Search Results

Search found 2210 results on 89 pages for 'magic plane'.

Page 17/89 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • Converting OpenGL coordinates to lower UIView (and UIImagePickerController)

    - by John Qualis
    I am new to OpenGL on the iPhone. I am developing an iPhone app similar to a barcode reader but with an extra OpenGL layer. The bottommost layer is UIImagePickerController, then I use UIView on top and draw a rectangle at certain coordinates on the iPhone screen. So far everything is OK. Then I am trying to draw an OpenGL 3-D model in that rectangle. I am able to load a 3-D model in the iPhone based on this code here - http://iphonedevelopment.blogspot.com/2008/12/start-of-wavefront-obj-file-loader.html I am not able to transform the coordinates of the rectangle into OpenGL coordinates. Appreciate any help. Do I need to use a matrix to translate the currentPosition of the 3-D model so it is drawn within myRect? The code is given below. -(void)setupView:(GLView*)view { const GLfloat zNear = 0.01, zFar = 1000.0, fieldOfView = 45.0; GLfloat size; glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect = view.bounds; glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glViewport(0, 0, rect.size.width, rect.size.height); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); NSString *path = [[NSBundle mainBundle] pathForResource:@"plane" ofType:@"obj"]; OpenGLWaveFrontObject *theObject = [[OpenGLWaveFrontObject alloc] initWithPath:path]; Vertex3D position; position.z = -8.0; position.y = 3.0; position.x = 2.0; theObject.currentPosition = position; self.plane = theObject; [theObject release]; } - (void)drawView:(GLView*)view; { static GLfloat rotation = 0.0; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glColor4f(0.0, 0.5, 1.0, 1.0); // the coordinates of the rectangle are // myRect.x, myRect.y, myRect.width, myRect.height // Do I need to use a matrix to translate the currentPosition of the // 3-D model so it is drawn within myRect? //glOrthof(-160.0f, 160.0f, -240.0f, 240.0f, -1.0f, 1.0f); [plane drawSelf]; }

    Read the article

  • How to develop RPG Damage Formulas?

