Search Results

Search found 5678 results on 228 pages for 'steps'.

Page 171/228 | < Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >

  • SQL SERVER – master Database Log File Grew Too Big

    - by pinaldave
    Couple of the days ago, I received following email and I find this email very interesting and I feel like sharing with all of you. Note: Please read the whole email before providing your suggestions. “Hi Pinal, If you can share these details on your blog, it will help many. We understand the value of the master database and we take its regular back up (everyday midnight). Yesterday we noticed that our master database log file has grown very large. This is very first time that we have encountered such an issue. The master database is in simple recovery mode; so we assumed that it will never grow big; however, we now have a big log file. We ran the following command USE [master] GO DBCC SHRINKFILE (N'mastlog' , 0, TRUNCATEONLY) GO We know this command will break the chains of LSN but as per our understanding; it should not matter as we are in simple recovery model.     After running this, the log file becomes very small. Just to be cautious, we took full backup of the master database right away. We totally understand that this is not the normal practice; so if you are going to tell us the same, we are aware of it. However, here is the question for you? What operation in master database would have caused our log file to grow too large? Thanks, [name and company name removed as per request]“ Here was my response to them: “Hi [name removed], It is great that you are aware of all the right steps and method. Taking full backup when you are not sure is always a good practice. Regarding your question what could have caused your master database log to grow larger, let me try to guess what could have happened. Do you have any user table in the master database? If yes, this is not recommended and also NOT a good practice. If have user tables in master database and you are doing any long operation (may be lots of insert, update, delete or rebuilding them), then it can cause this situation. You have made me curious about your scenario; do revert back. Kind Regards, Pinal” Within few minutes I received reply: “That was it Pinal. We had one of the maintenance task log tables created in the master table, which had many long transactions during the night. We moved it to newly created database named ‘maintenance’, and we will keep you updated.” I was very glad to receive the email. I do not suggest that any user table should be created in the master database. It should be left alone from user objects. Now here is the question for you – can you think of any other reason for master log file growth? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Share Files and Folders and Internet between Guest OS and the Host in Hyper-V

    - by Manesh Karunakaran
    For those who are familiar with the VirtualPC, vmWare and VirtualBox environments will be quite irritated to find out that there is no direct way to share files from the Host machine to the Virtualized guest environment. This is a good thing from a CIO perspective because there’s excellent isolation for the virtualized environments this way, but for the developer junkies like us, this is an irritant, especially for those who have nuked their Windows 7 OS and installed Windows Server 2008 R2 for all the the SharePoint friendliness that it offers. Here’s a quick 5 minutes howto on Enabling Shared Folders and Internet Access for the Hyper-V images, for those who are still struggling with this. Step 1: Add a Virtual Network Adapter to your Guest OS For this, shut down the guest machine, go to its settings and add a Virtual Network Adapter as given in the images below     Step 2: Enable Virtual Networking in Hyper-V   Setting this up is very easy. In the Hyper-V Manager, under Actions (right panel), click the Virtual Network Manager. In the Virtual Network Manager in the Create virtual network panel, select Internal and click the Add button.        At this point if you open Control Panel\Network and Internet\Network Connections you will be able to see the new Network Adapter, Now name it to something meaningful other than Network Adapter X. Now you can add this network to each of your virtual machines, but at this point, unless you assign an IP address in each connection, you won't be able to do much.   Step 3: Enable Internet Connection Sharing so that Guest OS’es also can connect to the internet. To enable ICS follow these steps: Click on the network icon in the tray of your host machine and select Network and Sharing Center. From there click Manage network connections. Select the network adapter that you use to access the Internet. Right click it and select Properties. In the properties dialog select the Sharing tab. On this tab check the box that says "Allow other network users..." and then set the Home networking connection to be the network adapter that was created above (now you see why I said to rename it to something useful). Now your virtual machines that have this network connection will automatically get an IP address and will be able to connect to the Internet (provided your internet connection is working). Because each adapter also gets an automatic address you can now share files and folders between your host and your virtual machines which is important since you can't just drag-and-drop files like you can with Virtual PC.   Step 4: Create a Shared Folder in the Host Machine and use it in the Guest machine. Right click on the folder that you want to Share and select ‘Share with\Specific People’ and specify who all can access the share. Open the Guest OS from Hyper V Navigate to Start > Run and type in the Address of the Share (Or Map a Drive to the Share) Bingo! The Share opens!! :)   Now you can share as many files and folders as you want between the host and the guest, and you also have internet access inside the Virtual machines. Hope that helps.   Technorati Tags: Shared folder,Hyper-V,Share Files,Share files and folders between guest and host,Hyper-V Networking,Share Internet Access in Hyper-V,Internet,Files,Shared folders in Hyper-V

    Read the article

  • AutoFit in PowerPoint: Turn it OFF

    - by Daniel Moth
    Once a feature has shipped, it is very hard to eliminate it from the next release. If I was in charge of the PowerPoint product, I would not hesitate for a second to remove the dreadful AutoFit feature. Fortunately, AutoFit can be turned off on a slide-by-slide basis and, even better, globally: go to the PowerPoint "Options" and under "Proofing" find the "AutoCorrect Options…" button which brings up the dialog where you need to uncheck the last two checkboxes (see the screenshot to the right). AutoFit is the ability for the user to keep hitting the Enter key as they type more and more text into a slide and it magically still fits, by shrinking the space between the lines and then the text font size. It is the root of all slide evil. It encourages people to think of a slide as a Word document (which may be your goal, if you are presenting to execs in Microsoft, but that is a different story). AutoFit is the reason you fall asleep in presentations. AutoFit causes too much text to appear on a slide which by extension causes the following: When the slide appears, the text is so small so it is not readable by everyone in the audience. They dismiss the presenter as someone who does not care for them and then they stop paying attention. If the text is readable, but it is too much (hence the AutoFit feature kicked in when the slide was authored), the audience is busy reading the slide and not paying attention to the presenter. Humans can either listen well or read well at the same time, so when they are done reading they now feel that they missed whatever the speaker was saying. So they "switch off" for the rest of the slide until the next slide kicks in, which is the natural point for them to pick up paying attention again. Every slide ends up with different sized text. The less visual consistency between slides, the more your presentation feels unprofessional. You can do better than dismiss the (subconscious) negative effect a deck with inconsistent slides has on an audience. In contrast, the absence of AutoFit Leads to consistency among all slides in a deck with regards to amount of text and size of said text. Ensures the text is readable by everyone in the audience (presuming the PowerPoint template is designed for the room where the presentation is delivered). Encourages the presenter to create slides with the minimum necessary text to help the audience understand the basic structure, flow, and key points of the presentation. The "meat" of the presentation is delivered verbally by the presenter themselves, which is why they are in the room in the first place. Following on from the previous point, the audience can at a quick glance consume the text on the slide when it appears and then concentrate entirely on the presenter and what they have to say. You could argue that everything above has nothing to do with the AutoFit feature and all to do with the advice to keep slide content short. You would be right, but the on-by-default AutoFit feature is the one that stops most people from seeing and embracing that truth. In other words, the slides are the tool that aids the presenter in delivering their message, instead of the presenter being the tool that advances the slides which hold the message. To get there, embrace terse slides: the first step is to turn off this horrible feature (that was probably introduced due to the misuse of this tool within Microsoft). The next steps are described on my next post. Comments about this post welcome at the original blog.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Q&A: Oracle's Paul Needham on How to Defend Against Insider Attacks

