/soap/" location="http://localhost:443/soap/Itest123"/> </port> </service> </definitions> When I'm trying to import WSDL to soapUI tool to check WebService work I need to change manually binding link to "https://" and only then RPCs will work. I will be very grateful for any idea how to force INDY to return links in WSDL with HTTPS protocol. Thanks in advance!

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Announcing the release of the Windows Azure SDK 2.1 for .NET

    - by ScottGu
    Today we released the v2.1 update of the Windows Azure SDK for .NET.  This is a major refresh of the Windows Azure SDK and it includes some great new features and enhancements. These new capabilities include: Visual Studio 2013 Preview Support: The Windows Azure SDK now supports using the new VS 2013 Preview Visual Studio 2013 VM Image: Windows Azure now has a built-in VM image that you can use to host and develop with VS 2013 in the cloud Visual Studio Server Explorer Enhancements: Redesigned with improved filtering and auto-loading of subscription resources Virtual Machines: Start and Stop VM’s w/suspend billing directly from within Visual Studio Cloud Services: New Emulator Express option with reduced footprint and Run as Normal User support Service Bus: New high availability options, Notification Hub support, Improved VS tooling PowerShell Automation: Lots of new PowerShell commands for automating Web Sites, Cloud Services, VMs and more All of these SDK enhancements are now available to start using immediately and you can download the SDK from the Windows Azure .NET Developer Center.  Visual Studio’s Team Foundation Service (http://tfs.visualstudio.com/) has also been updated to support today’s SDK 2.1 release, and the SDK 2.1 features can now be used with it (including with automated builds + tests). Below are more details on the new features and capabilities released today: Visual Studio 2013 Preview Support Today’s Window Azure SDK 2.1 release adds support for the recent Visual Studio 2013 Preview. The 2.1 SDK also works with Visual Studio 2010 and Visual Studio 2012, and works side by side with the previous Windows Azure SDK 1.8 and 2.0 releases. To install the Windows Azure SDK 2.1 on your local computer, choose the “install the sdk” link from the Windows Azure .NET Developer Center. Then, chose which version of Visual Studio you want to use it with.  Clicking the third link will install the SDK with the latest VS 2013 Preview: If you don’t already have the Visual Studio 2013 Preview installed on your machine, this will also install Visual Studio Express 2013 Preview for Web. Visual Studio 2013 VM Image Hosted in the Cloud One of the requests we’ve heard from several customers has been to have the ability to host Visual Studio within the cloud (avoiding the need to install anything locally on your computer). With today’s SDK update we’ve added a new VM image to the Windows Azure VM Gallery that has Visual Studio Ultimate 2013 Preview, SharePoint 2013, SQL Server 2012 Express and the Windows Azure 2.1 SDK already installed on it.  This provides a really easy way to create a development environment in the cloud with the latest tools. With the recent shutdown and suspend billing feature we shipped on Windows Azure last month, you can spin up the image only when you want to do active development, and then shut down the virtual machine and not have to worry about usage charges while the virtual machine is not in use. You can create your own VS image in the cloud by using the New->Compute->Virtual Machine->From Gallery menu within the Windows Azure Management Portal, and then by selecting the “Visual Studio Ultimate 2013 Preview” template: Visual Studio Server Explorer: Improved Filtering/Management of Subscription Resources With the Windows Azure SDK 2.1 release you’ll notice significant improvements in the Visual Studio Server Explorer. The explorer has been redesigned so that all Windows Azure services are now contained under a single Windows Azure node.  From the top level node you can now manage your Windows Azure credentials, import a subscription file or filter Server Explorer to only show services from particular subscriptions or regions. Note: The Web Sites and Mobile Services nodes will appear outside the Windows Azure Node until the final release of VS 2013. If you have installed the ASP.NET and Web Tools Preview Refresh, though, the Web Sites node will appear inside the Windows Azure node even with the VS 2013 Preview. Once your subscription information is added, Windows Azure services from all your subscriptions are automatically enumerated in the Server Explorer. You no longer need to manually add services to Server Explorer individually. This provides a convenient way of viewing all of your cloud services, storage accounts, service bus namespaces, virtual machines, and web sites from one location: Subscription and Region Filtering Support Using the Windows Azure node in Server Explorer, you can also now filter your Windows Azure services in the Server Explorer by the subscription or region they are in.  If you have multiple subscriptions but need to focus your attention to just a few subscription for some period of time, this a handy way to hide the services from other subscriptions view until they become relevant. You can do the same sort of filtering by region. To enable this, just select “Filter Services” from the context menu on the Windows Azure node: Then choose the subscriptions and/or regions you want to filter by. In the below example, I’ve decided to show services from my pay-as-you-go subscription within the East US region: Visual Studio will then automatically filter the items that show up in the Server Explorer appropriately: With storage accounts and service bus namespaces, you sometimes need to work with services outside your subscription. To accommodate that scenario, those services allow you to attach an external account (from the context menu). You’ll notice that external accounts have a slightly different icon in server explorer to indicate they are from outside your subscription. Other Improvements We’ve also improved the Server Explorer by adding additional properties and actions to the service exposed. You now have access to most of the properties on a cloud service, deployment slot, role or role instance as well as the properties on storage accounts, virtual machines and web sites. Just select the object of interest in Server Explorer and view the properties in the property pane. We also now have full support for creating/deleting/update storage tables, blobs and queues from directly within Server Explorer.  Simply right-click on the appropriate storage account node and you can create them directly within Visual Studio: Virtual Machines: Start/Stop within Visual Studio Virtual Machines now have context menu actions that allow you start, shutdown, restart and delete a Virtual Machine directly within the Visual Studio Server Explorer. The shutdown action enables you to shut down the virtual machine and suspend billing when the VM is not is use, and easily restart it when you need it: This is especially useful in Dev/Test scenarios where you can start a VM – such as a SQL Server – during your development session and then shut it down / suspend billing when you are not developing (and no longer be billed for it). You can also now directly remote desktop into VMs using the “Connect using Remote Desktop” context menu command in VS Server Explorer.  Cloud Services: Emulator Express with Run as Normal User Support You can now launch Visual Studio and run your cloud services locally as a Normal User (without having to elevate to an administrator account) using a new Emulator Express option included as a preview feature with this SDK release.  Emulator Express is a version of the Windows Azure Compute Emulator that runs a restricted mode – one instance per role – and it doesn’t require administrative permissions and uses 40% less resources than the full Windows Azure Emulator. Emulator Express supports both web and worker roles. To run your application locally using the Emulator Express option, simply change the following settings in the Windows Azure project. On the shortcut menu for the Windows Azure project, choose Properties, and then choose the Web tab. Check the setting for IIS (Internet Information Services). Make sure that the option is set to IIS Express, not the full version of IIS. Emulator Express is not compatible with full IIS. On the Web tab, choose the option for Emulator Express. Service Bus: Notification Hubs With the Windows Azure SDK 2.1 release we are adding support for Windows Azure Notification Hubs as part of our official Windows Azure SDK, inside of Microsoft.ServiceBus.dll (previously the Notification Hub functionality was in a preview assembly). You are now able to create, update and delete Notification Hubs programmatically, manage your device registrations, and send push notifications to all your mobile clients across all platforms (Windows Store, Windows Phone 8, iOS, and Android). Learn more about Notification Hubs on MSDN here, or watch the Notification Hubs //BUILD/ presentation here. Service Bus: Paired Namespaces One of the new features included with today’s Windows Azure SDK 2.1 release is support for Service Bus “Paired Namespaces”.  Paired Namespaces enable you to better handle situations where a Service Bus service namespace becomes unavailable (for example: due to connectivity issues or an outage) and you are unable to send or receive messages to the namespace hosting the queue, topic, or subscription. Previously,to handle this scenario you had to manually setup separate namespaces that can act as a backup, then implement manual failover and retry logic which was sometimes tricky to get right. Service Bus now supports Paired Namespaces, which enables you to connect two namespaces together. When you activate the secondary namespace, messages are stored in the secondary queue for delivery to the primary queue at a later time. If the primary container (namespace) becomes unavailable for some reason, automatic failover enables the messages in the secondary queue. For detailed information about paired namespaces and high availability, see the new topic Asynchronous Messaging Patterns and High Availability. Service Bus: Tooling Improvements In this release, the Windows Azure Tools for Visual Studio contain several enhancements and changes to the management of Service Bus messaging entities using Visual Studio’s Server Explorer. The most noticeable change is that the Service Bus node is now integrated into the Windows Azure node, and supports integrated subscription management. Additionally, there has been a change to the code generated by the Windows Azure Worker Role with Service Bus Queue project template. This code now uses an event-driven “message pump” programming model using the QueueClient.OnMessage method. PowerShell: Tons of New Automation Commands Since my last blog post on the previous Windows Azure SDK 2.0 release, we’ve updated Windows Azure PowerShell (which is a separate download) five times. You can find the full change log here. We’ve added new cmdlets in the following areas: China instance and Windows Azure Pack support Environment Configuration VMs Cloud Services Web Sites Storage SQL Azure Service Bus China Instance and Windows Azure Pack We now support the following cmdlets for the China instance and Windows Azure Pack, respectively: China Instance: Web Sites, Service Bus, Storage, Cloud Service, VMs, Network Windows Azure Pack: Web Sites, Service Bus We will have full cmdlet support for these two Windows Azure environments in PowerShell in the near future. Virtual Machines: Stop/Start Virtual Machines Similar to the Start/Stop VM capability in VS Server Explorer, you can now stop your VM and suspend billing: If you want to keep the original behavior of keeping your stopped VM provisioned, you can pass in the -StayProvisioned switch parameter. Virtual Machines: VM endpoint ACLs We’ve added and updated a bunch of cmdlets for you to configure fine-grained network ACL on your VM endpoints. You can use the following cmdlets to create ACL config and apply them to a VM endpoint: New-AzureAclConfig Get-AzureAclConfig Set-AzureAclConfig Remove-AzureAclConfig Add-AzureEndpoint -ACL Set-AzureEndpoint –ACL The following example shows how to add an ACL rule to an existing endpoint of a VM. Other improvements for Virtual Machine management includes Added -NoWinRMEndpoint parameter to New-AzureQuickVM and Add-AzureProvisioningConfig to disable Windows Remote Management Added -DirectServerReturn parameter to Add-AzureEndpoint and Set-AzureEndpoint to enable/disable direct server return Added Set-AzureLoadBalancedEndpoint cmdlet to modify load balanced endpoints Cloud Services: Remote Desktop and Diagnostics Remote Desktop and Diagnostics are popular debugging options for Cloud Services. We’ve introduced cmdlets to help you configure these two Cloud Service extensions from Windows Azure PowerShell. Windows Azure Cloud Services Remote Desktop extension: New-AzureServiceRemoteDesktopExtensionConfig Get-AzureServiceRemoteDesktopExtension Set-AzureServiceRemoteDesktopExtension Remove-AzureServiceRemoteDesktopExtension Windows Azure Cloud Services Diagnostics extension New-AzureServiceDiagnosticsExtensionConfig Get-AzureServiceDiagnosticsExtension Set-AzureServiceDiagnosticsExtension Remove-AzureServiceDiagnosticsExtension The following example shows how to enable Remote Desktop for a Cloud Service. Web Sites: Diagnostics With our last SDK update, we introduced the Get-AzureWebsiteLog –Tail cmdlet to get the log streaming of your Web Sites. Recently, we’ve also added cmdlets to configure Web Site application diagnostics: Enable-AzureWebsiteApplicationDiagnostic Disable-AzureWebsiteApplicationDiagnostic The following 2 examples show how to enable application diagnostics to the file system and a Windows Azure Storage Table: SQL Database Previously, you had to know the SQL Database server admin username and password if you want to manage the database in that SQL Database server. Recently, we’ve made the experience much easier by not requiring the admin credential if the database server is in your subscription. So you can simply specify the -ServerName parameter to tell Windows Azure PowerShell which server you want to use for the following cmdlets. Get-AzureSqlDatabase New-AzureSqlDatabase Remove-AzureSqlDatabase Set-AzureSqlDatabase We’ve also added a -AllowAllAzureServices parameter to New-AzureSqlDatabaseServerFirewallRule so that you can easily add a firewall rule to whitelist all Windows Azure IP addresses. Besides the above experience improvements, we’ve also added cmdlets get the database server quota and set the database service objective. Check out the following cmdlets for details. Get-AzureSqlDatabaseServerQuota Get-AzureSqlDatabaseServiceObjective Set-AzureSqlDatabase –ServiceObjective Storage and Service Bus Other new cmdlets include Storage: CRUD cmdlets for Azure Tables and Queues Service Bus: Cmdlets for managing authorization rules on your Service Bus Namespace, Queue, Topic, Relay and NotificationHub Summary Today’s release includes a bunch of great features that enable you to build even better cloud solutions.  All the above features/enhancements are shipped and available to use immediately as part of the 2.1 release of the Windows Azure SDK for .NET. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • A jQuery Plug-in to monitor Html Element CSS Changes

    - by Rick Strahl
    Here's a scenario I've run into on a few occasions: I need to be able to monitor certain CSS properties on an HTML element and know when that CSS element changes. The need for this arose out of wanting to build generic components that could 'attach' themselves to other objects and monitor changes on the ‘parent’ object so the dependent object can adjust itself accordingly. What I wanted to create is a jQuery plug-in that allows me to specify a list of CSS properties to monitor and have a function fire in response to any change to any of those CSS properties. The result are the .watch() and .unwatch() jQuery plug-ins. Here’s a simple example page of this plug-in that demonstrates tracking changes to an element being moved with draggable and closable behavior: http://www.west-wind.com/WestWindWebToolkit/samples/Ajax/jQueryPluginSamples/WatcherPlugin.htm Try it with different browsers – IE and FireFox use the DOM event handlers and Chrome, Safari and Opera use setInterval handlers to manage this behavior. It should work in all of them but all but IE and FireFox will show a bit of lag between the changes in the main element and the shadow. The relevant HTML for this example is this fragment of a main <div> (#notebox) and an element that is to mimic a shadow (#shadow). <div class="containercontent"> <div id="notebox" style="width: 200px; height: 150px;position: absolute; z-index: 20; padding: 20px; background-color: lightsteelblue;"> Go ahead drag me around and close me! </div> <div id="shadow" style="background-color: Gray; z-index: 19;position:absolute;display: none;"> </div> </div> The watcher plug in is then applied to the main <div> and shadow in sync with the following plug-in code: <script type="text/javascript"> $(document).ready(function () { var counter = 0; $("#notebox").watch("top,left,height,width,display,opacity", function (data, i) { var el = $(this); var sh = $("#shadow"); var propChanged = data.props[i]; var valChanged = data.vals[i]; counter++; showStatus("Prop: " + propChanged + " value: " + valChanged + " " + counter); var pos = el.position(); var w = el.outerWidth(); var h = el.outerHeight(); sh.css({ width: w, height: h, left: pos.left + 5, top: pos.top + 5, display: el.css("display"), opacity: el.css("opacity") }); }) .draggable() .closable() .css("left", 10); }); </script> When you run this page as you drag the #notebox element the #shadow element will maintain and stay pinned underneath the #notebox element effectively keeping the shadow attached to the main element. Likewise, if you hide or fadeOut() the #notebox element the shadow will also go away – show the #notebox element and the shadow also re-appears because we are assigning the display property from the parent on the shadow. Note we’re attaching the .watch() plug-in to the #notebox element and have it fire whenever top,left,height,width,opacity or display CSS properties are changed. The passed data element contains a props[] and vals[] array that holds the properties monitored and their current values. An index passed as the second parm tells you which property has changed and what its current value is (propChanged/valChanged in the code above). The rest of the watcher handler code then deals with figuring out the main element’s position and recalculating and setting the shadow’s position using the jQuery .css() function. Note that this is just an example to demonstrate the watch() behavior here – this is not the best way to create a shadow. If you’re interested in a more efficient and cleaner way to handle shadows with a plug-in check out the .shadow() plug-in in ww.jquery.js (code search for fn.shadow) which uses native CSS features when available but falls back to a tracked shadow element on browsers that don’t support it, which is how this watch() plug-in came about in the first place :-) How does it work? The plug-in works by letting the user specify a list of properties to monitor as a comma delimited string and a handler function: el.watch("top,left,height,width,display,opacity", function (data, i) {}, 100, id) You can also specify an interval (if no DOM event monitoring isn’t available in the browser) and an ID that identifies the event handler uniquely. The watch plug-in works by hooking up to DOMAttrModified in FireFox, to onPropertyChanged in Internet Explorer, or by using a timer with setInterval to handle the detection of changes for other browsers. Unfortunately WebKit doesn’t support DOMAttrModified consistently at the moment so Safari and Chrome currently have to use the slower setInterval mechanism. In response to a changed property (or a setInterval timer hit) a JavaScript handler is fired which then runs through all the properties monitored and determines if and which one has changed. The DOM events fire on all property/style changes so the intermediate plug-in handler filters only those hits we’re interested in. If one of our monitored properties has changed the specified event handler function is called along with a data object and an index that identifies the property that’s changed in the data.props/data.vals arrays. The jQuery plugin to implement this functionality looks like this: (function($){ $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 100; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var data = { id: id, props: props.split(","), vals: [props.split(",").length], func: func, fnc: fnc, origProps: props, interval: interval, intervalId: null }; // store initial props and values $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data); }); function hookChange(el$, id, data) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, data.fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, data.fnc); else data.intervalId = setInterval(data.fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var data = el.data(id); try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, data.fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, data.fnc); else clearInterval(data.intervalId); } // ignore if element was already unbound catch (e) { } }); return this; } })(jQuery); Note that there’s a corresponding .unwatch() plug-in that can be used to stop monitoring properties. The ID parameter is optional both on watch() and unwatch() – a standard name is used if you don’t specify one, but it’s a good idea to use unique names for each element watched to avoid overlap in event ids especially if you’re monitoring many elements. The syntax is: $.fn.watch = function(props, func, interval, id) props A comma delimited list of CSS style properties that are to be watched for changes. If any of the specified properties changes the function specified in the second parameter is fired. func The function fired in response to a changed styles. Receives this as the element changed and an object parameter that represents the watched properties and their respective values. The first parameter is passed in this structure: { id: watcherId, props: [], vals: [], func: thisFunc, fnc: internalHandler, origProps: strPropertyListOnWatcher }; A second parameter is the index of the changed property so data.props[i] or data.vals[i] gets the property and changed value. interval The interval for setInterval() for those browsers that don't support property watching in the DOM. In milliseconds. id An optional id that identifies this watcher. Required only if multiple watchers might be hooked up to the same element. The default is _watcher if not specified. It’s been a Journey I started building this plug-in about two years ago and had to make many modifications to it in response to changes in jQuery and also in browser behaviors. I think the latest round of changes made should make this plug-in fairly future proof going forward (although I hope there will be better cross-browser change event notifications in the future). One of the big problems I ran into had to do with recursive change notifications – it looks like starting with jQuery 1.44 and later, jQuery internally modifies element properties on some calls to some .css()  property retrievals and things like outerHeight/Width(). In IE this would cause nasty lock up issues at times. In response to this I changed the code to unbind the events when the handler function is called and then rebind when it exits. This also makes user code less prone to stack overflow recursion as you can actually change properties on the base element. It also means though that if you change one of the monitors properties in the handler the watch() handler won’t fire in response – you need to resort to a setTimeout() call instead to force the code to run outside of the handler: $("#notebox") el.watch("top,left,height,width,display,opacity", function (data, i) { var el = $(this); … // this makes el changes work setTimeout(function () { el.css("top", 10) },10); }) Since I’ve built this component I’ve had a lot of good uses for it. The .shadow() fallback functionality is one of them. Resources The watch() plug-in is part of ww.jquery.js and the West Wind West Wind Web Toolkit. You’re free to use this code here or the code from the toolkit. West Wind Web Toolkit Latest version of ww.jquery.js (search for fn.watch) watch plug-in documentation © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  JavaScript  jQuery  

    Read the article

  • WCF AuthenticationService in IIS7 Error

    - by germandb
    I have a WCF Server running on IIS 7 using default application pool, with SSL activate, the services is installed in a SBS Server 2008. I implement client application services with wcf and SQL 2005 for setting the access control in my application. The application run under windows vista and is make with WPF. In my developer machine the application and the WCF services run well, the IIS i'm use for the trials is the local IIS 7 and the database is the SQL Server 2005 database hosting in my server. I'm using Visual Studio Project Designer to enable and configure client application services. using https://localhost/WcfServidorFundacion. When i'm change the authentication services location to https://WcfServices:5659/WcfServidorFundacion and recompile the application, the following error show up. Message: The web service returned the error status code: InternalServerError. Details of service failure: {"Message":" Error while processing your request ","StackTrace":"","ExceptionType":""} Stack Trace: en System.Net.HttpWebRequest.GetResponse() en System.Web.ClientServices.Providers.ProxyHelper.CreateWebRequestAndGetResponse(String serverUri, CookieContainer& cookies, String username, String connectionString, String connectionStringProvider, String[] paramNames, Object[] paramValues, Type returnType) InnerException: System.Net.WebException Message="Remote Server Error: (500) Interal Server Error." I can access the WCF service from the navigator using the url mentioned above and even make a webReference in my project. I make a capture of the response but I'cant post it because i don't have 10 reputation points I activate the error log in the IIS 7 server, and the result is a Warning in the ManagedPipilineHandler. I appreciate if any one can help me Errors & Warnings No.? Severity Event Module Name 132. view trace Warning -MODULE_SET_RESPONSE_ERROR_STATUS ModuleName ManagedPipelineHandler Notification 128 HttpStatus 500 HttpReason Internal Server Error HttpSubStatus 0 ErrorCode 0 ConfigExceptionInfo Notification EXECUTE_REQUEST_HANDLER ErrorCode La operación se ha completado correctamente. (0x0) Maybe this can help, is the web.config of my service <?xml version="1.0" encoding="utf-8"?> <!-- Nota: como alternativa para editar manualmente este archivo, puede utilizar la herramienta Administración de sitios web para configurar los valores de la aplicación. Utilice la opción Sitio Web->Configuración de Asp.Net en Visual Studio. Encontrará una lista completa de valores de configuración y comentarios en machine.config.comments, que se encuentra generalmente en \Windows\Microsoft.Net\Framework\v2.x\Config --> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings /> <connectionStrings> <remove name="LocalMySqlServer" /> <remove name="LocalSqlServer" /> <add name="fundacionSelfAut" connectionString="Data Source=FUNDACIONSERVER/PRUEBAS;Initial Catalog=fundacion;User ID=wcfBaseDatos;Password=qwerty_2009;" providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <profile enabled="true" defaultProvider="SqlProfileProvider"> <providers> <clear /> <add name="SqlProfileProvider" type="System.Web.Profile.SqlProfileProvider" connectionStringName="fundacionSelfAut" applicationName="fundafe" /> </providers> <properties> <add name="FirstName" type="String" /> <add name="LastName" type="String" /> <add name="PhoneNumber" type="String" /> </properties> </profile> <roleManager enabled="true" defaultProvider="SqlRoleProvider"> <providers> <clear /> <add name="SqlRoleProvider" type="System.Web.Security.SqlRoleProvider" connectionStringName="fundacionSelfAut" applicationName="fundafe" /> </providers> </roleManager> <membership defaultProvider="SqlMembershipProvider"> <providers> <clear /> <add name="SqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider" connectionStringName="fundacionSelfAut" applicationName="fundafe" enablePasswordRetrieval="false" enablePasswordReset="false" requiresQuestionAndAnswer="true" requiresUniqueEmail="true" passwordFormat="Hashed" /> </providers> </membership> <authentication mode="Forms" /> <compilation debug="true" strict="false" explicit="true"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </assemblies> </compilation> <!-- La sección <authentication> permite la configuración del modo de autenticación de seguridad utilizado por ASP.NET para identificar a un usuario entrante. --> <!-- La sección <customErrors> permite configurar las acciones que se deben llevar a cabo/cuando un error no controlado tiene lugar durante la ejecución de una solicitud. Específicamente, permite a los desarrolladores configurar páginas de error html que se mostrarán en lugar de un seguimiento de pila de errores. <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm"> <error statusCode="403" redirect="NoAccess.htm" /> <error statusCode="404" redirect="FileNotFound.htm" /> </customErrors> --> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx" /> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpModules> <sessionState timeout="40" /> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5" /> <providerOption name="WarnAsError" value="false" /> </compiler> </compilers> </system.codedom> <!-- La sección webServer del sistema es necesaria para ejecutar ASP.NET AJAX en Internet Information Services 7.0. Sin embargo, no es necesaria para la versión anterior de IIS. --> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <modules> <add name="ScriptModule" preCondition="integratedMode" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated" /> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </handlers> <tracing> <traceFailedRequests> <add path="*"> <traceAreas> <add provider="ASP" verbosity="Verbose" /> <add provider="ASPNET" areas="Infrastructure,Module,Page,AppServices" verbosity="Verbose" /> <add provider="ISAPI Extension" verbosity="Verbose" /> <add provider="WWW Server" areas="Authentication,Security,Filter,StaticFile,CGI,Compression,Cache,RequestNotifications,Module" verbosity="Verbose" /> </traceAreas> <failureDefinitions statusCodes="401.3,500,403,404,405" /> </add> </traceFailedRequests> </tracing> <security> <authorization> <add accessType="Allow" users="germanbarbosa,informatica" /> </authorization> <authentication> <windowsAuthentication enabled="false" /> </authentication> </security> </system.webServer> <system.web.extensions> <scripting> <webServices> <authenticationService enabled="true" requireSSL="true" /> <profileService enabled="true" readAccessProperties="FirstName,LastName,PhoneNumber" /> <roleService enabled="true" /> </webServices> </scripting> </system.web.extensions> <system.serviceModel> <services> <!-- this enables the WCF AuthenticationService endpoint --> <service behaviorConfiguration="AppServiceBehaviors" name="System.Web.ApplicationServices.AuthenticationService"> <endpoint address="" binding="basicHttpBinding" bindingConfiguration="userHttps" bindingNamespace="http://asp.net/ApplicationServices/v200" contract="System.Web.ApplicationServices.AuthenticationService" /> </service> <!-- this enables the WCF RoleService endpoint --> <service behaviorConfiguration="AppServiceBehaviors" name="System.Web.ApplicationServices.RoleService"> <endpoint binding="basicHttpBinding" bindingConfiguration="userHttps" bindingNamespace="http://asp.net/ApplicationServices/v200" contract="System.Web.ApplicationServices.RoleService" /> </service> <!-- this enables the WCF ProfileService endpoint --> <service behaviorConfiguration="AppServiceBehaviors" name="System.Web.ApplicationServices.ProfileService"> <endpoint binding="basicHttpBinding" bindingNamespace="http://asp.net/ApplicationServices/v200" bindingConfiguration="userHttps" contract="System.Web.ApplicationServices.ProfileService" /> </service> </services> <bindings> <basicHttpBinding> <!-- Set up a binding that uses Username as the client credential type --> <binding name="userHttps"> <security mode="Transport"> </security> </binding> </basicHttpBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="AppServiceBehaviors"> <serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" /> <serviceAuthorization principalPermissionMode="UseAspNetRoles" roleProviderName="SqlRoleProvider" /> <serviceCredentials> <userNameAuthentication userNamePasswordValidationMode="MembershipProvider" membershipProviderName="SqlMembershipProvider" /> </serviceCredentials> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" /> </system.serviceModel> </configuration>

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Book Review: Oracle ADF Real World Developer’s Guide

    - by Frank Nimphius
    Recently PACKT Publishing published "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman, a product manager in our team. Though already the sixth book dedicated to Oracle ADF, it has a lot of great information in it that none of the previous books covered, making it a safe buy even for those who own the other books published by Oracle Press (McGrwHill) and PACKT Publishing. More than the half of the "Oracle ADF Real World Developer’s Guide" book is dedicated to Oracle ADF Business Components in a depth and clarity that allows you to feel the expertise that Jobinesh gained in this area. If you enjoy Jobinesh blog (http://jobinesh.blogspot.co.uk/) about Oracle ADF, then, no matter what expert you are in Oracle ADF, this book makes you happy as it provides you with detail information you always wished to have. If you are new to Oracle ADF, then this book alone doesn't get you flying, but, if you have some Java background, accelerates your learning big, big, big times. Chapter 1 is an introduction to Oracle ADF and not only explains the layers but also how it compares to plain Java EE solutions (page 13). If you are new to Oracle JDeveloper and ADF, then at the end of this chapter you know how to start JDeveloper and begin your ADF development Chapter 2 starts with what Jobinesh really is good at: ADF Business Components. In this chapter you learn about the architecture ingredients of ADF Business Components: View Objects, View Links, Associations, Entities, Row Sets, Query Collections and Application Modules. This chapter also provides a introduction to ADFBC SDO services, as well as sequence diagrams for what happens when you execute queries or commit updates. Chapter 3 is dedicated to entity objects and  is one of many chapters in this book you will enjoy and never want to miss. Jobinesh explains the artifacts that make up an entity object, how to work with entities and resource bundles, and many advanced topics, including inheritance, change history tracking, custom properties, validation and cursor handling.  Chapter 4 - you guessed it - is all about View objects. Comparable to entities, you learn about the XM files and classes that make a view object, as well as how to define and work with queries. List-of-values, inheritance, polymorphism, bind variables and data filtering are interesting - and important topics that follow. Again the chapter provides helpful sequence diagrams for you to understand what happens internally within a view object. Chapter 5 focuses on advanced view object and entity object topics, like lifecycle callback methods and when you want to override them. This chapter is a good digest of Jobinesh's blog entries (which most ADF developers have in their bookmark list). Really worth reading ! Chapter 6 then is bout Application Modules. Beside of what application modules are, this chapter covers important topics like properties, passivation, activation, application module pooling, how and where to write custom logic. In addition you learn about the AM lifecycle and request sequence. Chapter 7 is about the ADF binding layer. If you are new to Oracle ADF and got lost in the more advanced ADF Business Components chapters, then this chapter is where you get back into the game. In very easy terms, Jobinesh explains what the ADF binding is, how it fits into the JSF request lifecycle and what are the metadata file involved. Chapter 8 then goes into building data bound web user interfaces. In this chapter you get the basics of JavaServer Faces (e.g. managed beans) and learn about the interaction between the JSF UI and the ADF binding layer. Later this chapter provides advanced solutions for working with tree components and list of values. Chapter 9 introduces bounded task flows and ADF controller. This is a chapter you want to read if you are new to ADF of have started. Experts don't find anything new here, which doesn't mean that it is not worth reading it (I for example, enjoyed the controller talk very much) Chapter 10 is an advanced coverage of bounded task flow and talks about contextual events  Chapter 11 is another highlight and explains error handling, trains, transactions and more. I can only recommend you read this chapter. I am aware of many documents that cover exception handling in Oracle ADF (and my Oracle Magazine article for January/February 2013 does the same), but none that covers it in such a great depth. Chapter 12 covers ADF best practices, which is a great round-up of all the tips provided in this book (without Jobinesh to repeat himself). Its all cool stuff that helps you with your ADF projects. In summary, "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman is a great book and addition for all Oracle ADF developers and those who want to become one. Frank

    Read the article

  • Silverlight Firestarter Wrap Up and WCF RIA Services Talk Sample Code

    - by dwahlin
    I had a great time attending and speaking at the Silverlight Firestarter event up in Redmond on December 2, 2010. In addition to getting a chance to hang out with a lot of cool people from Microsoft such as Scott Guthrie, John Papa, Tim Heuer, Brian Goldfarb, John Allwright, David Pugmire, Jesse Liberty, Jeff Handley, Yavor Georgiev, Jossef Goldberg, Mike Cook and many others, I also had a chance to chat with a lot of people attending the event and hear about what projects they’re working on which was awesome. If you didn’t get a chance to look through all of the new features coming in Silverlight 5 check out John Papa’s post on the subject. While at the Silverlight Firestarter event I gave a presentation on WCF RIA Services and wanted to get the code posted since several people have asked when it’d be available. The talk can be viewed by clicking the image below. Code from the talk follows as well as additional links. I had a few people ask about the green bracelet on my left hand since it looks like something you’d get from a waterpark. It was used to get us access down a little hall that led backstage and allowed us to go backstage during the event. I thought it looked kind of dorky but it was required to get through security. Sample Code from My WCF RIA Services Talk (To login to the 2 apps use “user” and “P@ssw0rd”. Make sure to do a rebuild of the projects in Visual Studio before running them.) View All Silverlight Firestarter Talks and Scott Guthrie’s Keynote WCF RIA Services SP1 Beta for Silverlight 4 WCF RIA Services Code Samples (including some SP1 samples) Improved binding support in EntitySet and EntityCollection with SP1 (Kyle McClellan’s Blog) Introducing an MVVM-Friendly DomainDataSource: The DomainCollectionView (Kyle McClellan’s Blog) I’ve had the chance to speak at a lot of conferences but never with as many cameras, streaming capabilities, people watching live and overall hype involved. Over 1000 people registered to attend the conference in person at the Microsoft campus and well over 15,000 to watch it through the live stream.  The event started for me on Tuesday afternoon with a flight up to Seattle from Phoenix. My flight was delayed 1 1/2 hours (I seem to be good at booking delayed flights) so I didn’t get up there until almost 8 PM. John Papa did a tech check at 9 PM that night and I was scheduled for 9:30 PM. We basically plugged in my laptop backstage (amazing number of servers, racks and audio devices back there) and made sure everything showed up properly on the projector and the machines recording the presentation. In addition to a dedicated show director, there were at least 5 tech people back stage and at least that many up in the booth running lights, audio, cameras, and other aspects of the show. I wish I would’ve taken a picture of the backstage setup since it was pretty massive – servers all over the place. I definitely gained a new appreciation for how much work goes into these types of events. Here’s what the room looked like right before my tech check– not real exciting at this point. That’s Yavor Georgiev (who spoke on WCF Services at the Firestarter) in the background. We had plenty of monitors to reference during the presentation. Two monitors for slides (right and left side) and a notes monitor. The 4th monitor showed the time and they’d type in notes to us as we talked (such as “You’re over time!” in my case since I went around 4 minutes over :-)). Wednesday morning I went back on campus at Microsoft and watched John Papa film a few Silverlight TV episodes with Dave Campbell and Ryan Plemons.   Next I had the chance to watch the dry run of the keynote with Scott Guthrie and John Papa. We were all blown away by the demos shown since they were even better than expected. Starting at 1 PM on Wednesday I went over to Building 35 and listened to Yavor Georgiev (WCF Services), Jaime Rodriguez (Windows Phone 7), Jesse Liberty (Data Binding) and Jossef Goldberg and Mike Cook (Silverlight Performance) give their different talks and we all shared feedback with each other which was a lot of fun. Jeff Handley from the RIA Services team came afterwards and listened to me give a dry run of my WCF RIA Services talk. He had some great feedback that I really appreciated getting. That night I hung out with John Papa and Ward Bell and listened to John walk through his keynote demos. I also got a sneak peak of the gift given to Dave Campbell for all his work with Silverlight Cream over the years. It’s a poster signed by all of the key people involved with Silverlight: Thursday morning I got up fairly early to get to the event center by 8 AM for speaker pictures. It was nice and quiet at that point although outside the room there was a huge line of people waiting to get in.     At around 8:30 AM everyone was let in and the main room was filled quickly. Two other overflow rooms in the Microsoft conference center (Building 33) were also filled to capacity. At around 9 AM Scott Guthrie kicked off the event and all the excitement started! From there it was all a blur but it was definitely a lot of fun. All of the sessions for the Silverlight Firestarter were recorded and can be watched here (including the keynote). Corey Schuman, John Papa and I also released 11 lab exercises and associated videos to help people get started with Silverlight. Definitely check them out if you’re interested in learning more! Level 100: Getting Started Lab 01 - WinForms and Silverlight Lab 02 - ASP.NET and Silverlight Lab 03 - XAML and Controls Lab 04 - Data Binding Level 200: Ready for More Lab 05 - Migrating Apps to Out-of-Browser Lab 06 - Great UX with Blend Lab 07 - Web Services and Silverlight Lab 08 - Using WCF RIA Services Level 300: Take me Further Lab 09 - Deep Dive into Out-of-Browser Lab 10 - Silverlight Patterns: Using MVVM Lab 11 - Silverlight and Windows Phone 7

    Read the article

  • Complex type support in process flow &ndash; XMLTYPE

    - by shawn
        Before OWB 11.2 release, there are only 5 simple data types supported in process flow: DATE, BOOLEAN, INTEGER, FLOAT and STRING. A new complex data type – XMLTYPE is added in 11.2, in order to support complex data being passed between the process flow activities. In this article we will give a simple example to illustrate the usage of the new type and some related editors.     Suppose there is a bookstore that uses XML format orders as shown below (we use the simplest form for the illustration purpose), then we can create a process flow to handle the order, take the order as the input, then extract necessary information, and generate a confirmation email to the customer automatically. <order id=’0001’>     <customer>         <name>Tom</name>         <email>[email protected]</email>     </customer>     <book id=’Java_001’>         <quantity>3</quantity>     </book> </order>     Considering a simple user case here: we use an input parameter/variable with XMLTYPE to hold the XML content of the order; then we can use an Assign activity to retrieve the email info from the order; after that, we can create an email activity to send the email (Other activities might be added in practical case, but will not be described here). 1) Set XML content value     For testing purpose, we will create a variable to hold the sample order, and then this will be used among the process flow activities. When the variable is of XMLTYPE and the “Literal” value is set the true, the advance editor will be enabled.     Click the “Advance Editor” shown as above, a simple xml editor will popup. The editor has basic features like syntax highlight and check as shown below:     We can also do the basic validation or validation against schema with the editor by selecting the normalized schema. With this, it will be easier to provide the value for XMLTYPE variables. 2) Extract information from XML content     After setting the value, we need to extract the email information with the Assign activity. In process flow, an enhanced expression builder is used to help users construct the XPath for extracting values from XML content. When the variable’s literal value is set the false, the advance editor is enabled.     Click the button, the advance editor will popup, as shown below:     The editor is based on the expression builder (which is often used in mapping etc), an XPath lib panel is appended which provides some help information on how to write the XPath. The expression used here is: “XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/email/text()').getStringVal()”, which uses ‘/order/customer/email/text()’ as the XPath to extract the email info from the XML document.     A variable called “EMAIL_ADDR” is created with String data type to hold the value extracted.     Then we bind the “VARIABLE” parameter of Assign activity to “EMAIL_ADDR” variable, which means the value of the “EMAIL_ADDR” activity will be set to the result of the “VALUE” parameter of Assign activity. 3) Use the extracted information in Email activity     We bind the “TO_ADDRESS” parameter of the email activity to the “EMAIL_ADDR” variable created in above step.     We can also extract other information from the xml order directly through the expression, for example, we can set the “MESSAGE_BODY” with value “'Dear '||XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/name/text()').getStringVal()||chr(13)||chr(10)||'   You have ordered '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/quantity/text()').getStringVal()||' '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/@id').getStringVal()”. This expression will extract the customer name, the quantity and the book id from the order to compose the message body.     To make the email activity work, we need provide some other necessary information, Such as “SMTP_SERVER” (which is the SMTP server used to send the emails, like “mail.bookstore.com”. The default PORT number is set to 25. You need to change the value accordingly), “FROM_ADDRESS” and “SUBJECT”. Then the process flow is ready to go.     After deploying the process flow package, we can simply run the process flow to check if the result is as expected (An email will be sent to the specified email address with proper subject and message body).     Note: In oracle 11g, there is an enhanced security feature - ACL (Access Control List), which restrict the network access within db, so we need to edit the list to allow UTL_SMTP work if you are using oracle 11g. Refer to chapter “Access Control Lists for UTL_TCP/HTTP/SMTP” and “Managing Fine-Grained Access to External Network Services” for more details.       In previous releases, XMLTYPE already exists in other OWB objects, like mapping/transformation etc. When the mapping/transformation is dragged into a process flow, the parameters with XMLTYPE are mapped to STRING. Now with the XMLTYPE support in process flow, the XMLTYPE will map to XMLTYPE in a more natural way, and we can leverage the new data type for the design.

    Read the article

  • Getting Started with Prism (aka Composite Application Guidance for WPF and Silverlight)

    - by dotneteer
    Overview Prism is a framework from the Microsoft Patterns and Practice team that allow you to create WPF and Silverlight in a modular way. It is especially valuable for larger projects in which a large number of developers can develop in parallel. Prism achieves its goal by supplying several services: · Dependency Injection (DI) and Inversion of control (IoC): By using DI, Prism takes away the responsibility of instantiating and managing the life time of dependency objects from individual components to a container. Prism relies on containers to discover, manage and compose large number of objects. By varying the configuration, the container can also inject mock objects for unit testing. Out of the box, Prism supports Unity and MEF as container although it is possible to use other containers by subclassing the Bootstrapper class. · Modularity and Region: Prism supplies the framework to split application into modules from the application shell. Each module is a library project that contains both UI and code and is responsible to initialize itself when loaded by the shell. Each window can be further divided into regions. A region is a user control with associated model. · Model, view and view-model (MVVM) pattern: Prism promotes the user MVVM. The use of DI container makes it much easier to inject model into view. WPF already has excellent data binding and commanding mechanism. To be productive with Prism, it is important to understand WPF data binding and commanding well. · Event-aggregation: Prism promotes loosely coupled components. Prism discourages for components from different modules to communicate each other, thus leading to dependency. Instead, Prism supplies an event-aggregation mechanism that allows components to publish and subscribe events without knowing each other. Architecture In the following, I will go into a little more detail on the services provided by Prism. Bootstrapper In a typical WPF application, application start-up is controls by App.xaml and its code behind. The main window of the application is typically specified in the App.xaml file. In a Prism application, we start a bootstrapper in the App class and delegate the duty of main window to the bootstrapper. The bootstrapper will start a dependency-injection container so all future object instantiations are managed by the container. Out of box, Prism provides the UnityBootstrapper and MefUnityBootstrapper abstract classes. All application needs to either provide a concrete implementation of one of these bootstrappers, or alternatively, subclass the Bootstrapper class with another DI container. A concrete bootstrapper class must implement the CreateShell method. Its responsibility is to resolve and create the Shell object through the DI container to serve as the main window for the application. The other important method to override is ConfigureModuleCatalog. The bootstrapper can register modules for the application. In a more advance scenario, an application does not have to know all its modules at compile time. Modules can be discovered at run time. Readers to refer to one of the Open Modularity Quick Starts for more information. Modules Once modules are registered with or discovered by Prism, they are instantiated by the DI container and their Initialize method is called. The DI container can inject into a module a region registry that implements IRegionViewRegistry interface. The module, in its Initialize method, can then call RegisterViewWithRegion method of the registry to register its regions. Regions Regions, once registered, are managed by the RegionManager. The shell can then load regions either through the RegionManager.RegionName attached property or dynamically through code. When a view is created by the region manager, the DI container can inject view model and other services into the view. The view then has a reference to the view model through which it can interact with backend services. Service locator Although it is possible to inject services into dependent classes through a DI container, an alternative way is to use the ServiceLocator to retrieve a service on demard. Prism supplies a service locator implementation and it is possible to get an instance of the service by calling: ServiceLocator.Current.GetInstance<IServiceType>() Event aggregator Prism supplies an IEventAggregator interface and implementation that can be injected into any class that needs to communicate with each other in a loosely-coupled fashion. The event aggregator uses a publisher/subscriber model. A class can publishes an event by calling eventAggregator.GetEvent<EventType>().Publish(parameter) to raise an event. Other classes can subscribe the event by calling eventAggregator.GetEvent<EventType>().Subscribe(EventHandler, other options). Getting started The easiest way to get started with Prism is to go through the Prism Hands-On labs and look at the Hello World QuickStart. The Hello World QuickStart shows how bootstrapper, modules and region works. Next, I would recommend you to look at the Stock Trader Reference Implementation. It is a more in depth example that resemble we want to set up an application. Several other QuickStarts cover individual Prism services. Some scenarios, such as dynamic module discovery, are more advanced. Apart from the official prism document, you can get an overview by reading Glen Block’s MSDN Magazine article. I have found the best free training material is from the Boise Code Camp. To be effective with Prism, it is important to understands key concepts of WPF well first, such as the DependencyProperty system, data binding, resource, theme and ICommand. It is also important to know your DI container of choice well. I will try to explorer these subjects in depth in the future. Testimony Recently, I worked on a desktop WPF application using Prism. I had a wonderful experience with Prism. The Prism is flexible enough even in the presence of third party controls such as Telerik WPF controls. We have never encountered any significant obstacle.

    Read the article

  • Task-It Webinar - Source Code

    Last week I presented a webinar called "Building a real-world application with RadControls for Silverlight 4". For those that didn't get to see the webinar, you can view it here: Building a read-world application with RadControls for Silverlight 4 Since the webinar I've received several requests asking if I could post the source code for the simple application I showed demonstrating some of the techniques used in the development of Task-It, such as MVVM, Commands and Internationalization. This source code is now available for downloadhere. After downloading the source: Extract it to the location of your choice on your hard-drive Open the solution Right-click ModuleProject.Web and selecte 'Set as StartUp Project'. Right-click ProjectTestPage.aspx and selected 'Set as Start Page' Create a database in SQL Server called WebinarProject. Navigate to the Database folder under the WebinarProject directory and run the .sql script against your WebinarProject database. The last two steps are necessary only for the Tasks page to work properly (using WCF RIA Services). Now some notes about each page: Code-behind This is not the way I recommend coding a line-of-business application in Silverlight, but simply wanted to show how the code-behind approach would look. Command This page introduces MVVM and Commands. You'll notice in the XAML that the Command property of theRadMenuItem and the Button are both bound to a SaveCommand. That comes from the view model. If you look in the code- behind of the user control you'll see that an instance of a CommandViewModel is instantiated and set as the DataContext of the UserControl.There is also a listener for the view model's SaveCompleted event. When this is fired, it tells the view (UserControl) to display the MessageBox. Internationalization This sample is similar to the previous one, but instead of using hard-coded strings in the UI, the strings are obtained via binding toview model properties. The view model gets the strings from the .resx files (Strings.resx or Strings.de.resx) under Assets/Resources. If you uncomment the call to ShowGerman() in App.xaml.cs's Application_Startup method and re-run the application, you will see the UI in German. Note that this code, which sets the CurrentCulture and CurrentUICulture on the current thread to "de" (German) is for testing purposes only. RadWindow Once again, very similar to the previous example.The difference is that we are now using a RadWindow to display the 'Saved' message instead of a MessageBox. The advantage here is that we do not have to hold on to a reference to the view model in our code behind so that we can get the 'Saved' message from it. The RadWindow's DataContext is now also bound to the view model, so within its XAML we can bind directly to properties in the view model. Much nicer, and cleaner. One other thing I introduced in this example is the use of spacer Rectangles. Rather than setting a width and/or height on the rectangles for spacing, I am now referencing a style in my ResourceDictionary called StandardSpacerStyle. I like doing this better than using margins or padding because now I have a reusable way to create space between elements, the Rectangle does not show (because I have not set its Fill color), and I can change my spacing throughout the user interface in one place if I'd like. Tasks This page is quite a bit different than the other four. It is a very simple, stripped-down version of the Tasks page in the Task-It application. The Tasks.xaml UserControl has a ContentControl, and the Content of that control is set based on whether we are looking at the list of tasks or editing a task. So it displays one of two child UserControls, which are called List and Details. List has the RadGridView, Details has the form. In the code-behind of the Tasks UserControl I am once again setting its DataContext to a view model class. The nice thing is, whichever child UserControl is being displayed (List or Details) inherits its DataContext from its parent control (Tasks), so I do not have to explicitly set it. The List UserControl simply displays a RadGridView whose ItemsSource is bound to a property in the view model called Tasks, and its SelectedItem property is bound to a property in the view model called SelectedItem. The SelectedItem binding must be TwoWay so that the view is notified when the SelectedItem changes in the view model, and the view model is notified when something changes in the view (like when a user changes the Name and/or DueDate in the form). You'll also notice that the form's TextBox and RadDatePicker are also TwoWay bound to the SelectedItem property in the view model. You can experiment with the binding by removing TwoWay and see how changes in the form do not show up in the RadGridView. So here we have an example of two different views (List and Details) that are both bound to the same view model...and actually, so is the Tasks UserControl, so it is really three views. WCF RIA Services By the way, I am using WCF RIA Services to retrieve data for the RadGridView and save the data when the user clicks the Save button in the form. I created a really simple ADO.NET Entity Data Model in WebinarProject.Web called DataModel.edmx. I also created a simple Domain Data Service called DataService that has methods for retrieving data, inserting, updating and deleting. However I am only using the retrieval and update methods in this sample. Note that I do not currently have any validation in place on the form, as I wanted to keep the sample as simple as possible. Wrap up Technically, I should move the calls to WCF RIA Services out of the view model and put them into a separate layer, but this works for now, and that is a topic for another day! Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Adding RSS to tags in Orchard

    - by Bertrand Le Roy
    A year ago, I wrote a scary post about RSS in Orchard. RSS was one of the first features we implemented in our CMS, and it has stood the test of time rather well, but the post was explaining things at a level that was probably too abstract whereas my readers were expecting something a little more practical. Well, this post is going to correct this by showing how I built a module that adds RSS feeds for each tag on the site. Hopefully it will show that it's not very complicated in practice, and also that the infrastructure is pretty well thought out. In order to provide RSS, we need to do two things: generate the XML for the feed, and inject the address of that feed into the existing tag listing page, in order to make the feed discoverable. Let's start with the discoverability part. One might be tempted to replace the controller or the view that are responsible for the listing of the items under a tag. Fortunately, there is no need to do any of that, and we can be a lot less obtrusive. Instead, we can implement a filter: public class TagRssFilter : FilterProvider, IResultFilter .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } On this filter, we can implement the OnResultExecuting method and simply check whether the current request is targeting the list of items under a tag. If that is the case, we can just register our new feed: public void OnResultExecuting(ResultExecutingContext filterContext) { var routeValues = filterContext.RouteData.Values; if (routeValues["area"] as string == "Orchard.Tags" && routeValues["controller"] as string == "Home" && routeValues["action"] as string == "Search") { var tag = routeValues["tagName"] as string; if (! string.IsNullOrWhiteSpace(tag)) { var workContext = _wca.GetContext(); _feedManager.Register( workContext.CurrentSite + " – " + tag, "rss", new RouteValueDictionary { { "tag", tag } } ); } } } The registration of the new feed is just specifying the title of the feed, its format (RSS) and the parameters that it will need (the tag). _wca and _feedManager are just instances of IWorkContextAccessor and IFeedManager that Orchard injected for us. That is all that's needed to get the following tag to be added to the head of our page, without touching an existing controller or view: <link rel="alternate" type="application/rss+xml" title="VuLu - Science" href="/rss?tag=Science"/> Nifty. Of course, if we navigate to the URL of that feed, we'll get a 404. This is because no implementation of IFeedQueryProvider knows about the tag parameter yet. Let's build one that does: public class TagFeedQuery : IFeedQueryProvider, IFeedQuery IFeedQueryProvider has one method, Match, that we can implement to take over any feed request that has a tag parameter: public FeedQueryMatch Match(FeedContext context) { var tagName = context.ValueProvider.GetValue("tag"); if (tagName == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } This is just saying that if there is a tag parameter, we will handle it. All that remains to be done is the actual building of the feed now that we have accepted to handle it. This is done by implementing the Execute method of the IFeedQuery interface: public void Execute(FeedContext context) { var tagValue = context.ValueProvider.GetValue("tag"); if (tagValue == null) return; var tagName = (string)tagValue.ConvertTo(typeof (string)); var tag = _tagService.GetTagByName(tagName); if (tag == null) return; var site = _services.WorkContext.CurrentSite; var link = new XElement("link"); context.Response.Element.SetElementValue("title", site.SiteName + " - " + tagName); context.Response.Element.Add(link); context.Response.Element.SetElementValue("description", site.SiteName + " - " + tagName); context.Response.Contextualize(requestContext => link.Add(GetTagUrl(tagName, requestContext))); var items = _tagService.GetTaggedContentItems(tag.Id, 0, 20); foreach (var item in items) { context.Builder.AddItem(context, item.ContentItem); } } This code is resolving the tag content item from its name and then gets content items tagged with it, using the tag services provided by the Orchard.Tags module. Then we add those items to the feed. And that is it. To summarize, we handled the request unobtrusively in order to inject the feed's link, then handled requests for feeds with a tag parameter and generated the list of items for that tag. It remains fairly simple and still it is able to handle arbitrary content types. That makes me quite happy about our little piece of over-engineered code from last year. The full code for this can be found in the Vandelay.TagCloud module: http://orchardproject.net/gallery/List/Modules/ Orchard.Module.Vandelay.TagCloud/1.2

    Read the article

  • How-to dynamically filter model-driven LOV

    - by Frank Nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Often developers need to filter a LOV query with information obtained from an ADF Faces form or other where. The sample below shows how to define a launch popup listener configured on the launchPopupListener property of the af:inputListOfValues component to filter a list of values. <af:inputListOfValues id="departmentIdId"    value="#{bindings.DepartmentId.inputValue}"                                          model="#{bindings.DepartmentId.listOfValuesModel}"    launchPopupListener="#{PopupLauncher.onPopupLaunch}" … >         … </af:inputListOfValues> A list of values is queried using a search binding that gets created in the PageDef file of a view when a lis of value component gets added. The managed bean code below looks this search binding up to then add a view criteria that filters the query. Note: There is no public API yet available for the FacesCtrlLOVBinding class, which is why I use the internal package class it in the example. public void onPopupLaunch(LaunchPopupEvent launchPopupEvent) {   BindingContext bctx = BindingContext.getCurrent();   BindingContainer bindings = bctx.getCurrentBindingsEntry();   FacesCtrlLOVBinding lov =        (FacesCtrlLOVBinding)bindings.get("DepartmentId");   ViewCriteriaManager vcm =   lov.getListIterBinding().getViewObject().getViewCriteriaManager();             //make sure the view criteria is cleared   vcm.removeViewCriteria(vcm.DFLT_VIEW_CRITERIA_NAME);   //create a new view criteria   ViewCriteria vc =          new ViewCriteria(lov.getListIterBinding().getViewObject());   //use the default view criteria name   //"__DefaultViewCriteria__"   vc.setName(vcm.DFLT_VIEW_CRITERIA_NAME);   //create a view criteria row for all queryable attributes   ViewCriteriaRow vcr = new ViewCriteriaRow(vc);   //for this sample I set the query filter to DepartmentId 60.   //You may determine it at runtime by reading it from a managed bean   //or binding layer   vcr.setAttribute("DepartmentId", 60);   //also note that the view criteria row consists of all attributes   //that belong to the LOV list view object, which means that you can   //filter on multiple attributes   vc.addRow(vcr);             lov.getListIterBinding().getViewObject().applyViewCriteria(vc); }  Note: Instead of using the vcm.DFLT_VIEW_CRITERIA_NAME name you can also define a custom name for the view criteria.

    Read the article

  • GoldenGate 12c Trail Encryption and Credentials with Oracle Wallet

    - by hamsun
    I have been asked more than once whether the Oracle Wallet supports GoldenGate trail encryption. Although GoldenGate has supported encryption with the ENCKEYS file for years, Oracle GoldenGate 12c now also supports encryption using the Oracle Wallet. This helps improve security and makes it easier to administer. Two types of wallets can be configured in Oracle GoldenGate 12c: The wallet that holds the master keys, used with trail or TCP/IP encryption and decryption, stored in the new 12c dirwlt/cwallet.sso file.   The wallet that holds the Oracle Database user IDs and passwords stored in the ‘credential store’ stored in the new 12c dircrd/cwallet.sso file.   A wallet can be created using a ‘create wallet’  command.  Adding a master key to an existing wallet is easy using ‘open wallet’ and ‘add masterkey’ commands.   GGSCI (EDLVC3R27P0) 42> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 43> add masterkey Master key 'OGG_DEFAULT_MASTERKEY' added to wallet at location 'dirwlt'.   Existing GUI Wallet utilities that come with other products such as the Oracle Database “Oracle Wallet Manager” do not work on this version of the wallet. The default Oracle Wallet can be changed.   GGSCI (EDLVC3R27P0) 44> sh ls -ltr ./dirwlt/* -rw-r----- 1 oracle oinstall 685 May 30 05:24 ./dirwlt/cwallet.sso GGSCI (EDLVC3R27P0) 45> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   The second wallet file is used for the credential used to connect to a database, without exposing the user id or password. Once it is configured, this file can be copied so that credentials are available to connect to the source or target database.   GGSCI (EDLVC3R27P0) 48> sh cp ./dircrd/cwallet.sso $GG_EURO_HOME/dircrd GGSCI (EDLVC3R27P0) 49> sh ls -ltr ./dircrd/* -rw-r----- 1 oracle oinstall 709 May 28 05:39 ./dircrd/cwallet.sso   The encryption wallet file can also be copied to the target machine so the replicat has access to the master key to decrypt records that are encrypted in the trail. Similar to the old ENCKEYS file, the master keys wallet created on the source host must either be stored in a centrally available disk or copied to all GoldenGate target hosts. The wallet is in a platform-independent format, although it is not certified for the iSeries, z/OS, and NonStop platforms.   GGSCI (EDLVC3R27P0) 50> sh cp ./dirwlt/cwallet.sso $GG_EURO_HOME/dirwlt   The new 12c UserIdAlias parameter is used to locate the credential in the wallet so the source user id and password does not need to be stored as a parameter as long as it is in the wallet.   GGSCI (EDLVC3R27P0) 52> view param extwest extract extwest exttrail ./dirdat/ew useridalias gguamer table west.*; The EncryptTrail parameter is used to encrypt the trail using the Advanced Encryption Standard and can be used with a primary extract or pump extract. GGSCI (EDLVC3R27P0) 54> view param pwest extract pwest encrypttrail AES256 rmthost easthost, mgrport 15001 rmttrail ./dirdat/pe passthru table west.*;   Once the extracts are running, records can be encrypted using the wallet.   GGSCI (EDLVC3R27P0) 60> info extract *west EXTRACT    EXTWEST   Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       00:00:17 (updated 00:00:01 ago) Process ID           24982 Log Read Checkpoint  Oracle Integrated Redo Logs                      2014-05-30 05:25:53                      SCN 0.0 (0) EXTRACT    PWEST     Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       24:02:32 (updated 00:00:05 ago) Process ID           24983 Log Read Checkpoint  File ./dirdat/ew000004                      2014-05-29 05:23:34.748949  RBA 1483   The ‘info masterkey’ command is used to confirm the wallet contains the key after copying it to the target machine. The key is needed to decrypt the data in the trail before the replicat applies the changes to the target database.   GGSCI (EDLVC3R27P0) 41> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 42> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   Once the replicat is running, records can be decrypted using the wallet.   GGSCI (EDLVC3R27P0) 44> info reast REPLICAT   REAST     Last Started 2014-05-30 05:28   Status RUNNING INTEGRATED Checkpoint Lag       00:00:00 (updated 00:00:02 ago) Process ID           25057 Log Read Checkpoint  File ./dirdat/pe000004                      2014-05-30 05:28:16.000000  RBA 1546   There is no need for the DecryptTrail parameter when using the Oracle Wallet, unlike when using the ENCKEYS file.   GGSCI (EDLVC3R27P0) 45> view params reast replicat reast assumetargetdefs discardfile ./dirrpt/reast.dsc, purge useridalias ggueuro map west.*, target east.*;   Once a record is inserted into the source table and committed, the encryption can be verified using logdump and then querying the target table.   AMER_SQL>insert into west.branch values (50, 80071); 1 row created.   AMER_SQL>commit; Commit complete.   The following encrypted record can be found using logdump. Logdump 40 >n 2014/05/30 05:28:30.001.154 Insert               Len    28 RBA 1546 Name: WEST.BRANCH After  Image:                                             Partition 4   G  s    0a3e 1ba3 d924 5c02 eade db3f 61a9 164d 8b53 4331 | .>...$\....?a..M.SC1   554f e65a 5185 0257                               | UO.ZQ..W  Bad compressed block, found length of  7075 (x1ba3), RBA 1546   GGS tokens: TokenID x52 'R' ORAROWID         Info x00  Length   20  4141 4157 7649 4141 4741 4141 4144 7541 4170 0001 | AAAWvIAAGAAAADuAAp..  TokenID x4c 'L' LOGCSN           Info x00  Length    7  3231 3632 3934 33                                 | 2162943  TokenID x36 '6' TRANID           Info x00  Length   10  3130 2e31 372e 3135 3031                          | 10.17.1501  The replicat automatically decrypted this record from the trail and then inserted the row to the target table using the wallet. This select verifies the row was inserted into the target database and the data is not encrypted. EURO_SQL>select * from branch where branch_number=50; BRANCH_NUMBER                  BRANCH_ZIP -------------                                   ----------    50                                              80071   Book a seat in an upcoming Oracle GoldenGate 12c: Fundamentals for Oracle course now to learn more about GoldenGate 12c new features including how to use GoldenGate with the Oracle wallet, credentials, integrated extracts, integrated replicats, the Oracle Universal Installer, and other new features. Looking for another course? View all Oracle GoldenGate training.   Randy Richeson joined Oracle University as a Senior Principal Instructor in March 2005. He is an Oracle Certified Professional (10g-12c) and a GoldenGate Certified Implementation Specialist (10-11g). He has taught GoldenGate since 2010 and also has experience teaching other technical curriculums including GoldenGate Monitor, Veridata, JD Edwards, PeopleSoft, and the Oracle Application Server.

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Mutating the expression tree of a predicate to target another type

    - by Jon
    Intro In the application I 'm currently working on, there are two kinds of each business object: the "ActiveRecord" type, and the "DataContract" type. So for example, we have: namespace ActiveRecord { class Widget { public int Id { get; set; } } } namespace DataContracts { class Widget { public int Id { get; set; } } } The database access layer takes care of "translating" between hierarchies: you can tell it to update a DataContracts.Widget, and it will magically create an ActiveRecord.Widget with the same property values and save that. The problem I have surfaced when attempting to refactor this database access layer. The Problem I want to add methods like the following to the database access layer: // Widget is DataContract.Widget interface DbAccessLayer { IEnumerable<Widget> GetMany(Expression<Func<Widget, bool>> predicate); } The above is a simple general-use "get" method with custom predicate. The only point of interest is that I 'm not passing in an anonymous function but rather an expression tree. This is done because inside DbAccessLayer we have to query ActiveRecord.Widget efficiently (LINQ to SQL) and not have the database return all ActiveRecord.Widget instances and then filter the enumerable collection. We need to pass in an expression tree, so we ask for one as the parameter for GetMany. The snag: the parameter we have needs to be magically transformed from an Expression<Func<DataContract.Widget, bool>> to an Expression<Func<ActiveRecord.Widget, bool>>. This is where I haven't managed to pull it off... Attempted Solution What we 'd like to do inside GetMany is: IEnumerable<DataContract.Widget> GetMany( Expression<Func<DataContract.Widget, bool>> predicate) { var lambda = Expression.Lambda<Func<ActiveRecord.Widget, bool>>( predicate.Body, predicate.Parameters); // use lambda to query ActiveRecord.Widget and return some value } This won't work because in a typical scenario, for example if: predicate == w => w.Id == 0; ...the expression tree contains a MemberAccessExpression instance which has a MemberInfo property (named Member) that point to members of DataContract.Widget. There are also ParameterExpression instances both in the expression tree and in its parameter expression collection (predicate.Parameters); After searching a bit, I found System.Linq.Expressions.ExpressionVisitor (its source can be found here in the context of a how-to, very helpful) which is a convenient way to modify an expression tree. Armed with this, I implemented a visitor. This simple visitor only takes care of changing the types in member access and parameter expressions. It may not be complete, but it's fine for the expression w => w.Id == 0. internal class Visitor : ExpressionVisitor { private readonly Func<Type, Type> dataContractToActiveRecordTypeConverter; public Visitor(Func<Type, Type> dataContractToActiveRecordTypeConverter) { this.dataContractToActiveRecordTypeConverter = dataContractToActiveRecordTypeConverter; } protected override Expression VisitMember(MemberExpression node) { var dataContractType = node.Member.ReflectedType; var activeRecordType = this.dataContractToActiveRecordTypeConverter(dataContractType); var converted = Expression.MakeMemberAccess( base.Visit(node.Expression), activeRecordType.GetProperty(node.Member.Name)); return converted; } protected override Expression VisitParameter(ParameterExpression node) { var dataContractType = node.Type; var activeRecordType = this.dataContractToActiveRecordTypeConverter(dataContractType); return Expression.Parameter(activeRecordType, node.Name); } } With this visitor, GetMany becomes: IEnumerable<DataContract.Widget> GetMany( Expression<Func<DataContract.Widget, bool>> predicate) { var visitor = new Visitor(...); var lambda = Expression.Lambda<Func<ActiveRecord.Widget, bool>>( visitor.Visit(predicate.Body), predicate.Parameters.Select(p => visitor.Visit(p)); var widgets = ActiveRecord.Widget.Repository().Where(lambda); // This is just for reference, see below Expression<Func<ActiveRecord.Widget, bool>> referenceLambda = w => w.Id == 0; // Here we 'd convert the widgets to instances of DataContract.Widget and // return them -- this has nothing to do with the question though. } Results The good news is that lambda is constructed just fine. The bad news is that it isn't working; it's blowing up on me when I try to use it (the exception messages are really not helpful at all). I have examined the lambda my code produces and a hardcoded lambda with the same expression; they look exactly the same. I spent hours in the debugger trying to find some difference, but I can't. When predicate is w => w.Id == 0, lambda looks exactly like referenceLambda. But the latter works with e.g. IQueryable<T>.Where, while the former does not (I have tried this in the immediate window of the debugger). I should also mention that when predicate is w => true, it all works just fine. Therefore I am assuming that I 'm not doing enough work in Visitor, but I can't find any more leads to follow on. Can someone point me in the right direction? Thanks in advance for your help!

    Read the article

< Previous Page | 157 158 159 160 161 162 163 164 165 166 167 168  | Next Page >