    - by user127817
    I'm developing a classical 2d RPG (in a similar vein to final fantasy) and I was wondering if anyone had some advice on how to do damage formulas/links to resources/examples? I'll explain my current setup. Hopefully I'm not overdoing it with this question, and I apologize if my questions is too large/broad My Characters stats are composed of the following: enum Stat { HP = 0, MP = 1, SP = 2, Strength = 3, Vitality = 4, Magic = 5, Spirit = 6, Skill = 7, Speed = 8, //Speed/Agility are the same thing Agility = 8, Evasion = 9, MgEvasion = 10, Accuracy = 11, Luck = 12, }; Vitality is basically defense to physical attacks and spirit is defense to magic attacks. All stats have fixed maximums (9999 for HP, 999 for MP/SP and 255 for the rest). With abilities, the maximums can be increased (99999 for HP, 9999 for HP/SP, 999 for the rest) with typical values (at level 100) before/after abilities+equipment+etc will be 8000/20,000 for HP, 800/2000 for SP/MP, 180/350 for other stats Late game Enemy HP will typically be in the lower millions (with a super boss having the maximum of ~12 million). I was wondering how do people actually develop proper damage formulas that scale correctly? For instance, based on this data, using the damage formulas for Final Fantasy X as a base looked very promising. A full reference here http://www.gamefaqs.com/ps2/197344-final-fantasy-x/faqs/31381 but as a quick example: Str = 127, 'Attack' command used, enemy Def = 34. 1. Physical Damage Calculation: Step 1 ------------------------------------- [{(Stat^3 ÷ 32) + 32} x DmCon ÷16] Step 2 ---------------------------------------- [{(127^3 ÷ 32) + 32} x 16 ÷ 16] Step 3 -------------------------------------- [{(2048383 ÷ 32) + 32} x 16 ÷ 16] Step 4 --------------------------------------------------- [{(64011) + 32} x 1] Step 5 -------------------------------------------------------- [{(64043 x 1)}] Step 6 ---------------------------------------------------- Base Damage = 64043 Step 7 ----------------------------------------- [{(Def - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------ [{(34 - 280.4)^2} ÷ 110] + 16 Step 9 ------------------------------------------------- [(-246)^2) ÷ 110] + 16 Step 10 ---------------------------------------------------- [60516 ÷ 110] + 16 Step 11 ------------------------------------------------------------ [550] + 16 Step 12 ---------------------------------------------------------- DefNum = 566 Step 13 ---------------------------------------------- [BaseDmg * DefNum ÷ 730] Step 14 --------------------------------------------------- [64043 * 566 ÷ 730] Step 15 ------------------------------------------------------ [36248338 ÷ 730] Step 16 ------------------------------------------------- Base Damage 2 = 49655 Step 17 ------------ Base Damage 2 * {730 - (Def * 51 - Def^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ---------------------- 49655 * {730 - (34 * 51 - 34^2 ÷ 11) ÷ 10} ÷ 730 Step 19 ------------------------- 49655 * {730 - (1734 - 1156 ÷ 11) ÷ 10} ÷ 730 Step 20 ------------------------------- 49655 * {730 - (1734 - 105) ÷ 10} ÷ 730 Step 21 ------------------------------------- 49655 * {730 - (1629) ÷ 10} ÷ 730 Step 22 --------------------------------------------- 49655 * {730 - 162} ÷ 730 Step 23 ----------------------------------------------------- 49655 * 568 ÷ 730 Step 24 -------------------------------------------------- Final Damage = 38635 I simply modified the dividers to include the attack rating of weapons and the armor rating of armor. Magic Damage is calculated as follows: Mag = 255, Ultima is used, enemy MDef = 1 Step 1 ----------------------------------- [DmCon * ([Stat^2 ÷ 6] + DmCon) ÷ 4] Step 2 ------------------------------------------ [70 * ([255^2 ÷ 6] + 70) ÷ 4] Step 3 ------------------------------------------ [70 * ([65025 ÷ 6] + 70) ÷ 4] Step 4 ------------------------------------------------ [70 * (10837 + 70) ÷ 4] Step 5 ----------------------------------------------------- [70 * (10907) ÷ 4] Step 6 ------------------------------------ Base Damage = 190872 [cut to 99999] Step 7 ---------------------------------------- [{(MDef - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------- [{(1 - 280.4)^2} ÷ 110] + 16 Step 9 ---------------------------------------------- [{(-279.4)^2} ÷ 110] + 16 Step 10 -------------------------------------------------- [(78064) ÷ 110] + 16 Step 11 ------------------------------------------------------------ [709] + 16 Step 12 --------------------------------------------------------- MDefNum = 725 Step 13 --------------------------------------------- [BaseDmg * MDefNum ÷ 730] Step 14 --------------------------------------------------- [99999 * 725 ÷ 730] Step 15 ------------------------------------------------- Base Damage 2 = 99314 Step 16 ---------- Base Damage 2 * {730 - (MDef * 51 - MDef^2 ÷ 11) ÷ 10} ÷ 730 Step 17 ------------------------ 99314 * {730 - (1 * 51 - 1^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ------------------------------ 99314 * {730 - (51 - 1 ÷ 11) ÷ 10} ÷ 730 Step 19 --------------------------------------- 99314 * {730 - (49) ÷ 10} ÷ 730 Step 20 ----------------------------------------------------- 99314 * 725 ÷ 730 Step 21 -------------------------------------------------- Final Damage = 98633 The problem is that the formulas completely fall apart once stats start going above 255. In particular Defense values over 300 or so start generating really strange behavior. High Strength + Defense stats lead to massive negative values for instance. While I might be able to modify the formulas to work correctly for my use case, it'd probably be easier just to use a completely new formula. How do people actually develop damage formulas? I was considering opening excel and trying to build the formula that way (mapping Attack Stats vs. Defense Stats for instance) but I was wondering if there's an easier way? While I can't convey the full game mechanics of my game here, might someone be able to suggest a good starting place for building a damage formula? Thanks

    Read the article

  • How to develop RPG Damage Formulas?

    - by user127817
    I'm developing a classical 2d RPG (in a similar vein to final fantasy) and I was wondering if anyone had some advice on how to do damage formulas/links to resources/examples? I'll explain my current setup. Hopefully I'm not overdoing it with this question, and I apologize if my questions is too large/broad My Characters stats are composed of the following: enum Stat { HP = 0, MP = 1, SP = 2, Strength = 3, Vitality = 4, Magic = 5, Spirit = 6, Skill = 7, Speed = 8, //Speed/Agility are the same thing Agility = 8, Evasion = 9, MgEvasion = 10, Accuracy = 11, Luck = 12, }; Vitality is basically defense to physical attacks and spirit is defense to magic attacks. All stats have fixed maximums (9999 for HP, 999 for MP/SP and 255 for the rest). With abilities, the maximums can be increased (99999 for HP, 9999 for HP/SP, 999 for the rest) with typical values (at level 100) before/after abilities+equipment+etc will be 8000/20,000 for HP, 800/2000 for SP/MP, 180/350 for other stats Late game Enemy HP will typically be in the lower millions (with a super boss having the maximum of ~12 million). I was wondering how do people actually develop proper damage formulas that scale correctly? For instance, based on this data, using the damage formulas for Final Fantasy X as a base looked very promising. A full reference here http://www.gamefaqs.com/ps2/197344-final-fantasy-x/faqs/31381 but as a quick example: Str = 127, 'Attack' command used, enemy Def = 34. 1. Physical Damage Calculation: Step 1 ------------------------------------- [{(Stat^3 ÷ 32) + 32} x DmCon ÷16] Step 2 ---------------------------------------- [{(127^3 ÷ 32) + 32} x 16 ÷ 16] Step 3 -------------------------------------- [{(2048383 ÷ 32) + 32} x 16 ÷ 16] Step 4 --------------------------------------------------- [{(64011) + 32} x 1] Step 5 -------------------------------------------------------- [{(64043 x 1)}] Step 6 ---------------------------------------------------- Base Damage = 64043 Step 7 ----------------------------------------- [{(Def - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------ [{(34 - 280.4)^2} ÷ 110] + 16 Step 9 ------------------------------------------------- [(-246)^2) ÷ 110] + 16 Step 10 ---------------------------------------------------- [60516 ÷ 110] + 16 Step 11 ------------------------------------------------------------ [550] + 16 Step 12 ---------------------------------------------------------- DefNum = 566 Step 13 ---------------------------------------------- [BaseDmg * DefNum ÷ 730] Step 14 --------------------------------------------------- [64043 * 566 ÷ 730] Step 15 ------------------------------------------------------ [36248338 ÷ 730] Step 16 ------------------------------------------------- Base Damage 2 = 49655 Step 17 ------------ Base Damage 2 * {730 - (Def * 51 - Def^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ---------------------- 49655 * {730 - (34 * 51 - 34^2 ÷ 11) ÷ 10} ÷ 730 Step 19 ------------------------- 49655 * {730 - (1734 - 1156 ÷ 11) ÷ 10} ÷ 730 Step 20 ------------------------------- 49655 * {730 - (1734 - 105) ÷ 10} ÷ 730 Step 21 ------------------------------------- 49655 * {730 - (1629) ÷ 10} ÷ 730 Step 22 --------------------------------------------- 49655 * {730 - 162} ÷ 730 Step 23 ----------------------------------------------------- 49655 * 568 ÷ 730 Step 24 -------------------------------------------------- Final Damage = 38635 I simply modified the dividers to include the attack rating of weapons and the armor rating of armor. Magic Damage is calculated as follows: Mag = 255, Ultima is used, enemy MDef = 1 Step 1 ----------------------------------- [DmCon * ([Stat^2 ÷ 6] + DmCon) ÷ 4] Step 2 ------------------------------------------ [70 * ([255^2 ÷ 6] + 70) ÷ 4] Step 3 ------------------------------------------ [70 * ([65025 ÷ 6] + 70) ÷ 4] Step 4 ------------------------------------------------ [70 * (10837 + 70) ÷ 4] Step 5 ----------------------------------------------------- [70 * (10907) ÷ 4] Step 6 ------------------------------------ Base Damage = 190872 [cut to 99999] Step 7 ---------------------------------------- [{(MDef - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------- [{(1 - 280.4)^2} ÷ 110] + 16 Step 9 ---------------------------------------------- [{(-279.4)^2} ÷ 110] + 16 Step 10 -------------------------------------------------- [(78064) ÷ 110] + 16 Step 11 ------------------------------------------------------------ [709] + 16 Step 12 --------------------------------------------------------- MDefNum = 725 Step 13 --------------------------------------------- [BaseDmg * MDefNum ÷ 730] Step 14 --------------------------------------------------- [99999 * 725 ÷ 730] Step 15 ------------------------------------------------- Base Damage 2 = 99314 Step 16 ---------- Base Damage 2 * {730 - (MDef * 51 - MDef^2 ÷ 11) ÷ 10} ÷ 730 Step 17 ------------------------ 99314 * {730 - (1 * 51 - 1^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ------------------------------ 99314 * {730 - (51 - 1 ÷ 11) ÷ 10} ÷ 730 Step 19 --------------------------------------- 99314 * {730 - (49) ÷ 10} ÷ 730 Step 20 ----------------------------------------------------- 99314 * 725 ÷ 730 Step 21 -------------------------------------------------- Final Damage = 98633 The problem is that the formulas completely fall apart once stats start going above 255. In particular Defense values over 300 or so start generating really strange behavior. High Strength + Defense stats lead to massive negative values for instance. While I might be able to modify the formulas to work correctly for my use case, it'd probably be easier just to use a completely new formula. How do people actually develop damage formulas? I was considering opening excel and trying to build the formula that way (mapping Attack Stats vs. Defense Stats for instance) but I was wondering if there's an easier way? While I can't convey the full game mechanics of my game here, might someone be able to suggest a good starting place for building a damage formula? Thanks

    Read the article

  • Dark Sun Dispatch 001

    - by Chris Williams
    If you aren't into tabletop (aka pen & paper) RPGs, you might as well click to the next post now... Still here? Awesome. I've recently started running a new D&D 4.0 Dark Sun campaign. If you don't know anything about Dark Sun, here's a quick intro: The campaign take place on the world of Athas, formerly a lush green world that is now a desert wasteland. Forests are rare in the extreme, as is water and metal. Coins are made of ceramic and weapons are often made of hardened wood, bone or obsidian. The green age of Athas was centuries ago and the current state was brought about through the reckless use of sorcerous magic. (In this world, you can augment spells by drawing on the life force of the world & people around you. This is called defiling. Preserving magic draws upon the casters life force and does not damage the surrounding world, but it isn't as powerful.) Humans are pretty much unchanged, but the traditional fantasy races have changed quite a bit. Elves don't live in the forest, they are shifty and untrustworthy desert traders known for their ability to run long distances through the wastes. Halflings are not short, fat, pleasant little riverside people. Instead they are bloodthirsty feral cannibals that roam the few remaining forests and ride reptilians beasts akin to raptors. Gnomes are extinct, as are orcs. Dwarves are mostly farmers and gladiators, and live out in the sun instead of staying under the mountains. Goliaths are half-giants, not known for their intellect. Muls are a Dwarf & Human crossbreed that displays the best traits of both races (human height and dwarven stoutness.) Thri-Kreen are sentient mantis people that are extremely fast. Most of the same character classes are available, with a few new twists. There are no divine characters (such as Priests, Paladins, etc) because the gods are gone. Nobody alive today can remember a time when they were still around. Instead, some folks worship the elemental forces (although they don't give out spells.) The cities are all ruled by Sorcerer King tyrants (except one city: Tyr) who are hundreds of years old and still practice defiling magic whenever they please. Serving the Sorcerer Kings are the Templars, who are also defilers and psionicists. Crossing them is as bad, in many cases, as crossing the Kings themselves. Between the cities you have small towns and trading outposts, and mostly barren desert with sometimes 4-5 days on foot between towns and the nearest oasis. Being caught out in the desert without adequate supplies and protection from the elements is pretty much a death sentence for even the toughest heroes. When you add in the natural (and unnatural) predators that roam the wastes, often in packs, most people don't last long alone. In this campaign, the adventure begins in the (small) trading fortress of Altaruk, a couple weeks walking distance from the newly freed city of Tyr. A caravan carrying trade goods from Altaruk has not made it to Tyr and the local merchant house has dispatched the heroes to find out what happened and to retrieve the goods (and drivers) if possible. The unlikely heroes consist of a human shaman, a thri-kreen monk, a human wizard, a kenku assassin and a (void aspect) genasi swordmage. Gathering up supplies and a little liquid courage, they set out into the desert and manage to find the northbound tracks of the wagon. Shortly after finding the tracks, they are ambushed by a pack of silt-runners (small lizard people with very large teeth and poisoned pointy spears.) The party makes short work of the creatures, taking a few minor wounds in the process. Proceeding onward without resting, they find the remains of the wagon and manage to sneak up on a pack of Kruthiks picking through the rubble and spilled goods. Unfortunately, they failed to take advantage of the opportunity and had a hard fight ahead of them. The party defeated the kruthiks, but took heavy damage (and almost lost a couple of their own) in the process. Once the kruthiks were dispatched, they followed a set of tracks further north to a ruined tower...

    Read the article

  • Converting .docx to pdf (or .doc to pdf, or .doc to odt, etc.) with libreoffice on a webserver on the fly using php

    - by robertphyatt
    Ok, so I needed to convert .docx files to .pdf files on the fly, but none of the free php libraries that were available let me do it on my server (a webservice was not good enough). Basically either I needed to pay for a library (and have it maybe suck) or just deal with the free ones that didn't convert the formatting well enough. Not good enough! I found that LibreOffice (OpenOffice's successor) allows command line conversion using the LibreOffice conversion engine (which DID preserve the formatting like I wanted and generally worked great). I loaded the latest version of Ubuntu (http://www.ubuntu.com/download/ubuntu/download) onto my Virtual Box (https://www.virtualbox.org/wiki/Downloads) on my computer and found that I was able to easily convert files using the commandline like this: libreoffice --headless -convert-to pdf fileToConvert.docx -outdir output/path/for/pdf I thought: sweet...but I don't have admin rights on my host's web server. I tried to use a "portable" version of LibreOffice that I obtained from http://portablelinuxapps.org/ but I was unable to get it to work on my host's webserver, because my host's webserver didn't have all the dependencies (Dependency Hell! http://en.wikipedia.org/wiki/Dependency_hell) I was at a loss of how to make it work, until I ran across a cool project made by a Ph.D. student (Philip J. Guo) at Stanford called CDE: http://www.stanford.edu/~pgbovine/cde.html I will let you look at his explanations of how it works (I followed what he did in http://www.youtube.com/watch?feature=player_embedded&v=6XdwHo1BWwY, starting at about 32:00 as well as the directions on his site), but in short, it allows one to avoid dependency hell by copying all the files used when you run certain commands, recreating the linux environment where the command worked. I was able to use this to run LibreOffice without having to resort to someone's portable version of it, and it worked just like it did when I did it on Ubuntu with the command above, with a tweak: I needed to run the wrapper of LibreOffice the CDE generated. So, below is my PHP code that calls it. In this code snippet, the filename to be copied is passed in as $_POST["filename"]. I copy the file to the same spot where I originally converted the file, convert it, copy it back and then delete all the files (so that it doesn't start growing exponentially). I did it this way because I wasn't able to make it work otherwise on the webserver. If there is a linux + webserver ninja out there that can figure out how to make it work without doing this, I would be interested to know what you did. Please post a comment or something if you did that. <?php //first copy the file to the magic place where we can convert it to a pdf on the fly copy($time.$_POST["filename"], "../LibreOffice/cde-package/cde-root/home/robert/Desktop/".$_POST["filename"]); //change to that directory chdir('../LibreOffice/cde-package/cde-root/home/robert'); //the magic command that does the conversion $myCommand = "./libreoffice.cde --headless -convert-to pdf Desktop/".$_POST["filename"]." -outdir Desktop/"; exec ($myCommand); //copy the file back copy("Desktop/".str_replace(".docx", ".pdf", $_POST["filename"]), "../../../../../documents/".str_replace(".docx", ".pdf", $_POST["filename"])); //delete all the files out of the magic place where we can convert it to a pdf on the fly $files1 = scandir('Desktop'); //my files that I generated all happened to start with a number. $pattern = '/^[0-9]/'; foreach ($files1 as $value) { preg_match($pattern, $value, $matches); if(count($matches) ?> 0) { unlink("Desktop/".$value); } } //changing the header to the location of the file makes it work well on androids header( 'Location: '.str_replace(".docx", ".pdf", $_POST["filename"]) ); ?> And here is the tar.gz file I generated I generated with CDE. To duplicate what I did exactly, put the tar.gz file in a folder somewhere. I will call that folder the "root". Make a new folder called "documents" in the "root" folder. Unpack the tar.gz and run the php script above from the "documents" folder. Success! I made a truly portable version of LibreOffice that can convert files on the fly on a webserver using 100% free, open source software!

    Read the article

  • Service php-fpm does not support chkconfig

    - by ychian
    Everything is working fine. Just that when i chkconfig –add php-fpm It throws me an error Service php-fpm does not support chkconfig php-5.2.13 php-5.2.13-fpm-0.5.13.diff.gz Below is the configuration i use ./configure --enable-fastcgi --enable-fpm --build=x86_64-redhat-linux-gnu --host=x86_64-redhat-linux-gnu --target=x86_64-redhat-linux-gnu --program-prefix= --prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin --sysconfdir=/etc --datadir=/usr/share --includedir=/usr/include --libdir=/usr/lib64 --libexecdir=/usr/libexec --localstatedir=/var --sharedstatedir=/usr/com --mandir=/usr/share/man --infodir=/usr/share/info --cache-file=../config.cache --with-libdir=lib64 --with-config-file-path=/etc --with-config-file-scan-dir=/etc/php.d --disable-debug --with-pic --disable-rpath --with-pear --with-bz2 --with-curl --with-exec-dir=/usr/bin --with-freetype-dir=/usr --with-png-dir=/usr --enable-gd-native-ttf --without-gdbm --with-gettext --with-gmp --with-iconv --with-jpeg-dir=/usr --with-openssl --with-png --with-expat-dir=/usr --with-pcre-regex=/usr --with-zlib --with-layout=GNU --enable-exif --enable-ftp --enable-magic-quotes --enable-sockets --enable-sysvsem --enable-sysvshm --enable-sysvmsg --enable-track-vars --enable-trans-sid --enable-yp --enable-wddx --with-kerberos --enable-ucd-snmp-hack --with-unixODBC=shared,/usr --enable-memory-limit --enable-shmop --enable-calendar --enable-dbx --enable-dio --with-mime-magic=/usr/share/file/magic.mime --without-sqlite --with-libxml-dir=/usr --with-xml --with-system-tzdata --without-mysql --without-gd --without-odbc --disable-dom --disable-dba --without-unixODBC --disable-pdo --disable-xmlreader --disable-xmlwriter

    Read the article

  • Generic delegate instances

    - by Luc C
    I wonder if C# (or the underlying .NET framework) supports some kind of "generic delegate instances": that is a delegate instance that still has an unresolved type parameter, to be resolved at the time the delegate is invoked (not at the time the delegate is created). I suspect this isn't possible, but I'm asking it anyway... Here is an example of what I'd like to do, with some "???" inserted in places where the C# syntax seems to be unavailable for what I want. (Obviously this code doesn't compile) class Foo { public T Factory<T>(string name) { // implementation omitted } } class Test { public void TestMethod() { Foo foo = new Foo(); ??? magic = foo.Factory; // No type argument given here yet to Factory! // What would the '???' be here (other than 'var' :) )? string aString = magic<string>("name 1"); // type provided on call int anInt = magic<int>("name 2"); // another type provided on another call // Note the underlying calls work perfectly fine, these work, but i'd like to expose // the generic method as a delegate. string aString2 = foo.Factory<string>("name 1"); int anInt2 = foo.Factory<int>("name 2"); } } Is there a way to actually do something like this in C#? If not, is that a limitation in the language, or is it in the .NET framework?

    Read the article

  • Creating a top-down spaceship

    - by Ali
    I'm creating a top-down 2D space game in LIBGDX for android. When spaceship is going forward it will look like this: when it goes upward I want to change it's direction with a nice animation so it seems like a real spaceship. A between frame would be like this: I have rendered the spaceship in different Z axis degrees from ship0 to ship90. Calculating rotation on XY plane wouldn't be so hard, but I don't know how to calculate the rotation on Z axis so I can choose the right sprite to use.

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • On Writing Blogs

    - by Tony Davis
    Why are so many blogs about IT so difficult to read? Over at SQLServerCentral.com, we do a special subscription-only newsletter called Database Weekly. Every other week, it is my turn to look through all the blogs, news and events that might be of relevance to people working with databases. We provide the title, with the link, and a short abstract of what you can expect to read. It is a popular service with close to a million subscribers. You might think that this is a happy and fascinating task. Sometimes, yes. If a blog comes to the point quickly, and says something both interesting and original, then it has our immediate attention. If it backs up what it says with supporting material, then it is more-or-less home and dry, featured in DBW's list. If it also takes trouble over the formatting and presentation, maybe with an illustration or two and any code well-formatted, then we are agog with joy and it is marked as a must-visit destination in our blog roll. More often, however, a task that should be fun becomes a routine chore, and the effort of trawling so many badly-written blogs is enough to make any conscientious Health & Safety officer whistle through their teeth at the risk to the editor's spiritual and psychological well-being. And yet, frustratingly, most blogs could be improved very easily. There is, I believe, a simple formula for a successful blog. First, choose a single topic that is reasonably fresh and interesting. Second, get to the point quickly; explain in the first paragraph exactly what the blog is about, and then stay on topic. In writing the first paragraph, you must picture yourself as a pilot, hearing the smooth roar of the engines as your plane gracefully takes air. Too often, however, the accompanying sound is that of the engine stuttering before the plane veers off the runway into a field, and a wheel falls off. The author meanders around the topic without getting to the point, and takes frequent off-radar diversions to talk about themselves, or the weather, or which friends have recently tagged them. This might work if you're J.D Salinger, or James Joyce, but it doesn't help a technical blog. Sometimes, the writing is so convoluted that we are entirely defeated in our quest to shoehorn its meaning into a simple summary sentence. Finally, write simply, in plain English, and in a conversational way such that you can read it out loud, and sound natural. That's it! If you could also avoid any references to The Matrix then this is a bonus but is purely personal preference. Cheers, Tony.

    Read the article

  • Isometric screen to 3D world coordinates efficiently

    - by Justin
    Been having a difficult time transforming 2D screen coordinates to 3D isometric space. This is the situation where I am working in 3D but I have an orthographic camera. Then my camera is positioned at (100, 200, 100), Where the xz plane is flat and y is up and down. I've been able to get a sort of working solution, but I feel like there must be a better way. Here's what I'm doing: With my camera at (0, 1, 0) I can translate my screen coordinates directly to 3D coordinates by doing: mouse2D.z = (( event.clientX / window.innerWidth ) * 2 - 1) * -(window.innerWidth /2); mouse2D.x = (( event.clientY / window.innerHeight) * 2 + 1) * -(window.innerHeight); mouse2D.y = 0; Everything okay so far. Now when I change my camera back to (100, 200, 100) my 3D space has been rotated 45 degrees around the y axis and then rotated about 54 degrees around a vector Q that runs along the xz plane at a 45 degree angle between the positive z axis and the negative x axis. So what I do to find the point is first rotate my point by 45 degrees using a matrix around the y axis. Now I'm close. So then I rotate my point around the vector Q. But my point is closer to the origin than it should be, since the Y value is not 0 anymore. What I want is that after the rotation my Y value is 0. So now I exchange my X and Z coordinates of my rotated vector with the X and Z coordinates of my non-rotated vector. So basically I have my old vector but it's y value is at an appropriate rotated amount. Now I use another matrix to rotate my point around the vector Q in the opposite direction, and I end up with the point where I clicked. Is there a better way? I feel like I must be missing something. Also my method isn't completely accurate. I feel like it's within 5-10 coordinates of where I click, maybe because of rounding from many calculations. Sorry for such a long question.

    Read the article

  • Surface of Revolution with 3D surface

    - by user5584
    I have to use this function to get a Surface of Revolution (homework). newVertex = (oldVertex.y, someFunc1(oldVertex.x, oldVertex.y), someFunc2(oldVertex.x, oldVertex.y)); As far as I know (FIXME) Surface of Revolution means rotations of a (2D)curve around an axis in 3D. But this vertex computing gives a 3D plane (FIXME again :D), so rotation of this isn't obvious. Am I misunderstanding something?

    Read the article

  • DNN World 2011

    - by bdukes
    We’re on the plane flying back to St. Louis from DNN World 2011 .  I gave a presentation titled DNN 6 UI/UX Patterns , discussing the form patterns introduced in the administrative modules in DNN 6 (the new look and feel that you immediately noticed after logging into your new DNN 6 site).  Many folks asked about seeing the examples that I presented, and they are available as a repository on github, at https://github.com/bdukes/DNN-World-Demos .  This includes a series of small, one...(read more)

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • How to implement efficient Fog of War?

    - by Cambrano
    I've asked a question how to implement Fog Of War(FOW) with shaders. Well I've got this working. I use the vertex color to identify the alpha of a single vertex. I guess the most of you know what the FOW of Age of Empires was like, anyway I'll shortly explain it: You have a map. Everything is unexplored(solid black / 100% transparency) at the beginning. When your NPC's / other game units explore the world (by moving around mostly) they unshadow the map. That means. Everything in a specific radius (viewrange) around a NPC is visible (0%transparency). Anything that is out of viewrange but already explored is visible but shadowed (50% transparency). So yeah, AoE had relatively huge maps. Requirements was something around 100mhz etc. So it should be relatively easy to implement something to solve this problem - actually. Okay. I'm currently adding planes above my world and set the color per vertex. Why do I use many planes ? Unity has a vertex limit of 65.000 per mesh. According to the size of my tiles and the size of my map I need more than one plane. So I actually need a lot of planes. This is obviously pita for my FPS. Well so my question is, what are simple (in sense of performance) techniques to implement a FOW shader? Okay some simplified code what I'm doin so far: // Setup for (int x = 0; x < (Map.Dimension/planeSize); x++) { for (int z = 0; z < (Map.Dimension/planeSize); z++) { CreateMeshAt(x*planeSize, 3, z*planeSize) } } // Explore (is called from NPCs when walking for example) for (int x = ((int) from.x - radius); x < from.x + radius; x ++) { for (int z = ((int) from.z - radius); z < from.z + radius; z ++) { if (from.Distance(x, 1, z) > radius) continue; _transparency[x/tileSize, z/tileSize] = 0.5f; } } // Update foreach(GameObject plane in planes){ foreach(Vector3 vertex in vertices){ Vector3 worldPos = GetWorldPos(vertex); vertex.Color = new Color(0,0,0, _transparency[worldPos.x/tileSize, worldPos.z/tileSize]); } } My shader just sets the transparency of the vertex now, which comes from the vertex color channel

    Read the article

  • GLSL: Strange light reflections [Solved]

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices?

    Read the article

  • Anonymous Indonésie et Australie bientôt en cyber guerre ? Le ton monte entre les membres du collectif

    Anonymous Indonésie et Australie bientôt en cyber guerre ? Le ton monte entre les membres du collectif Les révélations d'Edward Snowden sèment de plus en plus de trouble aux seins des coalitions. Après les Etats-Unis et ses alliés européens, c'est maintenant le collectif Anonymous qui se voit divisé. En effet la menace d'une cyber guerre plane entre les Anonymous d'Indonésie et ceux d'Australie. Le point de départ ? La NSA et l'ASD, son équivalent australien, auraient espionnés des membres...

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • How can I achieve a 3D-like effect with spritebatch's rotation and scale parameters

    - by Alic44
    I'm working on a 2d game with a top-down perspective similar to Secret of Mana and the 2D Final Fantasy games, with one big difference being that it's an action rpg using a 3-dimensional physics engine. I'm trying to draw an aimer graphic (basically an arrow) at my characters' feet when they're aiming a ranged weapon. At first I just converted the character's aim vector to radians and passed that into spritebatch, but there was a problem. The position of every object in my world is scaled for perspective when it's drawn to the screen. So if the physics engine coordinates are (1, 0, 1), the screen coords are actually (1, .707) -- the Y and Z axis are scaled by a perspective factor of .707 and then added together to get the screen coordinates. This meant that the direction the aimer graphic pointed (thanks to its rotation value passed into spritebatch) didn't match up with the direction the projectile actually traveled over time. Things looked fine when the characters fired left, right, up, or down, but if you fired on a diagonal the perspective of the physics engine didn't match with the simplistic way I was converting the character's aim direction to a screen rotation. Ok, fast forward to now: I've got the aimer's rotation matched up with the path the projectile will actually take, which I'm doing by decomposing a transform matrix which I build from two rotation matrices (one to represent the aimer's rotation, and one to represent the camera's 45 degree rotation on the x axis). My question is, is there a way to get not just rotation from a series of matrix transformations, but to also get a Vector2 scale which would give the aimer the appearance of being a 3d object, being warped by perspective? Orthographic perspective is what I'm going for, I think. So, the aimer arrow would get longer when facing sideways, and shorter when facing north and south because of the perspective. At the same time, it would get wider when facing north and south, and less wide when facing right or left. I'd like to avoid actually drawing the aimer texture in 3d because I'm still using spritebatch's layerdepth parameter at this point in my project, and I don't want to have to figure out how to draw a 3d object within the depth sorting system I already have. I can provide code and more details if this is too vague as a question... This is my first post on stack exchange. Thanks a lot for reading! Note: (I think) I realize it can't be a technically correct 3D perspective, because the spritebatch's vector2 scaling argument doesn't allow for an object to be skewed the way it actually should be. What I'm really interested in is, is there a good way to fake the effect, or should I just drop it and not scale at all? Edit to clarify without the help of a picture (apparently I can't post them yet): I want the aimer arrow to look like it has been painted on the ground at the character's feet, so it should appear to be drawn on the ground plane (in my case the XZ plane) which should be tilted at a 45 degree angle (around the X axis) from the viewing perspective. Alex

    Read the article

  • How do I do random isometric paths?

    - by user406470
    I'm working on an Isometric city generator, and I am looking for a little push in the right direction. I'm looking to randomly generate roads on a isometric plane. I have never done pathfinding before, and I've googled it and didn't find any articles relating to what I am trying to do. Basically, my program generates a random isometric city and, I am hoping to add roads to that. Any help is appreciated!

    Read the article

  • Oracle Virtualization Friday Spotlight - November 8, 2013

    - by Monica Kumar
    Hands-on Private Cloud Simulator In One Hour Submitted by: Doan Nguyen, Senior Principal Product Marketing Director My aeronautics instructor used to say, "you can’t appreciate flying until you take flight." To clarify, this is not about gearing up in a flying squirrel suit and hopping off a cliff (topic for another blog!) but rather about flying an airplane. The idea is to get hands-on with the controls at the cockpit and experience flight before you actually fly a real plane. After the initial 40 hours of flight time, the concept sank in and it really made sense.This concept is what inspired our technical experts to put together the hands-on lab for a private cloud deployment and management self-service model. Yes, we are comparing the lab to a flight simulator! Let’s look at the parallels: To get trained to fly, starting in the simulator gets you off the ground quicker. There is no need to have a real plane to begin with. In a hands-on lab, there is no need for a real server, with networking and real storage installed. All you need is your laptop The simulator is pre-configured, pre-flight check done. Similarly, in a hands-on lab, Oracle VM and Oracle Enterprise Manager are pre-configured and assembled using Oracle VM VirtualBox as the container. Software installations are not needed. After time spent training at the controls, you can really appreciate the practical experience of flying. Along the same lines, the hands-on lab is a guided learning path, without the encumbrances of hardware, software installation, so you can learn about cloud deployment and management.  However, unlike the simulator training, your time investment with the lab is only about an hour and not 40 hours! This hands-on lab takes you through private cloud deployment and management using Oracle VM and  Oracle Enterprise Manager Cloud Control 12c in an Infrastructure as a service IaaS model. You will first configure the IaaS cloud as the cloud administrator and then deploy guest virtual machines (VMs) as a self-service user. Then you are ready to take flight into the cloud! Why not step into the cockpit now!

    Read the article

  • XNA Rendering vertices that only appear within the cameras view

    - by user1157885
    I'm making a game in XNA and I recall hearing that professionally made games use a technique to only render the polygons that appear within the cameras projection. I've been trying to find something on this to do something similar in my game, could anyone point me in the right direction? Right now all I have is a plane/grid of vertices that you can set the X/Y on which is drawn using DrawUserIndexedPrimitives, but I plan to make a bunch of props as scenery items and I can imagine myself running into issues later on if I don't address this now. Thanks

    Read the article

  • How to get the blocks seen by the player?

    - by m4tx
    I'm writing a Minecraft-like game using Ogre engine and I have a problem. I must optimize my game, because when I try draw 10000 blocks, I have 2 FPS... So, I got the idea that blocks display of the plane and to hide the invisible blocks. But I have a problem - how do I know which blocks at a time are visible to the player? And - if you know of other optimization methods for such a game, write what and how to use them in Ogre.

    Read the article

  • How to get the blocks seen by the player?

    - by m4tx
    I'm writing a Minecraft-like game using Ogre engine and I have a problem. I must optimize my game, because when I try draw 10000 blocks, I have 2 FPS... So, I got the idea that blocks display of the plane and to hide the invisible blocks. But I have a problem - how do I know which blocks at a time are visible to the player? And - if you know of other optimization methods for such a game, write what and how to use them in Ogre.

    Read the article

  • How to calculate continuous motion with angular velocity in 2d

    - by Rulk
    I'm really new with physics. Maybe someone would be able to help me to solve the next problem: I need to calculate position of an agent on the plane(2D) in next time step where time step is large(20+ seconds) What I know about agent's motion: Initial Position Direction(normalised vector) Velocity(linear function from time ) - object always moves along it's direction Angular Velocity(linear function from time) Optional: External force direction External force (linear function from time) Running discreet simulation with t-0 is not an option.

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >