Search Results

Search found 34186 results on 1368 pages for 'single machine'.

Page 179/1368 | < Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >

  • How do I copy a version of a single file from one git branch to another?

    - by madlep
    I've got two branches that are fully merged together. However, after the merge is done, I realise that one file has been messed up by the merge (someone else did an auto-format, gah), and it would just be easier to change to the new version in the other branch, and then re-insert my one line change after bringing it over into my branch. So what's the easiest way in git to do this?

    Read the article

  • Many network adapters at machine, need to find one that is used for traffic in Windows (from .net)

    - by viko
    My application use Web-service. I'm control from what workstation was request and for this send MAC-Address how parameter of all methods. But then I start testing application in real, I found workstations which have many network adapters - Ethernet, Wireless, Bluetooth. When I get MAC-address using next code: var networkAdapters = NetworkInterface.GetAllNetworkInterfaces(); if (networkAdapters == null || networkAdapters.Length == 0) return string.Empty; string address = string.Empty; foreach (var adapter in networkAdapters) { var a = adapter.GetPhysicalAddress(); if (a != null && a.ToString() != string.Empty) { address = a.ToString(); break; } } return address; Sometimes Web-service receive from workstation different MAC-Addresses, but I want get always only one MAC-address. Please, help me.

    Read the article

  • How do I use 2 include statements in a single MVC EF query?

    - by alockrem
    I am trying to write a query that includes 2 joins. 1 StoryTemplate can have multiple Stories 1 Story can have multiple StoryDrafts I am starting the query on the StoryDrafts object because that is where it's linked to the UserId. I don't have a reference from the StoryDrafts object directly to the StoryTemplates object. How would I build this query properly? public JsonResult Index(int userId) { return Json( db.StoryDrafts .Include("Story") .Include("StoryTemplate") .Where(d => d.UserId == userId) ,JsonRequestBehavior.AllowGet); } Thank you for any help.

    Read the article

  • How to find next (by a single parameter) element in c++? (stl) [closed]

    - by user2136963
    I have n humans of THuman class Each human has scored some points in one of two rounds. (score1 and score2) Each human has its unique id. Score1 and 2 are also unique. Besides, a human has a score_t=score1+score2, which can be the same for two of them. I need to implement 6 variables to THuman which return id of a human with: bigger score1 smaller score1 bigger score2 smaller score2 bigger score_t smaller score_t (if there are many humans those satisfy theese conditions, the one with smallest difference of corresponding parameter should be chosen (like score1 for 1 and 2)) In other words, it's some kind of storing 3 human sortings. Two more functions I need should get argument x, set score1 or score 2 to x, and then refresh some of the 6 variables above. If I needed sorting by only one variable, I would simply create set and defined and < operators for my class. But what is the solution for three of parameters? Is it possible to use STL here, or I should create my own lists/treaps? __ Answer: How to update set of pointers c++?

    Read the article

  • How to design a database where the main entity table has 25+ columns but a single entity's columns g

    - by thenextwebguy
    The entities to be stored have 25+ properties (table columns). The entities are pretty diverse, meaning that, most of the columns are empty. On average, I'd say, less than 20% (<5) properties have a value in any particular item. So, I have a lot of redundant empty columns for most of the table rows. Almost all of the columns are decimal numbers. Given this scenario, would you suggest serializing the columns instead, or perhaps, create another table named "Property", which would contain all the possible properties and then creating yet another table "EntityProperty" which would map an property to an entity using foreign keys? Or would you leave it as it is?

    Read the article

  • Can I install SQL Server 2008 R2 on a Windows Server 2008 R2 Standard machine in a workgroup then join the server to a domain?

    - by Zero Subnet
    I have a Windows 2008 Server Standard x64 machine that I need to install SQL Server 2008 R2 Standard on then ship it to a different site where it will be joined to a Active Directory domain. The server is now using the default "WORKGROUP" workgroup and i need to know if i can install SQL Server on it then ship it to the other site where it will be joined to the domain without issues. What are the possible problems that could happen? are there any workarounds?