    - by Troy Kitch
    Source: Database Insider Newsletter: The threat from insider attacks continues to grow. In fact, just since January 1, 2014, insider breaches have been reported by a major consumer bank, a major healthcare organization, and a range of state and local agencies, according to the Privacy Rights Clearinghouse.  We asked Paul Needham, Oracle senior director, product management, to shed light on the nature of these pernicious risks—and how organizations can best defend themselves against the threat from insider risks. Q. First, can you please define the term "insider" in this context? A. According to the CERT Insider Threat Center, a malicious insider is a current or former employee, contractor, or business partner who "has or had authorized access to an organization's network, system, or data and intentionally exceeded or misused that access in a manner that negatively affected the confidentiality, integrity, or availability of the organization's information or information systems."  Q. What has changed with regard to insider risks? A. We are actually seeing the risk of privileged insiders growing. In the latest Independent Oracle Users Group Data Security Survey, the number of organizations that had not taken steps to prevent privileged user access to sensitive information had grown from 37 percent to 42 percent. Additionally, 63 percent of respondents say that insider attacks represent a medium-to-high risk—higher than any other category except human error (by an insider, I might add). Q. What are the dangers of this type of risk? A. Insiders tend to have special insight and access into the kinds of data that are especially sensitive. Breaches can result in long-term legal issues and financial penalties. They can also damage an organization's brand in a way that directly impacts its bottom line. Finally, there is the potential loss of intellectual property, which can have serious long-term consequences because of the loss of market advantage.  Q. How can organizations protect themselves against abuse of privileged access? A. Every organization has privileged users and that will always be the case. The questions are how much access should those users have to application data stored in the database, and how can that default access be controlled? Oracle Database Vault (See image) was designed specifically for this purpose and helps protect application data against unauthorized access.  Oracle Database Vault can be used to block default privileged user access from inside the database, as well as increase security controls on the application itself. Attacks can and do come from inside the organization, and they are just as likely to come from outside as attempts to exploit a privileged account.  Using Oracle Database Vault protection, boundaries can be placed around database schemas, objects, and roles, preventing privileged account access from being exploited by hackers and insiders.  A new Oracle Database Vault capability called privilege analysis identifies privileges and roles used at runtime, which can then be audited or revoked by the security administrators to reduce the attack surface and increase the security of applications overall.  For a more comprehensive look at controlling data access and restricting privileged data in Oracle Database, download Needham's new e-book, Securing Oracle Database 12c: A Technical Primer. 

    Read the article

  • Top Tier, A-Game Talent - How to Land em'

    - by GeekAgilistMercenary
    Recently the question came up from a close friend of mine, "will my PhD help me attain a higher income in the north west?"  I had to tell him, that it might get him a little more, but it won't get him in the top income brackets for the occupation.  Another time, a few days later, someone else asked this too.  Then again, I see a job posting that requires a Bachelors Degree and some other nonsense.  The job posting even states they want "A-Game" talent. I am almost shocked at how poorly part of this industry doesn't realize how unimportant a degree is to getting real top tier, a-game talent.  (and yes, I get a little riled up about this matter) You Can't Make Good Software Developers.  No college out there is going to train someone to be in the top 10%, and absolutely not to be in the top 5% of skill levels.  Colleges can NOT do this.  It is up to the individual, and the individual alone.  If top tier talent seems to come from a college, one should check their premise and look at the motivations the individuals have to go to that school.  There is most likely a reason that top tier talent appears to be made there.  The college however, can only guide or assist, but I repeat that "top tier talent is a very individualistic endeavor". Some might say, well a group is needed, support is needed, this and that are needed.  True, an individual needs a support system and a college can provide that, but it generally ends there.  The support group helps, provides a sounding wall, and provides correlation to good ideas for the a-game top tier geek.  But again, the endeavor is the individuals desire. top tier talent is a very individualistic endeavor - Me Hiring Top Tier, A-Game Talent There are a few things when trying to hire this level of game player. The first thing is to not require a degree of any sort.  Sure, it looks good, but it won't dictate anything other than the individual was able to go through the regimented steps of college. List the skills and ideas that you would like to find in an individual.  Think of two people meeting for the first time, what do you want to know about the other individual.  Team fit is absolutely fundamental for top tier talent.  That support group that I mentioned above, top tier talent works best with a solid group of players. Keep your technology up to date, moving forward, and don't bore your top talent if you manage to get it.  If the company slows down, they will leave.  The more valuable they find out they are, the lower tolerance they'll have for this.  For managers, directors, and leaders in an organization this is THE challenge for them. Provide opportunities not just for advancement, but ways for them to advance their knowledge such as training, a book budget, or other means.  Even if some software they want to use isn't used ton the project, get it for them (within reason of course ? couple $100 or even a few $1000 for a good software license to MSDN, Tellerik, or other suite of software is ideal). Don't push them to, and don't let them overwork themselves into burnout.  This, as a leader in an organization is easy to do if one finds themselves actually hiring top talent.  Because top talent just provides results and more results.  But they are human, they will break, don't be the cause of that or you'll lose your talent. For now, that is it from me on this topic, back to the revenue, code, projects, and pushing forward. For the original entry, check out my personal blog with other juicy tech tidbits, rants, raves, and the like. Agilist Mercenary

    Read the article

  • Autoscaling in a modern world&hellip;. Part 4

    - by Steve Loethen
    Now that I have the rules and services XML files in the cloud, it is time to sever the bounds of earth and live totally in the cloud.  I have to host the Autoscaling object in Azure as well, point it to the rules, tell it the management certs and get out of the way. A couple of questions.  Where to host?  The most obvious place to me was a worker role.  A simple, single purpose worker role, doing nothing but watching my app.  Here are the steps I used. 1) Created a project.  Separate project from my web site.  I wanted to be able to run the web in the cloud and the autoscaler local for debugging purposes.  Seemed like the easiest way.  2) Add the Wasabi block to the project. 3) Configure the settings.  I used the same settings used for the console app.  It points to the same web role, uses the same rules file.  4) Make sure the certification needed to manage the role is added to the cert store in the sky (“LocalMachine” and “My” are default locations). I ran the worker role in the local fabric.  It worked.  I then published to the cloud, and verified it worked again.  Here is what my code looked like. public override bool OnStart() { Trace.WriteLine("Set Default Connection Limit", "Information"); // Set the maximum number of concurrent connections ServicePointManager.DefaultConnectionLimit = 12; Trace.WriteLine("Set up configuration change code", "Information"); // set up config CloudStorageAccount.SetConfigurationSettingPublisher((configName, configSetter) => configSetter(RoleEnvironment.GetConfigurationSettingValue(configName))); Trace.WriteLine("Get current diagnostic configuration", "Information"); // Get current diagnostic configuration DiagnosticMonitorConfiguration dmc = DiagnosticMonitor.GetDefaultInitialConfiguration(); Trace.WriteLine("Set Diagnostic Buffer Size", "Information"); // Set Diagnostic Buffer size dmc.Logs.BufferQuotaInMB = 4; Trace.WriteLine("Set log transfer period", "Information"); // Set log transfer period dmc.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(1); Trace.WriteLine("Set log verbosity", "Information"); // Set log filter to verbose dmc.Logs.ScheduledTransferLogLevelFilter = LogLevel.Verbose; Trace.WriteLine("Start the diagnostic monitor", "Information"); // Start the diagnostic monitor DiagnosticMonitor.Start("Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString", dmc); Trace.WriteLine("Get the current Autoscaler from the EntLib Container", "Information"); // Get the current Autoscaler from the EntLib Container scaler = EnterpriseLibraryContainer.Current.GetInstance<Autoscaler>(); Trace.WriteLine("Start the autoscaler", "Information"); // Start the autoscaler scaler.Start(); Trace.WriteLine("call the base class OnStart", "Information"); // call the base class OnStart return base.OnStart(); } public override void OnStop() { Trace.WriteLine("Stop the Autoscaler", "Information"); // Stop the Autoscaler scaler.Stop(); } I did have to turn on some basic logging for wasabi, which will cover in the next post.  This let me figure out that I hadn’t done the certificate step.

    Read the article

  • Non-standard installation (installing Linux from Linux)

    - by Evan Plaice
    So, here's my setup. I have one partition with the newest version installed, a second partition with an older version installed (as a backup just in case), a swap partition that both share, and a boot partition so the bootloader doesn't need to be setup after each upgrade. Partitions: sda1 ext3 /boot sda2 ext4 / (current version) sda3 ext4 / (old version) sda4 swap /swap sda5 ntfs (contains folders symbolically linked to /home on /) So far it has been a very good setup. I can create new boot loaders without screwing it up and adding my personal files into a new install is as simple as creating some symbolic links (the partition is NTFS in case I need to load windows on the system again). Here's the issue. I'd like to be able to drop the install into /distro on the current version and install a new version on / on the old version effectively replacing/upgrading it. The goal is to be able to just swap out new versions as they are released while maintaining redundancy in case I don't like th update. So far I have: downloaded the install.iso created a folder in /distro copied the install.iso into /distro extracted vmlinuz and initrd.lz into /distro Then I modified /boot/grub/menu.lst with the following entry: title Install Linux root (hd0,1) kernel /distro/vmlinuz initrd /distro/initrd.lz vmlinuz loads perfectly but it says it can't find initrd.lz on boot. I have also tried to uncompress the image with: unlzma < initrd.lz > initrd.img And, updating the menu.lst file to match; but that doesn't work either. I'm assuming that vmlinuz (linux kernel) loads, fires up the virtual filesystem by creating a ramdisk (initrd), mounts the iso, and launches the installer. Am I missing something here? Update: First, I wanted to say that the accepted answer would have been the best option if I was doing a normal Ubuntu install. Unfortunately, I was installing Linux Mint (which lacks the script needed to make debootstrap work. So the problem I with the above approach was, I was missing the command that vmlinuz (linux kernel) needed to execute to start boot into LiveCD mode. By looking in the /boot/grub/grub.cfg file I found what I was missing. Although this method will work, it requires that the installation files reside on their own partition. I took the easy route and used unetbootin to drop the LiveCD on a usb drive and booted from that. Like I said before. Debootstrap would have been the ideal solution here. Even though I couldn't use it I wrote down the steps it would've taken to use it. Step One: Format sda3 (the partition with the old copy of linux that's being overwritten) I used gparted to format it as ext4 from within the current linux install. How this is done varies based on what tools you prefer to use. Step Two: Mount the newly formatted partition (we'll call the mount ubuntu for simplicity) sudo mkdir /mnt/ubuntu sudo mount -o -loop /dev/sda3 /mnt/ubuntu Step Three: Get debootstrap sudo apt-get install debootstrap Step Four: Mount the install disk (replace ubuntu.iso with the name if your install disk) sudo mkdir /media/cdrom sudo mount -o loop ~/ubuntu.iso /media/cdrom Step Five: Install the OS using debootstrap (replace fiesty with the version you're installing and amd64 with your processor's architecture) sudo debootstrap --arch amd64 fiesty /mnt/ubuntu file:/media/cdrom The settings here varies. While I loaded debootstrap using an install iso, you can also have debootstrap automatically download and install if with a repository link (While most of these repositories contain debian versions I'm still not clear as to whether Ubuntu has similar repositories). Here a list of the debian package repositories and their mirrors. This is how you'd deploy debootstrap if you were doing it directly from a repository: sudo debootstrap --arch amd64 squeeze /mnt/debian http://ftp.us.debian.org/debian Here's the link that I primarily used to figure this out.

    Read the article

  • Migrating SQL Server Compact Edition (SQL CE) database to SQL Server using Web Matrix

    - by Harish Ranganathan
    One of the things that is keeping us busy is the Web Camps we are delivering across 5 cities.  If you are a reader of this blog, and also attended one of these web camps, there is a good chance that you have seen me since I was there in all the places, so far.  The topics that we cover include Visual Studio 2010 SP1, SQL CE, ASP.NET MVC & HTML5.  Whenever I talk about SQL CE, the immediate response is that, people are wow that Microsoft has shipped a FREE compact edition database, which is an embedded database that can be x-copy deployed.  If you think, well didn’t Microsoft ship SQL Express which is FREE?  The difference is that, SQL Express runs as a service in the machine (if you open SQL Configuration Manager, you can notice that SQL Express is running as a service along with your SQL Server Engine (if you have installed ).  This makes it that, even if you are willing to use SQL Express when you deploy your application, it needs to be installed on the production machine (hosting provider) and it needs to run as a service.  Many hosters don’t allow such services to run on their space. SQL CE comes as a x-Copy deploy-able database with just a few DLLs required to run it on the machine and they don’t even need to be installed in GAC on the production machine.  In fact, if you have Visual Studio 2010 SP1 installed, you can use the “Add Deployable Dependencies” option in Project-Properties and it would detect that SQL CE is something you would probably want to add as a deploy-able dependency for your project.  With that, it bundles the required DLLs as a part of the “_bin_deployableAssemblies” folder.  So your project can be x-Copy deployed and just works fine. However, SQL CE has the limit of 4GB storage space.  Real world applications often require more than just 4GB of data storage and it often turns out that people would like to use SQL CE for development/ramp up stages but would like to migrate to full fledged SQL Server after a while.  So, its only natural that the question arises “How do I move my SQL CE database to SQL Server”  And honestly, it doesn’t come across as a straight forward support.  I was talking to Ambrish Mishra (PM in SQL CE Team, Hyderabad) since I got this question in almost all the places where we talked about SQL CE.   He was kind enough to demonstrate how this can be accomplished using Web Matrix.  Open Web Matrix (Web Matrix can be installed for free from www.microsoft.com/web) and click on “Site from Template” Click on the “Bakery” template (since by default it uses a SQL CE database and has all the required sample data) and click “Ok”. In the project, you can navigate to the Database tab and will be able to find that the Bakery site uses a SQL CE database “bakery.sdf” Select the “bakery.sdf” and you will be able to see the “Migrate” button on the top right Once you click on the “Migrate” button, you will notice that the popup wizard opens up and by default is configured for SQL Express.  You can edit the same to point to your local SQL Server instance, or a remote server. Upon filling in the Server Name, Username and Password, when you click “Ok”, couple of things happen.  1. The database is migrated to SQL Server (local or remote – subject to permissions on remote server).   You can open up SQL Server Management Studio and connect to the server to verify that the “bakery” database exists under “Databases” node. 2. You can also notice that in Web Matrix, when you navigate to the “Files” tab and open up the web.config file, connection string now points to the SQL Server instance (yes, the Migrate button was smart enough to make this change too ) And there it is, your SQL Server Compact Edition database, now migrated to SQL Server!! In a future post, I would explain the steps involved when using Visual Studio. Cheers !!!

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3.5: Node.js relay

    - by Elton Stoneman
    This is an extension to Part 3 in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer In Part 3 I said “there isn't actually a .NET requirement here”, and this post just follows up on that statement. In Part 3 we had an ASP.NET MVC Website making a REST call to an Azure Service Bus service; to show that the REST stuff is really interoperable, in this version we use Node.js to make the secure service call. The code is on GitHub here: IPASBR Part 3.5. The sample code is simpler than Part 3 - rather than code up a UI in Node.js, the sample just relays the REST service call out to Azure. The steps are the same as Part 3: REST call to ACS with the service identity credentials, which returns an SWT; REST call to Azure Service Bus Relay, presenting the SWT; request gets relayed to the on-premise service. In Node.js the authentication step looks like this: var options = { host: acs.namespace() + '-sb.accesscontrol.windows.net', path: '/WRAPv0.9/', method: 'POST' }; var values = { wrap_name: acs.issuerName(), wrap_password: acs.issuerSecret(), wrap_scope: 'http://' + acs.namespace() + '.servicebus.windows.net/' }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); res.on('data', function (d) { var token = qs.parse(d.toString('utf8')); callback(token.wrap_access_token); }); }); req.write(qs.stringify(values)); req.end(); Once we have the token, we can wrap it up into an Authorization header and pass it to the Service Bus call: token = 'WRAP access_token=\"' + swt + '\"'; //... var reqHeaders = { Authorization: token }; var options = { host: acs.namespace() + '.servicebus.windows.net', path: '/rest/reverse?string=' + requestUrl.query.string, headers: reqHeaders }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); response.writeHead(res.statusCode, res.headers); res.on('data', function (d) { var reversed = d.toString('utf8') console.log('svc returned: ' + d.toString('utf8')); response.end(reversed); }); }); req.end(); Running the sample Usual routine to add your own Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files. Build and you should be able to navigate to the on-premise service at http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 and get a string response, going to the service direct. Install Node.js (v0.8.14 at time of writing), run FormatServiceRelay.cmd, navigate to http://localhost:8013/reverse?string=abc123, and you should get exactly the same response but through Node.js, via Azure Service Bus Relay to your on-premise service. The console logs the WRAP token returned from ACS and the response from Azure Service Bus Relay which it forwards:

    Read the article

  • AutoFit in PowerPoint: Turn it OFF

    - by Daniel Moth
    Once a feature has shipped, it is very hard to eliminate it from the next release. If I was in charge of the PowerPoint product, I would not hesitate for a second to remove the dreadful AutoFit feature. Fortunately, AutoFit can be turned off on a slide-by-slide basis and, even better, globally: go to the PowerPoint "Options" and under "Proofing" find the "AutoCorrect Options…" button which brings up the dialog where you need to uncheck the last two checkboxes (see the screenshot to the right). AutoFit is the ability for the user to keep hitting the Enter key as they type more and more text into a slide and it magically still fits, by shrinking the space between the lines and then the text font size. It is the root of all slide evil. It encourages people to think of a slide as a Word document (which may be your goal, if you are presenting to execs in Microsoft, but that is a different story). AutoFit is the reason you fall asleep in presentations. AutoFit causes too much text to appear on a slide which by extension causes the following: When the slide appears, the text is so small so it is not readable by everyone in the audience. They dismiss the presenter as someone who does not care for them and then they stop paying attention. If the text is readable, but it is too much (hence the AutoFit feature kicked in when the slide was authored), the audience is busy reading the slide and not paying attention to the presenter. Humans can either listen well or read well at the same time, so when they are done reading they now feel that they missed whatever the speaker was saying. So they "switch off" for the rest of the slide until the next slide kicks in, which is the natural point for them to pick up paying attention again. Every slide ends up with different sized text. The less visual consistency between slides, the more your presentation feels unprofessional. You can do better than dismiss the (subconscious) negative effect a deck with inconsistent slides has on an audience. In contrast, the absence of AutoFit Leads to consistency among all slides in a deck with regards to amount of text and size of said text. Ensures the text is readable by everyone in the audience (presuming the PowerPoint template is designed for the room where the presentation is delivered). Encourages the presenter to create slides with the minimum necessary text to help the audience understand the basic structure, flow, and key points of the presentation. The "meat" of the presentation is delivered verbally by the presenter themselves, which is why they are in the room in the first place. Following on from the previous point, the audience can at a quick glance consume the text on the slide when it appears and then concentrate entirely on the presenter and what they have to say. You could argue that everything above has nothing to do with the AutoFit feature and all to do with the advice to keep slide content short. You would be right, but the on-by-default AutoFit feature is the one that stops most people from seeing and embracing that truth. In other words, the slides are the tool that aids the presenter in delivering their message, instead of the presenter being the tool that advances the slides which hold the message. To get there, embrace terse slides: the first step is to turn off this horrible feature (that was probably introduced due to the misuse of this tool within Microsoft). The next steps are described on my next post. Comments about this post welcome at the original blog.

    Read the article

  • Silverlight Cream for June 16, 2011 -- #1108

    - by Dave Campbell
    In this Issue: René Schulte, Rajat Jaiswal(-2-), Peter Kuhn, Colin Eberhardt, Kunal Chowdhury(-2-), Beth Massi, Michael Crump, Daniel Vaughan, Chris Rouw, WindowsPhoneGeek, and Jesse Liberty. Above the Fold: Silverlight: "Cubelicious - Silverlight 5 + Balder + Physics + SLARToolkit Augmented Reality = Triple Win!" René Schulte WP7: "Binding the WP7 ProgressIndicator in XAML" Daniel Vaughan LightSwitch: "Adding Static Images and Text on a LightSwitch Screen" Beth Massi Shoutouts: Laurent Bugnion is Proposing a new RelayCommand snippet for MVVM Light V4... read about it and give him some feedback From SilverlightCream.com: Cubelicious - Silverlight 5 + Balder + Physics + SLARToolkit Augmented Reality = Triple Win! René Schulte has a post up about using the SLARToolkit for Silverlight 5 Beta in conjuncion with Balder and Physics ... dang this is cool, check out the video! PSD TO XAML in few easy steps using Expression Blend I'm not a Photoshop person, but apparently Rajat Jaiswal is, and he's demonstrating using Expression Blend to get your PSD file into XAML Its really great feature Silverlight realtime augment toolkit This is a fun post from Rajat Jaiswal... fun to see someone other than René Schulteposting about René's SLARToolkit :) Getting ready for the Windows Phone 7 Exam 70-599 (Part 2) Peter Kuhn has part 2 of his series up on getting ready for the Windows Phone 7 Exam at SilverlightShow Metro In Motion Part #7 – Panorama Prettiness and Opacity Colin Eberhardt has another Metro in Motion up... this one concentrates on the opacity effect when the user slides from item-to-item in Panorama contents Windows Phone 7 (Mango) Tutorial - 13 - What is Tombstoning? Kunal Chowdhury has a couple of posts up... first up is this one on Tombstoning... and if you're just starting with WP7.1, it got easier Windows Phone 7 Tip: Showing and Hiding onscreen keyboard in Emulator Kunal Chowdhury's latest is a great hint if you haven't found it already... how to show/hide the onscreen keyboard in the emulator Adding Static Images and Text on a LightSwitch Screen Beth Massi's latest post is on showing how to display an image or static text such as a logo in a LightSwitch app Displaying PDF Files in Windows Phone 7 Mango Michael Crump responds to reader's questions about displaying a PDF file in WP7.1 with this post using ComponentOne's Studio for Windows Phone CTP Binding the WP7 ProgressIndicator in XAML Daniel Vaughan has a solution to the problem of having to bind the ProgressIndicator in WP7.1 in code-behind... he wrote a ProgressIndicatorProxy and shares it with us!<>/dd> Storing Files in SQL Server using WCF RIA Services and Silverlight – Part 2 Chris Rouw has Part 2 of his Storing Files in SQL Servier using WCF RIA Services and Silverlight up... this one is on uploading and saving files to the database from Silvelright by the user dropping them onto your app. Using SqlMetal to generate Windows Phone Mango Local Database classes OK I'm not too proud to admit I'd never heard of SQLMetal... if you haven't, or even if you have, this post by WindowsPhoneGeek is a good discussion of using it to generate your WP7.1 database classes. Obtaining Email, Address or Phone Number Jesse Liberty's latest is another in his 'Mango From Scratch' series discussing the new tasks to obtain more info from the contact list. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Part 15: Fail a build based on the exit code of a console application

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application When you have a Console Application or a batch file that has errors, the exitcode is set to another value then 0. You would expect that the build would see this and report an error. This is not true however. First we setup the scenario. Add a ConsoleApplication project to your solution you are building. In the Main function set the ExitCode to 1     class Program    {        static void Main(string[] args)        {            Console.WriteLine("This is an error in the script.");            Environment.ExitCode = 1;        }    } Checkin the code. You can choose to include this Console Application in the build or you can decide to add the exe to source control Now modify the Build Process Template CustomTemplate.xaml Add an argument ErrornousScript Scroll down beneath the TryCatch activity called “Try Compile, Test, and Associate Changesets and Work Items” Add an Sequence activity to the template In the Sequence, add a ConvertWorkspaceItem and an InvokeProcess activity (see Part 14: Execute a PowerShell script  for more detailed steps) In the FileName property of the InvokeProcess use the ErrornousScript so the ConsoleApplication will be called. Modify the build definition and make sure that the ErrornousScript is executing the exe that is setting the ExitCode to 1. You have now setup a build definition that will execute the errornous Console Application. When you run it, you will see that the build succeeds. This is not what you want! To solve this, you can make use of the Result property on the InvokeProcess activity. So lets change our Build Process Template. Add the new variables (scoped to the sequence where you run the Console Application) called ExitCode (type = Int32) and ErrorMessage Click on the InvokeProcess activity and change the Result property to ExitCode In the Handle Standard Output of the InvokeProcess add a Sequence activity In the Sequence activity, add an Assign primitive. Set the following properties: To = ErrorMessage Value = If(Not String.IsNullOrEmpty(ErrorMessage), Environment.NewLine + ErrorMessage, "") + stdOutput And add the default BuildMessage to the sequence that outputs the stdOutput Add beneath the InvokeProcess activity and If activity with the condition ExitCode <> 0 In the Then section add a Throw activity and set the Exception property to New Exception(ErrorMessage) The complete workflow looks now like When you now check in the Build Process Template and run the build, you get the following result And that is exactly what we want.   You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • Archiving SQLHelp tweets

    - by jamiet
    #SQLHelp is a Twitter hashtag that can be used by any Twitter user to get help from the SQL Server community. I think its fair to say that in its first year of being it has proved to be a very useful resource however Kendra Little (@kendra_little) made a very salient point yesterday when she tweeted: Is there a way to search the archives of #sqlhelp Trying to remember answer to a question I know I saw a couple months ago http://twitter.com/#!/Kendra_Little/status/15538234184441856 This highlights an inherent problem with Twitter’s search capability – it simply does not reach far enough back in time. I have made steps to remedy that situation by putting into place two initiatives to archive Tweets that contain the #sqlhelp hashtag. The Archivist http://archivist.visitmix.com/ is a free service that, quite simply, archives a history of tweets that contain a given search term by periodically polling Twitter’s search service with that search term and subsequently displaying a dashboard providing an aggregate view of those tweets for things like tweet volume over time, top users and top words (Archivist FAQ). I have set up an archive on The Archivist for “sqlhelp” which you can view at http://archivist.visitmix.com/jamiet/7. Here is a screenshot of the SQLHelp dashboard 36 minutes after I set it up: There is lots of good information in there, including the fact that Jonathan Kehayias (@SQLSarg) is the most active SQLHelp tweeter (I suspect as an answerer rather than a questioner ) and that SSIS has proven to be a rather (ahem) popular subject!! Datasift The Archivist has its uses though for our purposes it has a couple of downsides. For starters you cannot search through an archive (which is what Kendra was after) and nor can you export the contents of the archive for offline analysis. For those functions we need something a bit more heavyweight and for that I present to you Datasift. Datasift is a tool (currently an alpha release) that allows you to search for tweets and provide them through an object called a Datasift stream. That sounds very similar to normal Twitter search though it has one distinct advantage that other Twitter search tools do not – Datasift has access to Twitter’s Streaming API (aka the Twitter Firehose). In addition it has access to a lot of other rather nice features: It provides the Datasift API that allows you to consume the output of a Datasift stream in your tool of choice (bring on my favourite ultimate mashup tool J ) It has a query language (called Filtered Stream Definition Language – FSDL for short) A Datasift stream can consume (and filter) other Datasift streams Datasift can (and does) consume services other than Twitter If I refer to Datasift as “ETL for tweets” then you may get some sort of idea what it is all about. Just as I did with The Archivist I have set up a publicly available Datasift stream for “sqlhelp” at http://datasift.net/stream/1581/sqlhelp. Here is the FSDL query that provides the data: twitter.text contains "sqlhelp" Pretty simple eh? At the current time it provides little more than a rudimentary dashboard but as Datasift is currently an alpha release I think this may be worth keeping an eye on. The real value though is the ability to consume the output of a stream via Datasift’s RESTful API, observe: http://api.datasift.net/stream.xml?stream_identifier=c7015255f07e982afdeebdf1ae6e3c0d&username=jamiet&api_key=XXXXXXX (Note that an api_key is required during the alpha period so, given that I’m not supplying my api_key, this URI will not work for you) Just to prove that a Datasift stream can indeed consume data from another stream I have set up a second stream that further filters the first one for tweets containing “SSIS”. That one is at http://datasift.net/stream/1586/ssis-sqlhelp and here is the FSDL query: rule "414c9845685ff8d2548999cf3162e897" and (interaction.content contains "ssis") When Datasift moves beyond alpha I’ll re-assess how useful this is going to be and post a follow-up blog. @Jamiet

    Read the article

  • Developing an Implementation Plan with Iterations by Russ Pitts

    - by user535886
    Developing an Implementation Plan with Iterations by Russ Pitts  Ok, so you have come to grips with understanding that applying the iterative concept, as defined by OUM is simply breaking up the project effort you have estimated for each phase into one or more six week calendar duration blocks of work. Idea being the business user(s) or key recipient(s) of work product(s) being developed never go longer than six weeks without having some sort of review or prototyping of the work results for an iteration…”think-a-little”, “do-a-little”, and “show-a-little” in a six week or less timeframe…ideally the business user(s) or key recipients(s) are involved throughout. You also understand the OUM concept that you only plan for that which you have knowledge of. The concept further defined, a project plan initially is developed at a high-level, and becomes more detailed as project knowledge grows. Agreeing to this concept means you also have to admit to the fallacy that one can plan with precision beyond six weeks into a project…Anything beyond six weeks is a best guess in most cases when dealing with software implementation projects. Project planning, as defined by OUM begins with the Implementation Plan view, which is a very high-level perspective of the effort estimated for each of the five OUM phases, as well as the number of iterations within each phase. You might wonder how can you predict the number of iterations for each phase at this early point in the project. Remember project planning is not an exact science, and initially is high-level and abstract in nature, and then becomes more detailed and precise as the project proceeds. So where do you start in defining iterations for each phase for a project? The following are three easy steps to initially define the number of iterations for each phase: Step 1 => Start with identifying the known factors… …Prior to starting a project you should know: · The agreed upon time-period for an iteration (e.g 6 weeks, or 4 weeks, or…) within a phase (recommend keeping iteration time-period consistent within a phase, if not for the entire project) · The number of resources available for the project · The number of total number of man-day (effort) you have estimated for each of the five OUM phases of the project · The number of work days for a week Step 2 => Calculate the man-days of effort required for an iteration within a phase… Lets assume for the sake of this example there are 10 project resources, and you have estimated 2,536 man-days of work effort which will need to occur for the elaboration phase of the project. Let’s also assume a week for this project is defined as 5 business days, and that each iteration in the elaboration phase will last a calendar duration of 6 weeks. A simple calculation is performed to calculate the daily burn rate for a single iteration, which produces a result of… ((Number of resources * days per week) * duration of iteration) = Number of days required per iteration ((10 resources * 5 days/week) * 6 weeks) = 300 man days of effort required per iteration Step 3 => Calculate the number of iterations that can occur within a phase Next calculate the number of iterations that can occur for the amount of man-days of effort estimated for the phase being considered… (number of man-days of effort estimated / number of man-days required per iteration) = # of iterations for phase (2,536 man-days of estimated effort for phase / 300 man days of effort required per iteration) = 8.45 iterations, which should be rounded to a whole number such as 9 iterations* *Note - It is important to note this is an approximate calculation, not an exact science. This particular example is a simple one, which assumes all resources are utilized throughout the phase, including tech resources, etc. (rounding down or up to a whole number based on project factor considerations). It is also best in many cases to round up to higher number, as this provides some calendar scheduling contingency.

    Read the article

  • Integrating JavaFX Scene Builder in the IDEs

    - by Jerome Cambon
    I experienced recently using Scene Builder from Netbeans, Eclipse and IntelliJ IDEA. As you may know, Scene Builder is a standalone tool, that can be used independently of any IDE. But it can be very convenient to use it with your favorite IDE, for instance start it by double-clicking on an FXML file, or run samples delivered with Scene Builder.  I'm sharing here with you few tweaks that I had to do for a better integration. Scene Builder 1.1 Developer Preview should be installed before doing the tweaks. The steps below have been done on Windows 7. It should be very similar on both Mac OS and Linux. Please tell me if you find any issue on one of these 2 platforms. Netbeans 7.3 Netbeans 7.3 can be downloaded from here. Creating a New FXML project Part of the JavaFx projects, Netbeans allows to create a 'JavaFX FXML Application', that creates a JavaFx project based on FXML description. The FXML file will be editable with Scene Builder. Starting Scene Builder from Netbeans If SceneBuilder 1.1 is installed, Netbeans will discover it automatically.In case of issue, one can open the Options panel, Java section, JavaFx tab. Scene Builder home should appear here. You can then either Open the FXML file with Scene Builder, or edit it with the Netbeans FXML editor : When 'Open' is selected, Scene Builder appears on top of the Netbeans window : When 'Edit' is selected, the FXML is opened in the Netbeans FXML editor, which support syntax highlighting and completion : Using Scene Builder Samples Scene Builder provides Netbeans projects, that can be opened/run directly : Eclipse 4.2.1 + e(fx)clipse 0.1.1 JavaFX integration in Eclipse has been done with the e(fx)clipse plugin. A distribution bundle containing Eclipse and e(fx)clipse is provided here. Creating New FXML project All the JavaFX-related projects can be found in 'Other' section : First create a new JavaFX project: Enter the project name (Test here). JavaFX delivery will be found in the JRE. Then, create a 'New FXML Document': Enter the FXML file name (Sample here). You may also want to choose the FXML document root element (AnchorPane by default). Dynamic root is for advanced users which want to manage custom types. Starting Scene Builder from Eclipse Once created, you can then either Open the FXML file with Scene Builder, or Open it in the Eclipse FXML editor : Using Scene Builder Samples from Eclipse To use Scene Builder samples, first create a new JavaFX Project (from 'Other' section): Then, on the next panel, 'Link additionnal source': … and select the source directory of a Scene Builder example : HelloWorld here (the parent directory of the java package should be selected).Then, choose a 'Folder name' for your sample: You can now run the Scene Builder example by right-clicking the Main.java source file: IntelliJ IDEA 11.1.3 IntelliJ IDEA Community Edition can be downloaded from here. IntelliJ IDEA has no specific JavaFX integration. Creating New IntelliJ project from existing source Since IntelliJ has no JavaFX project knowledge, we are using the Scene Builder samples as a starting point. We are going to create a new Java project from the HelloWorld sample: Then, click twice on 'Next' (nothing to change), then 'Finish'. The 'HelloWorld' project is created. Starting Scene Builder from IntelliJ We need to tell the IDE that FXML files are opened with an external application. Then, the OS file association will be used. To do this, open the File->Settings panel. Then, select 'File Types' and 'Files opened in associated applications'. And add a new wildcard : '*.fxml' : Now, from the HelloWorld project, you can double-click on HelloWorld.fxml : Scene Builder window appears on top of the IntelliJ window : Using Scene Builder Samples from IntelliJ We need to tell IntelliJ that the fxml files must be copied in the build directory.To do that, from the HelloWorld directory, open the 'idea' section, and edit the 'compiler.xml' file. We need to add an '*.fxml' entry: Then, you can run the sample from HelloWorld project, by right-clicking the Main class:

    Read the article

  • RPi and Java Embedded GPIO: Writing Java code to blink LED

    - by hinkmond
    So, you've followed the previous steps to install Java Embedded on your Raspberry Pi ?, you went to Fry's and picked up some jumper wires, LEDs, and resistors ?, you hooked up the wires, LED, and resistor the the correct pins ?, and now you want to start programming in Java on your RPi? Yes? ???????! OK, then... Here we go. You can use the following source code to blink your first LED on your RPi using Java. In the code you can see that I'm not using any complicated gpio libraries like wiringpi or pi4j, and I'm not doing any low-level pin manipulation like you can in C. And, I'm not using python (hell no!). This is Java programming, so we keep it simple (and more readable) than those other programming languages. See: Write Java code to do this In the Java code, I'm opening up the RPi Debian Wheezy well-defined file handles to control the GPIO ports. First I'm resetting everything using the unexport/export file handles. (On the RPi, if you open the well-defined file handles and write certain ASCII text to them, you can drive your GPIO to perform certain operations. See this GPIO reference). Next, I write a "1" then "0" to the value file handle of the GPIO0 port (see the previous pinout diagram). That makes the LED blink. Then, I loop to infinity. Easy, huh? import java.io.* /* * Java Embedded Raspberry Pi GPIO app */ package jerpigpio; import java.io.FileWriter; /** * * @author hinkmond */ public class JerpiGPIO { static final String GPIO_OUT = "out"; static final String GPIO_ON = "1"; static final String GPIO_OFF = "0"; static final String GPIO_CH00="0"; /** * @param args the command line arguments */ public static void main(String[] args) { FileWriter commandFile; try { /*** Init GPIO port for output ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); // Reset the port unexportFile.write(GPIO_CH00); unexportFile.flush(); // Set the port for use exportFile.write(GPIO_CH00); exportFile.flush(); // Open file handle to port input/output control FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/direction"); // Set port for output directionFile.write(GPIO_OUT); directionFile.flush(); /*--- Send commands to GPIO port ---*/ // Opne file handle to issue commands to GPIO port commandFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/value"); // Loop forever while (true) { // Set GPIO port ON commandFile.write(GPIO_ON); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); // Set GPIO port OFF commandFile.write(GPIO_OFF); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); } } catch (Exception exception) { exception.printStackTrace(); } } } Hinkmond

    Read the article

  • How do I deal with a third party application that has embedded hints that result in a sub-optimal execution plan in my environment?

    - by Maria Colgan
    I have gotten many variations on this question recently as folks begin to upgrade to Oracle Database 11g and there have been several posts on this blog and on others describing how to use SQL Plan Management (SPM) so that a non-hinted SQL statement can use a plan generated with hints. But what if the hint is supplied in the third party application and is causing performance regressions on your system? You can actually use a very similar technique to the ones shown before but this time capture the un-hinted plan and have the hinted SQL statement use that plan instead. Below is an example that demonstrates the necessary steps. 1. We will begin by running the hinted statement 2. After examining the execution plan we can see it is suboptimal because of a bad join order. 3. In order to use SPM to correct the problem we must create a SQL plan baseline for the statement. In order to create a baseline we will need the SQL_ID for the hinted statement. Easy place to get it is in V$SQL. 4. A SQL plan baseline can be created using a SQL_ID and DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE. This will capture the existing plan for this SQL_ID from the shared pool and store in the SQL plan baseline. 5. We can check the SQL plan baseline got created successfully by querying DBA_SQL_PLAN_BASELINES. 6. When you manually create a SQL plan baseline the first plan added is automatically accepted and enabled. We know that the hinted plan is poorly performing plan so we will disable it using DBMS_SPM.ALTER_SQL_PLAN_BASELINE. Disabling the plan tells the optimizer that this plan not a good plan, however since there is no alternative plan at this point the optimizer will still continue to use this plan until we provide a better one. 7. Now let's run the statement without the hint. 8. Looking at the execution plan we can see that the join order is different. The plan without the hint also has a lower cost (3X lower), which indicates it should perform better. 9. In order to map the un-hinted plan to the hinted SQL statement we need to add the plan to the SQL plan baseline for the hinted statement. We can do this using DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE but we will need the SQL_ID and  PLAN_HASH_VALUE for the non-hinted statement, which we can find in V$SQL. 10. Now we can add the non-hinted plan to the SQL plan baseline of the hinted SQL statement using DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE. This time we need to pass a few more arguments. We will use the SQL_ID and PLAN_HASH_VALUE of the non-hinted statement but the SQL_HANDLE of the hinted statement. 11. The SQL plan baseline for our statement now has two plans. But only the newly added plan (SQL_PLAN_gbpcg3f67pc788a6d8911) is enabled and accepted. This tells the Optimizer that this is the plan it should use for this statement. We can confirm that the correct plan (non-hinted) will be selected for the statement from now on by re-executing the hinted statement and checking its execution plan.

    Read the article

  • BIP BIServer Query Debug

    - by Tim Dexter
    With some help from Bryan, I have uncovered a way of being able to debug or at least log what BIServer is doing when BIP sends it a query request. This is not for those of you querying the database directly but if you are using the BIServer and its datamodel to fetch data for a BIP report. If you have written or used the query builder against BIServer and when you run the report it chokes with a cryptic message, that you have no clue about, read on. When BIP runs a piece of BIServer logical SQL to fetch data. It does not appear to validate it, it just passes it through, so what is BIServer doing on its end? As you may know, you are not writing regular physical sql its actually logical sql e.g. select Jobs."Job Title" as "Job Title", Employees."Last Name" as "Last Name", Employees.Salary as Salary, Locations."Department Name" as "Department Name", Locations."Country Name" as "Country Name", Locations."Region Name" as "Region Name" from HR.Locations Locations, HR.Employees Employees, HR.Jobs Jobs The tables might not even be a physical tables, we don't care, that's what the BIServer and its model are for. You have put all the effort into building the model, just go get me the data from where ever it might be. The BIServer takes the logical sql and uses its vast brain to work out what the physical SQL is, executes it and passes the result back to BIP. select distinct T32556.JOB_TITLE as c1, T32543.LAST_NAME as c2, T32543.SALARY as c3, T32537.DEPARTMENT_NAME as c4, T32532.COUNTRY_NAME as c5, T32577.REGION_NAME as c6 from JOBS T32556, REGIONS T32577, COUNTRIES T32532, LOCATIONS T32569, DEPARTMENTS T32537, EMPLOYEES T32543 where ( T32532.COUNTRY_ID = T32569.COUNTRY_ID and T32532.REGION_ID = T32577.REGION_ID and T32537.DEPARTMENT_ID = T32543.DEPARTMENT_ID and T32537.LOCATION_ID = T32569.LOCATION_ID and T32543.JOB_ID = T32556.JOB_ID ) Not a very tough example I know but you get the idea. How do I know what the BIServer is up to? How can I find out what the issue might be if BIServer chokes on my query? There are a couple of steps: In the Administrator tool you need to set the logging level for the Administrator user to something greater than the default '0'. '7' is going to give you the max. Just remember to take it back down after you have finished the debug. I needed to bounce my BIServer service Now here's the secret sauce. Prefix the following to your BIP query set variable LOGLEVEL = 7; Set the log level to that you have in the admin tool Now run your BIP report. With the prefix in place; BIServer will write to the NQQuery.log file. This is located in the ./OracleBI/server/Log directory. In there you are going to find the complete process the BIServer has gone through to try and get the data back for you A quick note, if the BIServer can, its going to hit that great BIEE cache to get your data and you may not see the full log. IF this is the case. Get inot hte Administration page (via the browser login) and clear out your BIP report cursor. Then re-run. This will hopefully help out if you are trying to debug that annoying BIP report that will not run or is getting some strange data. Don't forget to turn that logging level back down once you are done. This will avoid the DBA screaming at you for sucking up all the disk space on the system.

    Read the article

  • Is this simple XOR encrypted communication absolutely secure?

    - by user3123061
    Say Alice have 4GB USB flash memory and Peter also have 4GB USB flash memory. They once meet and save on both of memories two files named alice_to_peter.key (2GB) and peter_to_alice.key (2GB) which is randomly generated bits. Then they never meet again and communicate electronicaly. Alice also maintains variable called alice_pointer and Peter maintains variable called peter_pointer which is both initially set to zero. Then when Alice needs to send message to Peter they do: encrypted_message_to_peter[n] = message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] Where n i n-th byte of message. Then alice_pointer is attached at begining of the encrypted message and (alice_pointer + encrypted message) is sent to Peter and then alice_pointer is incremented by length of message (and for maximum security can be used part of key erased) Peter receives encrypted_message, reads alice_pointer stored at beginning of message and do this: message_to_peter[n] = encrypted_message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] And for maximum security after reading of message also erases used part of key. - EDIT: In fact this step with this simple algorithm (without integrity check and authentication) decreases security, see Paulo Ebermann post below. When Peter needs to send message to Alice they do analogical steps with peter_to_alice.key and with peter_pointer. With this trivial schema they can send for next 50 years each day 2GB / (50 * 365) = cca 115kB of encrypted data in both directions. If they need more data to send, they simple use larger memory for keys for example with today 2TB harddiscs (1TB keys) is possible to exchange next 50years 60MB/day ! (thats practicaly lots of data for example with using compression its more than hour of high quality voice communication) It Seems to me there is no way for attacker to read encrypted message without keys even if they have infinitely fast computer. because even with infinitely fast computer with brute force they get ever possible message that can fit to length of message, but this is astronomical amount of messages and attacker dont know which of them is actual message. I am right? Is this communication schema really absolutely secure? And if its secure, has this communication method its own name? (I mean XOR encryption is well-known, but whats name of this concrete practical application with use large memories at both communication sides for keys? I am humbly expecting that this application has been invented someone before me :-) ) Note: If its absolutely secure then its amazing because with today low cost large memories it is practicaly much cheeper way of secure communication than expensive quantum cryptography and with equivalent security! EDIT: I think it will be more and more practical in future with lower a lower cost of memories. It can solve secure communication forever. Today you have no certainty if someone succesfuly atack to existing ciphers one year later and make its often expensive implementations unsecure. In many cases before comunication exist step where communicating sides meets personaly, thats time to generate large keys. I think its perfect for military communication for example for communication with submarines which can have installed harddrive with large keys and military central can have harddrive for each submarine they have. It can be also practical in everyday life for example for control your bank account because when you create your account you meet with bank etc.

    Read the article

  • New Training and Support Center Coming Soon!

    - by Ruth
    The CRM On Demand Training and Support Center is getting a face lift. In May 2010 we will unveil the new and improved layout, look and feel, and even some new content. Some of you told us loud and clear that you wanted an easier way to find our training courses and other important information. Well, here you are: Immediately you see the look and feel has changed and things have moved around a bit. You may ask, "How can I find the training catalog? Service requests? Downloads?" There are a few ways to find what you're looking for. You may use the search box to find training, quick guides, downloads, best practices, FAQs and more. You may also click the tabs or links in the blue bar, like Browse Training, to browse other documents and information. Here is a brief outline of the tabs and links that will help as you navigate this new tool: The Support tab provides alerts and notifications specific to your application environment. The Get Started tab is organized by role and contains links to resources aimed at helping you get the most out of your first 30 days with CRM On Demand. The Learn More tab outlines information in key topic areas, like administration, integration, and reports. Go to this tab to get the resources you need to move beyond the basics. The Release Information tab contains information specific to the current and upcoming releases of CRM On Demand. Access this tab to learn about and prepare for upgrades to your CRM On Demand application. The Best Practices tab contains a compilation of knowledge gained by experts that work with CRM On Demand day in and day out. Access this knowledge to benefit from their vast experience. The Communities tab offers connections to others in the CRM On Demand community through forums, communities, blogs, and more. The Browse training link opens the training catalog.Take a look at the instructor-led training, Webinars, quick guides, use cases, and tools available to you. The Browse Knowledge link takes you to our knowledge base where you can get answers to frequently asked questions. The Submit a Service Request link directs you to My Oracle Support where you can log a service request. The steps in that process have not changed. The Web Services Library provides simple APIs and a link to Oracle Sample Code where you can get samples that can help you build custom integrations. The Add-On Applications link allows access to our downloadable applications that allow you to extend the functionality of CRM On Demand. The Templates and Tools link provides access to resources that can help you design and build CRM On Demand to meet your company's specific needs. A lot has changed and I know it is a lot to take in. To help you out, we have a printable quick guide that you can use during this transition. As always, let us know what you think: [email protected].

    Read the article

  • How to create a Global Rule that stores a document’s folder path in a custom metadata field

    - by Nicolas Montoya
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} How to create a Global Rule that stores a document’s folder path in a custom metadata field Efficiency purists would argue that redundancy is not necessary. In real life, we are willing to pay a price for performance –i.e. to have information at our fingertips. We have run into customers opting to store a document folder path as a document metadata field. They have their reasons, half of the ECM community will agree with them, and the other half would raise an eye brow. In the end, they are getting creative to achieve their document management goals. The below steps outlines how to create a Global Rule that would store a document’s folder path in a custom metadata field: Create a Global Rule via Configuration Manager > Rules Tab > Add Then check “Is global rule with priority”. Then check “Use rule activation condition”. The go to “Edit” and check the actions for this Script Properties: Then click OK, and the following rule activation condition will appear: Then Goto to the Fields Tab and add a Rule Field: Select the target Custom Metadata Field and click Ok, then check the “Is derived field”, then “Edit”, then go to the Custom Tab in the Script Properties window and enter the below custom script: <$if #active.dCollectionPath$> <$dprDerivedValue=#active.dCollectionPath$> <$else$> <$dprDerivedValue=#active.xCollectionIDPath$> <$endif$> For more information on the dCollectionPath property, check Section 8.2 Folder Services from the Oracle® Fusion Middleware Services Reference Guide for Oracle Universal Content Management 11g Release 1 (11.1.1) http://docs.oracle.com/cd/E21043_01/doc.1111/e11011/c08_folders002.htm The above rule will keep the Custom Metadata Field updated with the Folder Path information when a document is checked in via the Content Server (CS) Web Interface or the Desktop Integration Suite (DIS).

    Read the article

  • SQL SERVER – Query Hint – Contest Win Joes 2 Pros Combo (USD 198) – Day 1 of 5

    - by pinaldave
    August 2011 we ran a contest where every day we give away one book for an entire month. The contest had extreme success. Lots of people participated and lots of give away. I have received lots of questions if we are doing something similar this month. Absolutely, instead of running a contest a month long we are doing something more interesting. We are giving away USD 198 worth gift every day for this week. We are giving away Joes 2 Pros 5 Volumes (BOOK) SQL 2008 Development Certification Training Kit every day. One copy in India and One in USA. Total 2 of the giveaway (worth USD 198). All the gifts are sponsored from the Koenig Training Solution and Joes 2 Pros. The books are available here Amazon | Flipkart | Indiaplaza How to Win: Read the Question Read the Hints Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India residents only) 2 Winners will be randomly selected announced on August 20th. Question of the Day: Which of the following queries will return dirty data? a) SELECT * FROM Table1 (READUNCOMMITED) b) SELECT * FROM Table1 (NOLOCK) c) SELECT * FROM Table1 (DIRTYREAD) d) SELECT * FROM Table1 (MYLOCK) Query Hints: BIG HINT POST Most SQL people know what a “Dirty Record” is. You might also call that an “Intermediate record”. In case this is new to you here is a very quick explanation. The simplest way to describe the steps of a transaction is to use an example of updating an existing record into a table. When the insert runs, SQL Server gets the data from storage, such as a hard drive, and loads it into memory and your CPU. The data in memory is changed and then saved to the storage device. Finally, a message is sent confirming the rows that were affected. For a very short period of time the update takes the data and puts it into memory (an intermediate state), not a permanent state. For every data change to a table there is a brief moment where the change is made in the intermediate state, but is not committed. During this time, any other DML statement needing that data waits until the lock is released. This is a safety feature so that SQL Server evaluates only official data. For every data change to a table there is a brief moment where the change is made in this intermediate state, but is not committed. During this time, any other DML statement (SELECT, INSERT, DELETE, UPDATE) needing that data must wait until the lock is released. This is a safety feature put in place so that SQL Server evaluates only official data. Additional Hints: I have previously discussed various concepts from SQL Server Joes 2 Pros Volume 1. SQL Joes 2 Pros Development Series – Dirty Records and Table Hints SQL Joes 2 Pros Development Series – Row Constructors SQL Joes 2 Pros Development Series – Finding un-matching Records SQL Joes 2 Pros Development Series – Efficient Query Writing Strategy SQL Joes 2 Pros Development Series – Finding Apostrophes in String and Text SQL Joes 2 Pros Development Series – Wildcard – Querying Special Characters SQL Joes 2 Pros Development Series – Wildcard Basics Recap Next Step: Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India) Bonus Winner Leave a comment with your favorite article from the “additional hints” section and you may be eligible for surprise gift. There is no country restriction for this Bonus Contest. Do mention why you liked it any particular blog post and I will announce the winner of the same along with the main contest. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • InfiniBand Enabled Diskless PXE Boot

    - by Neeraj Gupta
    When you want to bring up a compute server in your environment and need InfiniBand connectivity, usually you go through various installation steps. This could involve operating systems like Linux, followed by a compatible InfiniBand software distribution, associated dependencies and configurations. What if you just want to run some InfiniBand diagnostics or troubleshooting tools from a test machine ? What if something happened to your primary machine and while recovering in rescue mode, you also need access to your InfiniBand network ? Often times we use opensource community supported small Linux distributions but they don't come with required InfiniBand support and tools. In this weblog, I am going to provide instructions on how to add InfniBand support to a specific Linux image - Parted Magic.This is a free to use opensource Linux distro often used to recover or rescue machines. The distribution itself will not be changed at all. Yes, you heard it right ! I have built an InfiniBand Add-on package that will be passed to the default kernel and initrd to get this all working. Pr-requisites You will need to have have a PXE server ready on your ethernet based network. The compute server you are trying to PXE boot should have a compatible IB HCA and must be connected to an active IB network. Required Downloads Download the Parted Magic small distribution for PXE from Parted Magic website. Download InfiniBand PXE Add On package. Right Click and Download from here. Do not extract contents of this file. You need to use it as is. Prepare PXE Server Extract the contents of downloaded pmagic distribution into a temporary directory. Inside the directory structure, you will see pmagic directory containing two files - bzImage and initrd.img. Copy this directory in your TFTP server's root directory. This is usually /tftpboot unless you have a different setup. For Example: cp pmagic_pxe_2012_2_27_x86_64.zip /tmp cd /tmp unzip pmagic_pxe_2012_2_27_x86_64.zip cd pmagic_pxe_2012_2_27_x86_64 # ls -l total 12 drwxr-xr-x  3 root root 4096 Feb 27 15:48 boot drwxr-xr-x  2 root root 4096 Mar 17 22:19 pmagic cp -r pmagic /tftpboot As I mentioned earlier, we dont change anything to the default pmagic distro. Simply provide the add-on package via PXE append options. If you are using a menu based PXE server, then add an entry to your menu. For example /tftpboot/pxelinux.cfg/default can be appended with following section. LABEL Diskless Boot With InfiniBand Support MENU LABEL Diskless Boot With InfiniBand Support KERNEL pmagic/bzImage APPEND initrd=pmagic/initrd.img,pmagic/ib-pxe-addon.cgz edd=off load_ramdisk=1 prompt_ramdisk=0 rw vga=normal loglevel=9 max_loop=256 TEXT HELP * A Linux Image which can be used to PXE Boot w/ IB tools ENDTEXT Note: Keep the line starting with "APPEND" as a single line. If you use host specific files in pxelinux.cfg, then you can use that specific file to add the above mentioned entry. Boot Computer over PXE Now boot your desired compute machine over PXE. This does not have to be over InfiniBand. Just use your standard ethernet interface and network. If using menus, then pick the new entry that you created in previous section. Enable IPoIB After a few minutes, you will be booted into Parted Magic environment. Open a terminal session and see if InfiniBand is enabled. You can use commands like: ifconfig -a ibstat ibv_devices ibv_devinfo If you are connected to InfiniBand network with an active Subnet Manager, then your IB interfaces must have come online by now. You can proceed and assign IP address to them. This will enable you at IPoIB layer. Example InfiniBand Diagnostic Tools I have added several InfiniBand Diagnistic tools in this add-on. You can use from following list: ibstat, ibstatus, ibv_devinfo, ibv_devices perfquery, smpquery ibnetdiscover, iblinkinfo.pl ibhosts, ibswitches, ibnodes Wrap Up This concludes this weblog. Here we saw how to bring up a computer with IPoIB and InfiniBand diagnostic tools without installing anything on it. Its almost like running diskless !

    Read the article

  • Design suggestions needed to create a MathBuilder framework

    - by Darf Zon
    Let explain what I'm trying to create. I'm creating a framework, the idea is to provide base classes to generate a math problem. Why do I need this framework? Because at first time, I realized when I create a new math problem I always do the same steps. Configuration settings such range numbers. For example if I'm developing multiplications, in beginner level only generate the first number between 2-5 or in advanced level, the first number will be between 6- 9, for example. Generate problem method. All the time I need to invoke a method like this to generate the problem. This one receives the configuration settings and generate the number according to them. And generate the object with the respective data. Validate the problem. Sometimes the problem generated is not valid. For example, supposed I'm creating fractions in most simplified, if I receive 2/4, the program should detect that this is not valid and must generate another like this one, 1/4. Load the view. All of them, have a custom view (please watch below the images). All of the problems must know how to CHECK if the user result is correct. All of this problems has answers. Some of them just require one answer, anothers may require more than one, so I guess a way to maintain flexibility to the developer has all the answers he wanna used. At the beginning I started using PRISM. Generate modules for each math problem was the idea and load it in the main system. I guess are the most important things of this idea. Let me showing some problems which I create in a WPF standalone program. Here I have a math problem about areas. When I generate the problem a set to the view the object and it draw it. In beginner level, I set in the configuration settings that just load square types. But in advance level, can load triangles and squares randomly. In this another, generate a binary problem like addition, subtraction, multiplication or division. Above just generate a single problem. The idea of this is to show a test o quiz, I mean get a worksheet (this I call as a collection of problems) where the user can answer it. I hope gets the idea with my ugly drawing. How to load this math problems? As I said above, I started using PRISM, and each module contains a math problem kind. This is a snapshot of my first demo. Below show the modules loaded, and center the respective configurations or levels. Until momment, I have no idea to start creating this software. I just know that I need a question | problem class, response class, user class. But I get lost about what properties should have to contain in it. Please give a little hand of this framework. I put much effort on this question, so if any isn't clear, let me know to clarify it.

    Read the article

< Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >