Search Results

Search found 12229 results on 490 pages for 'django templates tags'.

Page 170/490 | < Previous Page | 166 167 168 169 170 171 172 173 174 175 176 177  | Next Page >

  • Templated << friend not working when in interrelationship with other templated union types

    - by Dwight
    While working on my basic vector library, I've been trying to use a nice syntax for swizzle-based printing. The problem occurs when attempting to print a swizzle of a different dimension than the vector in question. In GCC 4.0, I originally had the friend << overloaded functions (with a body, even though it duplicated code) for every dimension in each vector, which caused the code to work, even if the non-native dimension code never actually was called. This failed in GCC 4.2. I recently realized (silly me) that only the function declaration was needed, not the body of the code, so I did that. Now I get the same warning on both GCC 4.0 and 4.2: LINE 50 warning: friend declaration 'std::ostream& operator<<(std::ostream&, const VECTOR3<TYPE>&)' declares a non-template function Plus the five identical warnings more for the other function declarations. The below example code shows off exactly what's going on and has all code necessary to reproduce the problem. #include <iostream> // cout, endl #include <sstream> // ostream, ostringstream, string using std::cout; using std::endl; using std::string; using std::ostream; // Predefines template <typename TYPE> union VECTOR2; template <typename TYPE> union VECTOR3; template <typename TYPE> union VECTOR4; typedef VECTOR2<float> vec2; typedef VECTOR3<float> vec3; typedef VECTOR4<float> vec4; template <typename TYPE> union VECTOR2 { private: struct { TYPE x, y; } v; struct s1 { protected: TYPE x, y; }; struct s2 { protected: TYPE x, y; }; struct s3 { protected: TYPE x, y; }; struct s4 { protected: TYPE x, y; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR2() {} VECTOR2(const TYPE& x, const TYPE& y) { v.x = x; v.y = y; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); }; template <typename TYPE> union VECTOR3 { private: struct { TYPE x, y, z; } v; struct s1 { protected: TYPE x, y, z; }; struct s2 { protected: TYPE x, y, z; }; struct s3 { protected: TYPE x, y, z; }; struct s4 { protected: TYPE x, y, z; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR3() {} VECTOR3(const TYPE& x, const TYPE& y, const TYPE& z) { v.x = x; v.y = y; v.z = z; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ", " << toString.v.z << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); }; template <typename TYPE> union VECTOR4 { private: struct { TYPE x, y, z, w; } v; struct s1 { protected: TYPE x, y, z, w; }; struct s2 { protected: TYPE x, y, z, w; }; struct s3 { protected: TYPE x, y, z, w; }; struct s4 { protected: TYPE x, y, z, w; }; struct X : s1 { operator TYPE() const { return s1::x; } }; struct XX : s2 { operator VECTOR2<TYPE>() const { return VECTOR2<TYPE>(s2::x, s2::x); } }; struct XXX : s3 { operator VECTOR3<TYPE>() const { return VECTOR3<TYPE>(s3::x, s3::x, s3::x); } }; struct XXXX : s4 { operator VECTOR4<TYPE>() const { return VECTOR4<TYPE>(s4::x, s4::x, s4::x, s4::x); } }; public: VECTOR4() {} VECTOR4(const TYPE& x, const TYPE& y, const TYPE& z, const TYPE& w) { v.x = x; v.y = y; v.z = z; v.w = w; } X x; XX xx; XXX xxx; XXXX xxxx; // Overload for cout friend ostream& operator<<(ostream& os, const VECTOR4& toString) { os << "(" << toString.v.x << ", " << toString.v.y << ", " << toString.v.z << ", " << toString.v.w << ")"; return os; } friend ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); friend ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); }; // Test code int main (int argc, char * const argv[]) { vec2 my2dVector(1, 2); cout << my2dVector.x << endl; cout << my2dVector.xx << endl; cout << my2dVector.xxx << endl; cout << my2dVector.xxxx << endl; vec3 my3dVector(3, 4, 5); cout << my3dVector.x << endl; cout << my3dVector.xx << endl; cout << my3dVector.xxx << endl; cout << my3dVector.xxxx << endl; vec4 my4dVector(6, 7, 8, 9); cout << my4dVector.x << endl; cout << my4dVector.xx << endl; cout << my4dVector.xxx << endl; cout << my4dVector.xxxx << endl; return 0; } The code WORKS and produces the correct output, but I prefer warning free code whenever possible. I followed the advice the compiler gave me (summarized here and described by forums and StackOverflow as the answer to this warning) and added the two things that supposedly tells the compiler what's going on. That is, I added the function definitions as non-friends after the predefinitions of the templated unions: template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR2<TYPE>& toString); template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR3<TYPE>& toString); template <typename TYPE> ostream& operator<<(ostream& os, const VECTOR4<TYPE>& toString); And, to each friend function that causes the issue, I added the <> after the function name, such as for VECTOR2's case: friend ostream& operator<< <> (ostream& os, const VECTOR3<TYPE>& toString); friend ostream& operator<< <> (ostream& os, const VECTOR4<TYPE>& toString); However, doing so leads to errors, such as: LINE 139: error: no match for 'operator<<' in 'std::cout << my2dVector.VECTOR2<float>::xxx' What's going on? Is it something related to how these templated union class-like structures are interrelated, or is it due to the unions themselves? Update After rethinking the issues involved and listening to the various suggestions of Potatoswatter, I found the final solution. Unlike just about every single cout overload example on the internet, I don't need access to the private member information, but can use the public interface to do what I wish. So, I make a non-friend overload functions that are inline for the swizzle parts that call the real friend overload functions. This bypasses the issues the compiler has with templated friend functions. I've added to the latest version of my project. It now works on both versions of GCC I tried with no warnings. The code in question looks like this: template <typename SWIZZLE> inline typename EnableIf< Is2D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; } template <typename SWIZZLE> inline typename EnableIf< Is3D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; } template <typename SWIZZLE> inline typename EnableIf< Is4D< typename SWIZZLE::PARENT >, ostream >::type& operator<<(ostream& os, const SWIZZLE& printVector) { os << (typename SWIZZLE::PARENT(printVector)); return os; }

    Read the article

  • Potential g++ template bug?

    - by Evan Teran
    I've encountered some code which I think should compile, but doesn't. So I'm hoping some of the local standards experts here at SO can help :-). I basically have some code which resembles this: #include <iostream> template <class T = int> class A { public: class U { }; public: U f() const { return U(); } }; // test either the work around or the code I want... #ifndef USE_FIX template <class T> bool operator==(const typename A<T>::U &x, int y) { return true; } #else typedef A<int> AI; bool operator==(const AI::U &x, int y) { return true; } #endif int main() { A<int> a; std::cout << (a.f() == 1) << std::endl; } So, to describe what is going on here. I have a class template (A) which has an internal class (U) and at least one member function which can return an instance of that internal class (f()). Then I am attempting to create an operator== function which compares this internal type to some other type (in this case an int, but it doesn't seem to matter). When USE_FIX is not defined I get the following error: test.cc: In function 'int main()': test.cc:27:25: error: no match for 'operator==' in 'a.A<T>::f [with T = int]() == 1' Which seems odd, because I am clearly (I think) defining a templated operator== which should cover this, in fact if I just do a little of the work for the compiler (enable USE_FIX), then I no longer get an error. Unfortunately, the "fix" doesn't work generically, only for a specific instantiation of the template. Is this supposed to work as I expected? Or is this simply not allowed? BTW: if it matters I am using gcc 4.5.2.

    Read the article

  • Trouble passing a template function as an argument to another function in C++

    - by Darel
    Source of the problem -Accelerated C++, problem 8-5 I've written a small program that examines lines of string input, and tallies the number of times a word appears on a given line. The following code accomplishes this: #include <map> #include <iostream> #include <string> #include <vector> #include <list> #include <cctype> #include <iterator> using std::vector; using std::string; using std::cin; using std::cout; using std::endl; using std::getline; using std::istream; using std::string; using std::list; using std::map; using std::isspace; using std::ostream_iterator; using std::allocator; inline void keep_window_open() { cin.clear(); cout << "Please enter EOF to exit\n"; char ch; cin >> ch; return; } template <class Out> void split(const string& s, Out os) { vector<string> ret; typedef string::size_type string_size; string_size i = 0; // invariant: we have processed characters `['original value of `i', `i)' while (i != s.size()) { // ignore leading blanks // invariant: characters in range `['original `i', current `i)' are all spaces while (i != s.size() && isspace(s[i])) ++i; // find end of next word string_size j = i; // invariant: none of the characters in range `['original `j', current `j)' is a space while (j != s.size() && !isspace(s[j])) ++j; // if we found some nonwhitespace characters if (i != j) { // copy from `s' starting at `i' and taking `j' `\-' `i' chars *os++ = (s.substr(i, j - i)); i = j; } } } // find all the lines that refer to each word in the input map<string, vector<int> > xref(istream& in) // works // now try to pass the template function as an argument to function - what do i put for templated type? //map<string, vector<int> > xref(istream& in, void find_words(vector<string, typedef Out) = split) #LINE 1# { string line; int line_number = 0; map<string, vector<int> > ret; // read the next line while (getline(in, line)) { ++line_number; // break the input line into words vector<string> words; // works // #LINE 2# split(line, back_inserter(words)); // #LINE 3# //find_words(line, back_inserter(words)); // #LINE 4# attempting to use find_words as an argument to function // remember that each word occurs on the current line for (vector<string>::const_iterator it = words.begin(); it != words.end(); ++it) ret[*it].push_back(line_number); } return ret; } int main() { cout << endl << "Enter lines of text, followed by EOF (^Z):" << endl; // call `xref' using `split' by default map<string, vector<int> > ret = xref(cin); // write the results for (map<string, vector<int> >::const_iterator it = ret.begin(); it != ret.end(); ++it) { // write the word cout << it->first << " occurs on line(s): "; // followed by one or more line numbers vector<int>::const_iterator line_it = it->second.begin(); cout << *line_it; // write the first line number ++line_it; // write the rest of the line numbers, if any while (line_it != it->second.end()) { cout << ", " << *line_it; ++line_it; } // write a new line to separate each word from the next cout << endl; } keep_window_open(); return 0; } As you can see, the split function is a template function to handle various types of output iterators as desired. My problem comes when I try to generalize the xref function by passing in the templated split function as an argument. I can't seem to get the type correct. So my question is, can you pass a template function to another function as an argument, and if so, do you have to declare all types before passing it? Or can the compiler infer the types from the way the templated function is used in the body? To demonstrate the errors I get, comment out the existing xref function header, and uncomment the alternate header I'm trying to get working (just below the following commment line.) Also comment the lines tagged LINE 2 and LINE 3 and uncomment LINE 4, which is attempting to use the argument find_words (which defaults to split.) Thanks for any feedback!

    Read the article

  • gcc problem with explicit template instantiation?

    - by steve jaffe
    It is my understanding that either a declaration or typedef of a specialization ought to cause a template class to be instantiated, but this does not appear to be happening with gcc. E.g. I have a template class, template class Foo {}; I write class Foo<double>; or typedef Foo<double> DoubleFoo; but after compilation the symbol table of the resulting object file does not contain the members of Foo. If I create an instance: Foo<double> aFoo; then of course the symbols are all generated. Has anyone else experienced this and/or have an explanation?

    Read the article

  • Twig Template For loop Results

    - by user981480
    I am trying to print out a the contents of an array but am not getting the expected results. any help is much appreciated: PHP code: $list[1]['first_name'] = 'Joe'; $list[1]['last_name'] = 'Smith'; $list[2]['first_name'] = 'John'; $list[2]['last_name'] = 'brand'; $data = array( 'customer' => $list ); echo $template->render($data); Template Markup: <html> <head><title>My first Twig template!</title></head> <body> {% for person in customer %} {{ person.first_name }} {% endfor %} </body> RESULTS: Array ( [first_name] = Joe [last_name] = Smith ) first_name Joe Array ( [first_name] = John [last_name] = brand ) first_name John

    Read the article

  • template style matrix implementation in c

    - by monkeyking
    From time to time I use the following code for generating a matrix style datastructure typedef double myType; typedef struct matrix_t{ |Compilation started at Mon Apr 5 02:24:15 myType **matrix; | size_t x; |gcc structreaderGeneral.c -std=gnu99 -lz size_t y; | }matrix; |Compilation finished at Mon Apr 5 02:24:15 | | matrix alloc_matrix(size_t x, size_t y){ | if(0) | fprintf(stderr,"\t-> Alloc matrix with dim (%lu,%lu) byteprline=%lu bytetotal:%l\| u\n",x,y,y*sizeof(myType),x*y*sizeof(myType)); | | myType **m = (myType **)malloc(x*sizeof(myType **)); | for(size_t i=0;i<x;i++) | m[i] =(myType *) malloc(y*sizeof(myType *)); | | matrix ret; | ret.x=x; | ret.y=y; | ret.matrix=m; | return ret; | } And then I would change my typedef accordingly if I needed a different kind of type for the entries in my matrix. Now I need 2 matrices with different types, an easy solution would be to copy/paste the code, but is there some way to do a template styled implementation. Thanks

    Read the article

  • Why do bind1st and bind2nd require constant function objects?

    - by rlbond
    So, I was writing a C++ program which would allow me to take control of the entire world. I was all done writing the final translation unit, but I got an error: error C3848: expression having type 'const `anonymous-namespace'::ElementAccumulator<T,BinaryFunction>' would lose some const-volatile qualifiers in order to call 'void `anonymous-namespace'::ElementAccumulator<T,BinaryFunction>::operator ()(const point::Point &,const int &)' with [ T=SideCounter, BinaryFunction=std::plus<int> ] c:\program files (x86)\microsoft visual studio 9.0\vc\include\functional(324) : while compiling class template member function 'void std::binder2nd<_Fn2>::operator ()(point::Point &) const' with [ _Fn2=`anonymous-namespace'::ElementAccumulator<SideCounter,std::plus<int>> ] c:\users\****\documents\visual studio 2008\projects\TAKE_OVER_THE_WORLD\grid_divider.cpp(361) : see reference to class template instantiation 'std::binder2nd<_Fn2>' being compiled with [ _Fn2=`anonymous-namespace'::ElementAccumulator<SideCounter,std::plus<int>> ] I looked in the specifications of binder2nd and there it was: it took a const AdaptibleBinaryFunction. So, not a big deal, I thought. I just used boost::bind instead, right? Wrong! Now my take-over-the-world program takes too long to compile (bind is used inside a template which is instantiated quite a lot)! At this rate, my nemesis is going to take over the world first! I can't let that happen -- he uses Java! So can someone tell me why this design decision was made? It seems like an odd decision. I guess I'll have to make some of the elements of my class mutable for now...

    Read the article

  • C++ explicit template specialization of templated constructor of templated class

    - by Victor Liu
    I have a class like template <class T> struct A{ template <class U> A(U u); }; I would like to write an explicit specialization of this for a declaration like A<int>::A(float); In the following test code, if I comment out the specialization, it compiles with g++. Otherwise, it says I have the wrong number of template parameters: #include <iostream> template <class T> struct A{ template <class U> A(T t, U *u){ *u += U(t); } }; template <> template <> A<int>::A<int,float>(int t, float *u){ *u += U(2*t); } int main(){ float f = 0; int i = 1; A<int>(i, &f); std::cout << f << std::endl; return 0; }

    Read the article

  • templete class c++

    - by inna karpasas
    hi! i try to design a templete for my universty project. i wrote the follwing cod: #ifndef _LinkedList_H_ #define _LinkedList_H_ #include "Link.h" #include <ostream> template <class L>//error one class LinkedList { private: Link<L> *pm_head; Link<L> * pm_tail; int m_numOfElements; Link<L>* FindLink(L * dataToFind); public: LinkedList(); ~LinkedList(); int GetNumOfElements(){return m_numOfElements;} bool Add( L * data); L *FindData(L * data); template <class L> friend ostream & operator<<(ostream& os,const LinkedList<L> listToprint);//error two L* GetDataOnTop(); bool RemoveFromHead(); L* Remove(L * toRemove); this templete uses the link class templete #ifndef _Link_H_ #define _Link_H_ template <class T>//error 3 class Link { private: T* m_data; Link* m_next; Link* m_prev; public: Link(T* data); ~Link(void); bool Link::operator ==(const Link& other)const; /*getters*/ Link* GetNext()const {return m_next;} Link* GetPrev()const {return m_prev;} T* GetData()const {return m_data;} //setters void SetNext(Link* next) {m_next = next;} void SetPrev(Link* prev) {m_prev = prev;} void SetData(T* data) {m_data = data;} }; error one: shadows template parm class L' error two:declaration ofclass L' error three: shadows template parm `class T' i dont understand what is the problem. i can relly usr your help thank you :)

    Read the article

  • Array of templated structs

    - by Jakub Mertlik
    I have structs templated by int derived from a Base struct. struct Base { int i; double d; }; template< int N > struct Derv : base { static const int mN = N; }; I need to make an array of Derv< N where N can vary for each struct in that array. I know C/C++ does not allow arrays of objects of different types, but is there a way around this? I was thinking of separating the type information somehow (hints like pointers to Base struct or usage of union spring to my mind, but with all of these I don't know how to store the type information of each array element for usage DURING COMPILE TIME). As you can see, the memory pattern of each Derv< N is the same. I need to access the type of each array element for template specialization later in my code. The general aim of this all is to have a compile-time dispatch mechanism without the need to do a runtime "type switch" somewhere in the code. Thank you.

    Read the article

  • Is this call to a function object inlined?

    - by dehmann
    In the following code, Foo::add calls a function via a function object: struct Plus { inline int operator()(int x, int y) const { return x + y; } }; template<class Fct> struct Foo { Fct fct; Foo(Fct f) : fct(f) {} inline int add(int x, int y) { return fct(x,y); // same efficiency adding directly? } }; Is this the same efficiency as calling x+y directly in Foo::add? In other words, does the compiler typically directly replace fct(x,y) with the actual call, inlining the code, when compiling with optimizations enabled?

    Read the article

  • How do I define a template class and divide it into multiple files?

    - by hkBattousai
    I have written a simple template class for test purpose. It compiles without any errors, but when I try to use it in main(), it give some linker errors. main.cpp #include <iostream> #include "MyNumber.h" int wmain(int argc, wchar_t * argv[]) { MyNumber<float> num; num.SetValue(3.14); std::cout << "My number is " << num.GetValue() << "." << std::endl; system("pause"); return 0; } MyNumber.h #pragma once template <class T> class MyNumber { public: MyNumber(); ~MyNumber(); void SetValue(T val); T GetValue(); private: T m_Number; }; MyNumber.cpp #include "MyNumber.h" template <class T> MyNumber<T>::MyNumber() { m_Number = static_cast<T>(0); } template <class T> MyNumber<T>::~MyNumber() { } template <class T> void MyNumber<T>::SetValue(T val) { m_Number = val; } template <class T> T MyNumber<T>::GetValue() { return m_Number; } When I build this code, I get the following linker errors: Error 7 Console Demo C:\Development\IDE\Visual Studio 2010\SAVE\Grand Solution\X64\Debug\Console Demo.exe 1 error LNK1120: 4 unresolved externals Error 3 Console Demo C:\Development\IDE\Visual Studio 2010\SAVE\Grand Solution\Console Demo\main.obj error LNK2019: unresolved external symbol "public: __cdecl MyNumber::~MyNumber(void)" (??1?$MyNumber@M@@QEAA@XZ) referenced in function wmain Error 6 Console Demo C:\Development\IDE\Visual Studio 2010\SAVE\Grand Solution\Console Demo\main.obj error LNK2019: unresolved external symbol "public: __cdecl MyNumber::MyNumber(void)" (??0?$MyNumber@M@@QEAA@XZ) referenced in function wmain Error 4 Console Demo C:\Development\IDE\Visual Studio 2010\SAVE\Grand Solution\Console Demo\main.obj error LNK2019: unresolved external symbol "public: float __cdecl MyNumber::GetValue(void)" (?GetValue@?$MyNumber@M@@QEAAMXZ) referenced in function wmain Error 5 Console Demo C:\Development\IDE\Visual Studio 2010\SAVE\Grand Solution\Console Demo\main.obj error LNK2019: unresolved external symbol "public: void __cdecl MyNumber::SetValue(float)" (?SetValue@?$MyNumber@M@@QEAAXM@Z) referenced in function wmain But, if I leave main() empty, I don't get any linker errors. What is wrong with my template class? What am I doing wrong?

    Read the article

  • In the following implementation of static_strlen, why are the & and parentheses around str necessary

    - by Ben
    If I change the type to const char str[Len], I get the following error: error: no matching function for call to ‘static_strlen(const char [5])’ Am I correct that static_strlen expects an array of const char references? My understanding is that arrays are passed as pointers anyway, so what need is there for the elements to be references? Or is that interpretation completely off-the-mark? #include <iostream> template <size_t Len> size_t static_strlen(const char (&str)[Len]) { return Len - 1; } int main() { std::cout << static_strlen("oyez") << std::endl; return 0; }

    Read the article

  • I have made two template classes,could any one tell me if these things are useful?

    - by soul
    Recently i made two template classes,according to the book "Modern C++ design". I think these classes are useful but no one in my company agree with me,so could any one tell me if these things are useful? The first one is a parameter wrapper,it can package function paramters to a single dynamic object.It looks like TypeList in "Modern C++ design". You can use it like this: some place of your code: int i = 7; bool b = true; double d = 3.3; CParam *p1 = CreateParam(b,i); CParam *p2 = CreateParam(i,b,d); other place of your code: int i = 0; bool b = false; double d = 0.0; GetParam(p1,b,i); GetParam(p2,i,b,d); The second one is a generic callback wrapper,it has some special point compare to other wrappers: 1.This template class has a dynamic base class,which let you use a single type object represent all wrapper objects. 2.It can wrap the callback together with it's parameters,you can excute the callback sometimes later with the parameters. You can use it like this: somewhere of your code: void Test1(int i) { } void Test2(bool b,int i) { } CallbackFunc * p1 = CreateCallback(Test1,3); CallbackFunc * p2 = CreateCallback(Test2,false,99); otherwhere of your code: p1->Excute(); p2->Excute(); Here is a part of the codes: parameter wrapper: class NullType; struct CParam { virtual ~CParam(){} }; template<class T1,class T2> struct CParam2 : public CParam { CParam2(T1 &t1,T2 &t2):v1(t1),v2(t2){} CParam2(){} T1 v1; T2 v2; }; template<class T1> struct CParam2<T1,NullType> : public CParam { CParam2(T1 &t1):v1(t1){} CParam2(){} T1 v1; }; template<class T1> CParam * CreateParam(T1 t1) { return (new CParam2<T1,NullType>(t1)); } template<class T1,class T2> CParam * CreateParam(T1 t1,T2 t2) { return (new CParam2<T1,T2>(t1,t2)); } template<class T1,class T2,class T3> CParam * CreateParam(T1 t1,T2 t2,T3 t3) { CParam2<T2,T3> t(t2,t3); return new CParam2<T1,CParam2<T2,T3> >(t1,t); } template<class T1> void GetParam(CParam *p,T1 &t1) { PARAM1(T1)* p2 = dynamic_cast<CParam2<T1,NullType>*>(p); t1 = p2->v1; } callback wrapper: #define PARAM1(T1) CParam2<T1,NullType> #define PARAM2(T1,T2) CParam2<T1,T2> #define PARAM3(T1,T2,T3) CParam2<T1,CParam2<T2,T3> > class CallbackFunc { public: virtual ~CallbackFunc(){} virtual void Excute(void){} }; template<class T> class CallbackFunc2 : public CallbackFunc { public: CallbackFunc2():m_b(false){} CallbackFunc2(T &t):m_t(t),m_b(true){} T m_t; bool m_b; }; template<class M,class T> class StaticCallbackFunc : public CallbackFunc2<T> { public: StaticCallbackFunc(M m):m_m(m){} StaticCallbackFunc(M m,T t):CallbackFunc2<T>(t),m_m(m){} virtual void Excute(void){assert(CallbackFunc2<T>::m_b);CallMethod(CallbackFunc2<T>::m_t);} private: template<class T1> void CallMethod(PARAM1(T1) &t){m_m(t.v1);} template<class T1,class T2> void CallMethod(PARAM2(T1,T2) &t){m_m(t.v1,t.v2);} template<class T1,class T2,class T3> void CallMethod(PARAM3(T1,T2,T3) &t){m_m(t.v1,t.v2.v1,t.v2.v2);} private: M m_m; }; template<class M> class StaticCallbackFunc<M,void> : public CallbackFunc { public: StaticCallbackFunc(M method):m_m(method){} virtual void Excute(void){m_m();} private: M m_m; }; template<class C,class M,class T> class MemberCallbackFunc : public CallbackFunc2<T> { public: MemberCallbackFunc(C *pC,M m):m_pC(pC),m_m(m){} MemberCallbackFunc(C *pC,M m,T t):CallbackFunc2<T>(t),m_pC(pC),m_m(m){} virtual void Excute(void){assert(CallbackFunc2<T>::m_b);CallMethod(CallbackFunc2<T>::m_t);} template<class T1> void CallMethod(PARAM1(T1) &t){(m_pC->*m_m)(t.v1);} template<class T1,class T2> void CallMethod(PARAM2(T1,T2) &t){(m_pC->*m_m)(t.v1,t.v2);} template<class T1,class T2,class T3> void CallMethod(PARAM3(T1,T2,T3) &t){(m_pC->*m_m)(t.v1,t.v2.v1,t.v2.v2);} private: C *m_pC; M m_m; }; template<class T1> CallbackFunc *CreateCallback(CallbackFunc *p,T1 t1) { CParam2<T1,NullType> t(t1); return new StaticCallbackFunc<CallbackFunc *,CParam2<T1,NullType> >(p,t); } template<class C,class T1> CallbackFunc *CreateCallback(C *pC,void(C::*pF)(T1),T1 t1) { CParam2<T1,NullType>t(t1); return new MemberCallbackFunc<C,void(C::*)(T1),CParam2<T1,NullType> >(pC,pF,t); } template<class T1> CParam2<T1,NullType> CreateCallbackParam(T1 t1) { return CParam2<T1,NullType>(t1); } template<class T1> void ExcuteCallback(CallbackFunc *p,T1 t1) { CallbackFunc2<CParam2<T1,NullType> > *p2 = dynamic_cast<CallbackFunc2<CParam2<T1,NullType> > *>(p); p2->m_t.v1 = t1; p2->m_b = true; p->Excute(); }

    Read the article

  • C++ adding friend to a template class in order to typecast

    - by user1835359
    I'm currently reading "Effective C++" and there is a chapter that contains code similiar to this: template <typename T> class Num { public: Num(int n) { ... } }; template <typename T> Num<T> operator*(const Num<T>& lhs, const Num<T>& rhs) { ... } Num<int> n = 5 * Num<int>(10); The book says that this won't work (and indeed it doesn't) because you can't expect the compiler to use implicit typecasting to specialize a template. As a soluting it is suggested to use the "friend" syntax to define the function inside the class. //It works template <typename T> class Num { public: Num(int n) { ... } friend Num operator*(const Num& lhs, const Num& rhs) { ... } }; Num<int> n = 5 * Num<int>(10); And the book suggests to use this friend-declaration thing whenever I need implicit conversion to a template class type. And it all seems to make sense. But why can't I get the same example working with a common function, not an operator? template <typename T> class Num { public: Num(int n) { ... } friend void doFoo(const Num& lhs) { ... } }; doFoo(5); This time the compiler complaints that he can't find any 'doFoo' at all. And if i declare the doFoo outside the class, i get the reasonable mismatched types error. Seems like the "friend ..." part is just being ignored. So is there a problem with my understanding? What is the difference between a function and an operator in this case?

    Read the article

  • C++ MPL or_, and_ implementations

    - by KRao
    Hi, I am trying to read the boost headers to figure out how they managed to implement the or_<...> and and_<...> metafunctions so that: 1) They can have an arbitrary number of arguments (ok, say up to 5 arguments) 2) They have short circuit behavior, for example: or_<false_,true_,...> does not instantiate whatever is after true_ (so it can also be declared but not defined) Unfortunately the pre-processor metaprogramming is making my task impossible for me :P Thank you in advance for any help/suggestion.

    Read the article

  • Using Page anchors on Google AppEngine?

    - by codingJoe
    I would like to have AppEngine render an html page that auto scrolls to an html anchor point. I'm not how and where to put the that type of instruction. template_values = { 'foo' : 'foo', 'bar': 'bar', 'anchor' : '#MyPageAnchor' # ?? Something like this... } path = os.path.join(os.path.dirname(__file__), fileName) self.response.out.write(template.render(path, template_values)) Is this possible? How do I accomplish this?

    Read the article

  • C++ -- typedef "inside" template arguments?

    - by redmoskito
    Imagine I have a template function like this: template<Iterator> void myfunc(Iterator a, Iterator::value_type b) { ... } Is there a way to declare a typedef for Iterator::valuetype that I can use in the function signature? For example: template< typename Iterator, typedef Iterator::value_type type> void myfunc(Iterator a, type b) { ... } Thus far, I've resorted to using default template arguments and Boost concept checking to ensure the default is always used: template< typename Iterator, typename type = Iterator::value_type > void myfunc(Iterator a, type b) { BOOST_STATIC_ASSERT(( boost::type_traits::is_same< typename Iterator::value_type, type >::value )); ... } ...but it would be nice if there was support in the language for this type of thing.

    Read the article

  • Best way to manage a header navigation menu from within a template?

    - by Stefan Kendall
    I'm looking to put navigation in my GSP template, and I would like to set the active class on the navigation elements for each respective page. What's the best way to do this? I have several .gsp views merging with a single template that looks like this: <div id="bd" role="main"> <div role="navigation" class="yui-g"> <ul id="nav"><a href="index.gsp"><li class="active">Home</li></a><a href = "products.gsp"><li>Products</li></a><a href = "contacts.gsp"><li>Contact</li></a></ul> </div> <g:layoutBody/> </div>

    Read the article

  • Class template specializations with shared functionality

    - by Thomas
    I'm writing a simple maths library with a template vector type: template<typename T, size_t N> class Vector { public: Vector<T, N> &operator+=(Vector<T, N> const &other); // ... more operators, functions ... }; Now I want some additional functionality specifically for some of these. Let's say I want functions x() and y() on Vector<T, 2> to access particular coordinates. I could create a partial specialization for this: template<typename T> class Vector<T, 3> { public: Vector<T, 3> &operator+=(Vector<T, 3> const &other); // ... and again all the operators and functions ... T x() const; T y() const; }; But now I'm repeating everything that already existed in the generic template. I could also use inheritance. Renaming the generic template to VectorBase, I could do this: template<typename T, size_t N> class Vector : public VectorBase<T, N> { }; template<typename T> class Vector<T, 3> : public VectorBase<T, 3> { public: T x() const; T y() const; }; However, now the problem is that all operators are defined on VectorBase, so they return VectorBase instances. These cannot be assigned to Vector variables: Vector<float, 3> v; Vector<float, 3> w; w = 5 * v; // error: no conversion from VectorBase<float, 3> to Vector<float, 3> I could give Vector an implicit conversion constructor to make this possible: template<typename T, size_t N> class Vector : public VectorBase<T, N> { public: Vector(VectorBase<T, N> const &other); }; However, now I'm converting from Vector to VectorBase and back again. Even though the types are the same in memory, and the compiler might optimize all this away, it feels clunky and I don't really like to have potential run-time overhead for what is essentially a compile-time problem. Is there any other way to solve this?

    Read the article

  • Problem Render backbone collection using Mustache template

    - by RameshVel
    I am quite new to backbone js and Mustache. I am trying to load the backbone collection (Object array) on page load from rails json object to save the extra call . I am having troubles rendering the backbone collection using mustache template. My model & collection are var Item = Backbone.Model.extend({ }); App.Collections.Items= Backbone.Collection.extend({ model: Item, url: '/items' }); and view App.Views.Index = Backbone.View.extend({ el : '#itemList', initialize: function() { this.render(); }, render: function() { $(this.el).html(Mustache.to_html(JST.item_template(),this.collection )); //var test = {name:"test",price:100}; //$(this.el).html(Mustache.to_html(JST.item_template(),test )); } }); In the above view render, i can able to render the single model (commented test obeject), but not the collections. I am totally struck here, i have tried with both underscore templating & mustache but no luck. And this is the Template <li> <div> <div style="float: left; width: 70px"> <a href="#"> <img class="thumbnail" src="http://placehold.it/60x60" alt=""> </a> </div> <div style="float: right; width: 292px"> <h4> {{name}} <span class="price">Rs {{price}}</span></h4> </div> </div> </li> and my object array kind of looks like this

    Read the article

  • Is it ok to dynamic cast "this" as a return value?

    - by Panayiotis Karabassis
    This is more of a design question. I have a template class, and I want to add extra methods to it depending on the template type. To practice the DRY principle, I have come up with this pattern (definitions intentionally omitted): template <class T> class BaseVector: public boost::array<T, 3> { protected: BaseVector<T>(const T x, const T y, const T z); public: bool operator == (const Vector<T> &other) const; Vector<T> operator + (const Vector<T> &other) const; Vector<T> operator - (const Vector<T> &other) const; Vector<T> &operator += (const Vector<T> &other) { (*this)[0] += other[0]; (*this)[1] += other[1]; (*this)[2] += other[2]; return *dynamic_cast<Vector<T> * const>(this); } } template <class T> class Vector : public BaseVector<T> { public: Vector<T>(const T x, const T y, const T z) : BaseVector<T>(x, y, z) { } }; template <> class Vector<double> : public BaseVector<double> { public: Vector<double>(const double x, const double y, const double z); Vector<double>(const Vector<int> &other); double norm() const; }; I intend BaseVector to be nothing more than an implementation detail. This works, but I am concerned about operator+=. My question is: is the dynamic cast of the this pointer a code smell? Is there a better way to achieve what I am trying to do (avoid code duplication, and unnecessary casts in the user code)? Or am I safe since, the BaseVector constructor is private?

    Read the article

< Previous Page | 166 167 168 169 170 171 172 173 174 175 176 177  | Next Page >