    Read the article

  • Variant Management– Which Approach fits for my Product?

    - by C. Chadwick
    Jürgen Kunz – Director Product Development – Oracle ORACLE Deutschland B.V. & Co. KG Introduction In a difficult economic environment, it is important for companies to understand the customer requirements in detail and to address them in their products. Customer specific products, however, usually cause increased costs. Variant management helps to find the best combination of standard components and custom components which balances customer’s product requirements and product costs. Depending on the type of product, different approaches to variant management will be applied. For example the automotive product “car” or electronic/high-tech products like a “computer”, with a pre-defined set of options to be combined in the individual configuration (so called “Assembled to Order” products), require a different approach to products in heavy machinery, which are (at least partially) engineered in a customer specific way (so-called “Engineered-to Order” products). This article discusses different approaches to variant management. Starting with the simple Bill of Material (BOM), this article presents three different approaches to variant management, which are provided by Agile PLM. Single level BOM and Variant BOM The single level BOM is the basic form of the BOM. The product structure is defined using assemblies and single parts. A particular product is thus represented by a fixed product structure. As soon as you have to manage product variants, the single level BOM is no longer sufficient. A variant BOM will be needed to manage product variants. The variant BOM is sometimes referred to as 150% BOM, since a variant BOM contains more parts and assemblies than actually needed to assemble the (final) product – just 150% of the parts You can evolve the variant BOM from the single level BOM by replacing single nodes with a placeholder node. The placeholder in this case represents the possible variants of a part or assembly. Product structure nodes, which are part of any product, are so-called “Must-Have” parts. “Optional” parts can be omitted in the final product. Additional attributes allow limiting the quantity of parts/assemblies which can be assigned at a certain position in the Variant BOM. Figure 1 shows the variant BOM of Agile PLM. Figure 1 Variant BOM in Agile PLM During the instantiation of the Variant BOM, the placeholders get replaced by specific variants of the parts and assemblies. The selection of the desired or appropriate variants is either done step by step by the user or by applying pre-defined configuration rules. As a result of the instantiation, an independent BOM will be created (Figure 2). Figure 2 Instantiated BOM in Agile PLM This kind of Variant BOM  can be used for „Assembled –To-Order“ type products as well as for „Engineered-to-Order“-type products. In case of “Assembled –To-Order” type products, typically the instantiation is done automatically with pre-defined configuration rules. For „Engineered- to-Order“-type products at least part of the product is selected manually to make use of customized parts/assemblies, that have been engineered according to the specific custom requirements. Template BOM The Template BOM is used for „Engineered-to-Order“-type products. It is another type of variant BOM. The engineer works in a flexible environment which allows him to build the most creative solutions. At the same time the engineer shall be guided to re-use existing solutions and it shall be assured that product variants of the same product family share the same base structure. The template BOM defines the basic structure of products belonging to the same product family. Let’s take a gearbox as an example. The customer specific configuration of the gearbox is influenced by several parameters (e.g. rpm range, transmitted torque), which are defined in the customer’s requirement document.  Figure 3 shows part of a Template BOM (yellow) and its relation to the product family hierarchy (blue).  Figure 3 Template BOM Every component of the Template BOM has links to the variants that have been engineeried so far for the component (depending on the level in the Template BOM, they are product variants, Assembly Variant or single part variants). This library of solutions, the so-called solution space, can be used by the engineers to build new product variants. In the best case, the engineer selects an existing solution variant, such as the gearbox shown in figure 3. When the existing variants do not fulfill the specific requirements, a new variant will be engineered. This new variant must be compliant with the given Template BOM. If we look at the gearbox in figure 3  it must consist of a transmission housing, a Connecting Plate, a set of Gears and a Planetary transmission – pre-assumed that all components are must have components. The new variant will enhance the solution space and is automatically available for re-use in future variants. The result of the instantiation of the Template BOM is a stand-alone BOM which represents the customer specific product variant. Modular BOM The concept of the modular BOM was invented in the automotive industry. Passenger cars are so-called „Assembled-to-Order“-products. The customer first selects the specific equipment of the car (so-called specifications) – for instance engine, audio equipment, rims, color. Based on this information the required parts will be determined and the customer specific car will be assembled. Certain combinations of specification are not available for the customer, because they are not feasible from technical perspective (e.g. a convertible with sun roof) or because the combination will not be offered for marketing reasons (e.g. steel rims with a sports line car). The modular BOM (yellow structure in figure 4) is defined in the context of a specific product family (in the sample it is product family „Speedstar“). It is the same modular BOM for the different types of cars of the product family (e.g. sedan, station wagon). The assembly or single parts of the car (blue nodes in figure 4) are assigned at the leaf level of the modular BOM. The assignment of assembly and parts to the modular BOM is enriched with a configuration rule (purple elements in figure 4). The configuration rule defines the conditions to use a specific assembly or single part. The configuration rule is valid in the context of a type of car (green elements in figure 4). Color specific parts are assigned to the color independent parts via additional configuration rules (grey elements in figure 4). The configuration rules use Boolean operators to connect the specifications. Additional consistency rules (constraints) may be used to define invalid combinations of specification (so-called exclusions). Furthermore consistency rules may be used to add specifications to the set of specifications. For instance it is important that a car with diesel engine always is build using the high capacity battery.  Figure 4 Modular BOM The calculation of the car configuration consists of several steps. First the consistency rules (constraints) are applied. Resulting from that specification might be added automatically. The second step will determine the assemblies and single parts for the complete structure of the modular BOM, by evaluating the configuration rules in the context of the current type of car. The evaluation of the rules for one component in the modular BOM might result in several rules being fulfilled. In this case the most specific rule (typically the longest rule) will win. Thanks to this approach, it is possible to add a specific variant to the modular BOM without the need to change any other configuration rules.  As a result the whole set of configuration rules is easy to maintain. Finally the color specific assemblies respective parts will be determined and the configuration is completed. Figure 5 Calculated Car Configuration The result of the car configuration is shown in figure 5. It shows the list of assemblies respective single parts (blue components in figure 5), which are required to build the customer specific car. Summary There are different approaches to variant management. Three different approaches have been presented in this article. At the end of the day, it is the type of the product which decides about the best approach.  For „Assembled to Order“-type products it is very likely that you can define the configuration rules and calculate the product variant automatically. Products of type „Engineered-to-Order“ ,however, need to be engineered. Nevertheless in the majority of cases, part of the product structure can be generated automatically in a similar way to „Assembled to Order“-tape products.  That said it is important first to analyze the product portfolio, in order to define the best approach to variant management.

    Read the article

  • I have a WinXP machine with 2 ethernet ports. One is connected to a LAN, another is connected to a WAN. How do I make this work?

    - by HappyEngineer
    I have a WinXP machine which has 2 ethernet ports. The information I've found indicates that the first nic in the advanced settings list is the one that receives all traffic. I'd like to configure them so that all traffic destined for a particular IP range goes to one nic and the rest goes to the other nic. Is that possible? If so, do I need additional software like zonealarm to shape the traffic?

    Read the article

  • Wordpress how to retrieve the post id once its been reset in the page

    - by Scott B
    I'm working with a script in which the postid of the page has been reset via a script include. How can I retrieve the actual true post id and reset its value once it has been changed via script? Here is the script that I'm referring to. Somewhere in there, the postid is being reset so that the page's the_content() call is no longer pulling the current page being viewed. <?php //$featpages = get_option('woo_slider_pages_landing'); $featpages = '579,584,537'; $featarr=split(",",$featpages); $featarr = array_diff($featarr, array("")); $i = 1; foreach ( $featarr as $featured_tab ) { query_posts('page_id=' . $featured_tab); while (have_posts()) : the_post(); ?> <div class="featured-slide" id="slide-<?php echo $i; $i++; ?>" <?php if($i >=3 ){echo 'style="display:none"';} ?>> <div class="text"> <h2><?php if ( get_post_meta($post->ID, "page_desc", $single = true) <> "" ) { echo get_post_meta($post->ID, "page_desc", $single = true); } else { the_title(); } ?></h2> <p><?php if ( get_post_meta($post->ID, "page_excerpt", $single = true) <> "" ) { echo get_post_meta($post->ID, "page_excerpt", $single = true); } else { the_excerpt(); } ?></p> <?php if ( get_post_meta($post->ID, "link_text", $single = true) <> "" and get_post_meta($post->ID, "link_link", $single = true) <> "" ) { ?> <p><a href="<?php echo get_post_meta($post->ID, "link_link", $single = true); ?>" title="<?php echo get_post_meta($post->ID, "link_text", $single = true); ?>"><?php echo get_post_meta($post->ID, "link_text", $single = true); ?></a></p> <?php } ?> </div><!-- /.text --> <?php if ( get_post_meta($post->ID, "image", $single = true) <> "" ) { ?> <div class="image"> <img src="<?php echo get_post_meta($post->ID, "image", $single = true); ?>" alt="<?php the_title(); ?>" class="featured" /> </div><!-- /.image --> <?php } ?> </div><!-- /.featured-slide --> <?php endwhile; } //endforeach ?>

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • I've built a Windows service as "Any CPU". Why does it run in 32-bit mode on my 64 bit machine?

    - by Mark
    I've built a Windows service as "Any CPU". However, when I run it on my 64 bit machine it runs in 32 bit. How can I fix it? I'm using .NET and C#, and my operating system is Windows 2008 R2. If I build it in x64 it correctly loads in 64 bit mode. However, "Any Cpu" -- which is what I want -- loads in 32 bit, even though the machine it's running on perfectly supports 64 bit. Thanks for any help.

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • ssh tunnel error "ssh_exchange_identification: Connection closed by remote host"

    - by Jacob Ewing
    I'm trying to use an ssh tunnel from my office machine to my home machine, and get an error when I try to use it. What I'm doing is starting one shell like so: ssh -gL 12345:my.home.domain:22 my.home.domain This is giving me a proper shell, no problem. What I normally do then is ssh to my home machine through this office machine, like so: ssh -p 12345 127.0.0.1 This has always worked for me, until last week, when I set up a new system on my home machine (switching from Ubuntu to Debian). Now I get an error. I can still open up my initial ssh connection, but when I try to use that tunnel, I get (on the office machine) this error: ssh_exchange_identification: Connection closed by remote host Also, when that happens, the open shell that I have the tunnelling set up through gets this line spat out at it: channel 3: open failed: connect failed: Connection timed out At which point, I'm at a loss. If any more info is needed, I'll be happy to post it. ============= further to that ============== After fiddling around further, I've found that I'm getting a different response from the server (my home machine that is) when I try to telnet in on the various ports. If I try: telnet my.home.domain 22 I get this back: Trying <my ip address>... Connected to <my domain>. Escape character is '^]'. SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze2 Which is what I would expect. After setting up the tunnel though, and then telnetting to that, I see this response: Trying 127.0.0.1... Connected to 127.0.0.1. Escape character is '^]'. ============== and further still ================== As per kbulgrien's suggestion, here is the output from the client machine with the -v option: ssh -vp 24600 127.0.0.1 OpenSSH_5.9p1 Debian-5ubuntu1, OpenSSL 1.0.1 14 Mar 2012 debug1: Reading configuration data /etc/ssh/ssh_config debug1: /etc/ssh/ssh_config line 19: Applying options for * debug1: Connecting to 127.0.0.1 [127.0.0.1] port 24600. debug1: Connection established. debug1: identity file /home/jacob/.ssh/id_rsa type -1 debug1: identity file /home/jacob/.ssh/id_rsa-cert type -1 debug1: identity file /home/jacob/.ssh/id_dsa type -1 debug1: identity file /home/jacob/.ssh/id_dsa-cert type -1 debug1: identity file /home/jacob/.ssh/id_ecdsa type -1 debug1: identity file /home/jacob/.ssh/id_ecdsa-cert type -1 ssh_exchange_identification: Connection closed by remote host

    Read the article

  • Why do I get NT_STATUS_CONNECTION_REFUSED from net rpc shutdown?

    - by Eric
    When I use "net rpc shutdown -f -I xxx.xxx.xxx.xxx -U usr%pwrd" I receive the following error. "NT_STATUS_CONNECTION_REFUSED" I checked that the firewall is disabled and that I can telnet to port 135 on the remote machine from the local machine. Telnet connects, there is no banner though is there supposed to be one? Not entirely sure. Remote machine is Windows 7 Ultimate Local machine is CentOS 5.7 "SME Server" Any ideas why this is still failing?

    Read the article

  • Issues connection to Ubuntu via PuTTy

    - by user1787262
    I'm not sure this is the appropriate stack exchange site to post this question on. If not, please flag this for migration. I am trying to use PuTTy ssh into my ubuntu machine which is wirelessly connected to the same network. I originally ran ifconfig to get my ubuntu machines private network IP address. I then verified that ssh was running, I even ssh'd into my school network and then into the ubuntu machine itself. No problems yet. On my windows 8 machine I ran ipconfig to get my private network IPv4 address. I then pinged my ubunty machines IP and 100% of packets were received. I figured, "OK we are ready to use PuTTy to connect to my Ubuntu Machine". Keep in mind this was my first time using PuTTy. I tried entering the IP of my ubuntu machine in the PuTTy Config GUI but I got a connection timeout. At this moment I don't really know what's going on, SSH is running on port 22 of my Ubuntu machine and I can ping the machine why is it not connecting? (I tried [username]@ip too). So I went on my Ubuntu machine and ran nmap -sP 192.168.0.1/24 and found that my windows machines IP did not show up, the host is down. I'm at a lost in something I am not very familiar with. Would anyone be able to help me or direct me to some resources that would trouble shoot my problem? Thank you EDIT (ADDITION): tyler@tyler-Aspire-5250:~$ nmap -v 192.168.0.123 Starting Nmap 6.40 ( http://nmap.org ) at 2014-06-06 01:56 MDT Initiating Ping Scan at 01:56 Scanning 192.168.0.123 [2 ports] Completed Ping Scan at 01:56, 3.00s elapsed (1 total hosts) Nmap scan report for 192.168.0.123 [host down] Read data files from: /usr/bin/../share/nmap Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn Nmap done: 1 IP address (0 hosts up) scanned in 3.14 seconds tyler@tyler-Aspire-5250:~$ nmap -Pn 192.168.0.123 Starting Nmap 6.40 ( http://nmap.org ) at 2014-06-06 01:56 MDT Nmap scan report for 192.168.0.123 Host is up (0.022s latency). Not shown: 998 filtered ports PORT STATE SERVICE 2869/tcp open icslap 5357/tcp open wsdapi Nmap done: 1 IP address (1 host up) scanned in 72.51 seconds

    Read the article

  • Remote administer Network Policy Server

    - by Jason Stangroome
    In our domain I have a Windows Server 2008 R2 machine "GWY" with the Network Policy and Access Services role installed. From this machine I can open the Network Policy Server management console to administer this role. However, I have another Server 2008 R2 machine "WKS" in the domain where we have all the management consoles installed so we can manage all the servers from one location. I cannot find how to access the Network Policy Server console on this machine though.

    Read the article

  • VirtualBox (Windows XP guest on Ubuntu host) through X11?

    - by Roy Rico
    I'd like to host a VirtualBox instance on my Ubuntu machine, using Windows XP as my Guest machine. I'd like to know if I can use an X11 ZZZZZZZZ (Xming/Putty/SSH -X) to run VirtualBox on my Windows 7 machine remotely. Also, if it is possible, could I disconnect from it (while it's still running) and reconnect to it from a different machine?

    Read the article

  • How to debug a website while running IIS 7?

    - by chobo2
    Hi I am running iis7 on my windows machine for testing purposes. Now I need to have access to the debugger so when something happens I can walk through it. Yet when I put debug lines on my site nothing happens. So I am guessing I need more stuff setup to make debugging to work. Everything is on the same machine. I have iis 7 on the same machine setup and I have Visual studios setup on my machine.

    Read the article

  • VirtualBox (windows XP guest on Ubuntu host) thru X11?

    - by Roy Rico
    Hi, I'd like to host a VirtualBox instance on my ubuntu machine, using WindowsXP as my Guest machine. I'd like to know if i can use an X11 ( Xming/Putty/SSH -X) to run VirtualBox on my Windows 7 machine remotely. Also, if it is possible, could i disconnect from it (while it's still running) and reconnect to it from a different machine?

    Read the article

  • Remote installing an msi on citrix servers using WMI

    - by capn
    OK, I'm a C# programmer that is trying to streamline the deployment of a custom windows form app I inherited and built an installer for with WiX (this app will need to be reinstalled regularly as I'm making changes to it). I'm not really used to admin type things (or vbs, or WMI, or terminal servers, or Citrix, and even WiX and MSI are not things I usually deal with) but so far I put together some vbs and have an end goal in mind. The msi does work, and I've installed it from the mapped O: drive on my dev machine and while RDP'd to a citrix machine. End Goal: Deploy code written on my dev machine and compiled into an MSI (that I can improve upon within the confines of WiX and whatever the Windows Installer Engine allows) to the cluster of Citrix machines my users have access to. What am I missing in my script to get the MSI to execute on the remote machines? Layout: Machine A is my dev machine, and has the vbs script and the msi file (XP SP3) Machines C1 - C6 are the Citrix Servers that need the application installed them via the msi (Server 2003 R2 SP2) There is also optionally a shared network resource that all the machines can access. Script: 'Set WMI Constants Const wbemImpersonationLevelImpersonate = 3 Const wbemAuthenticationLevelPktPrivacy = 6 'Set whether this is installing to the debug Citrix Servers Const isDebug = true 'Set MSI location 'Network location yields error 1619 (This installation package could not be opened.) msiLocation = "\\255.255.255.255\odrive\Citrix Deployment\Setup.msi" 'Directory on machine A yields error 3 (file not found) 'msiLocation = "C:\Temp\Deploy\Setup.msi" 'Mapped network drive (on both machines) yield error 3 (file not found) 'msiLocation = "O:\Citrix Deployment\Setup.msi" 'Set login information strDomain = "MyDomain" Wscript.StdOut.Write "user name:" strUser = Wscript.StdIn.ReadLine Set objPassword = CreateObject("ScriptPW.Password") Wscript.StdOut.Write "password:" strPassword = objPassword.GetPassword() 'Names of Citrix Servers Dim citrixServerArray If isDebug Then citrixServerArray = array("C4") Else 'citrixServerArray = array("C1","C2","C3","C5","C6") End If 'Loop through each Citrix Server For Each citrixServer in citrixServerArray 'Login to remote computer Set objLocator = CreateObject("WbemScripting.SWbemLocator") Set objWMIService = objLocator.ConnectServer(citrixServer, _ "root\cimv2", _ strUser, _ strPassword, _ "MS_409", _ "ntlmdomain:" + strDomain) 'Set Remote Impersonation level objWMIService.Security_.ImpersonationLevel = wbemImpersonationLevelImpersonate objWMIService.Security_.AuthenticationLevel = wbemAuthenticationLevelPktPrivacy 'Reference to a process on the machine Dim objProcess : Set objProcess = objWMIService.Get("Win32_Process") 'Change user to install for terminal services errReturn = objProcess.Create _ ("cmd.exe /c change user /install", Null, Null, intProcessID) WScript.Echo errReturn 'Install MSI here 'Reference to a product on the machine Set objSoftware = objWMIService.Get("Win32_Product") 'All users set in option parameter, I'm led to believe that the third parameter is actually ignored 'http://www.webmasterkb.com/Uwe/Forum.aspx/vbscript/2433/Installing-programs-with-VbScript errReturn = objSoftware.Install(msiLocation,"ALLUSERS=2 REBOOT=ReallySuppress",True) Wscript.Echo errReturn 'Change user back to execute errReturn = objProcess.Create _ ("cmd.exe /c change user /execute", Null, Null, intProcessID) WScript.Echo errReturn Next I also tried using this to install, it doesn't return an error code, but doesn't install the msi either, and it makes me wonder if the change user /install command is even really working. errReturn = objProcess.Create _ ("cmd.exe /c msiexec /i ""O:\Citrix Deployment\Setup.msi"" /quiet") Wscript.Echo errReturn

    Read the article

  • Retrieving a virtual box vdh that has been deleted from within Virtual box itself

    - by WillNZ
    I had a MS Virtual machine that I imported to virtual box to see how it worked. I decided that in this case MS Virtual machine worked just as good so removed the virtual machine from Virtual Box. In the process I accidently removed/deleted the vhd file that MS Virtual machine uses. Can I get this back from somewhere within virtual box or the recycle bin or do I have to use a undelete utlilty?

    Read the article

  • Cannot access website from inside network

    - by musclez
    I have a website running from my internal network available at the example IP 192.168.1.5. When I type this in to the browser, it redirects to my domain name ie, "example.com", and gives me Error code: ERR_CONNECTION_REFUSED. Any other machine that is inside of the network can access the website. The website is also accessible outside of the network. Other services from the server, like file sharing or ftp, are available to all machines in the network including the one i'm having issues http issues with. The issue may be linked to a proxy service, but from my understanding the service has been completely disabled and any executable have been uninstalled from the machine. I am wondering if there is some residual proxy information remaining on the machine that limits the connection. I'm fairly positive that "example.com" is what is being blocked by the local machine, and not an IP address being blocked or a faulty connection. When I examine the hosts file, there are no redirects to the local machine for "example.com". There was a rule, as on my other machines within the network: 192.168.1.5 example.com But i have since removed that for troubleshooting purposes. What intrigued me is that when I use the actual IP, the IP address will redirect to the domain in the browser and THEN say ERR_CONNECTION_REFUSED. Server-Side Results The server logs are reporting this: example.com ::1 - - [Date & time] "OPTIONS * HTTP/1.0" 200 126 "-" "Apache/2. 2.22 (Unix) (internal dummy connection)" However, this seems to be irrelevant as it is not triggered when I try to connect to the server with the specified machine. Fiddler results: Host: *example.com* Proxy-Connection: keep-alive Chrome-Side [Fiddler] The connection to 'example.com' failed. Error: ConnectionRefused (0x274d). System.Net.Sockets. SocketException No connection could be made because the target machine actively refused it 01.23.45.67:80 01.23.45.67:80 would be the external IP, which the server and the machine in question both share. I am doing so reading into 0x274d and its coming back with .NET web.config information. I am still at a loss to what to do with this information. I have WireShark running as well. Theres is a lot of sensitive information in the readout and I'm not sure what to extract from it. Either way, if it helps, I can access that information if anyone would like me to. Thanks for the help!

    Read the article

  • Sharing VirtualBox snapshots

    - by JesperE
    Is it possible to "share" a VirtualBox snapshot? I have a "baseline" VirtualBox machine, and I would like to be able to take a snapshot, and send it to another user which has the same baseline machine. The scenario is that the baseline machine is used for testing, and I want to allow testers to create snapshots which describe a certain system state, and send that snapshot to developers to further examination. EDIT: To clarify, I would like to be able to export snapshots "incrementally" without having to export the entire machine as an appliance.

    Read the article

< Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >