Search Results

Search found 4993 results on 200 pages for 'conversion operator'.

Page 192/200 | < Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >

  • Problem saving as png a SVG generated by Raphael JS in a canvas

    - by ClemDesm
    Hi fellow SOers, I'm trying to convert a SVG generated by Raphael JS (and the user, since you can drag and rotate the images). I followed this Conversion of SVG to Jpeg but still can't get it. It must be easy but I can't put my finger on what I get wrong. I got my svg in a div with #ec as id and the canvas's one is #canvas. function saveDaPicture(){ var img = document.getElementById('canvas').toDataURL("image/png"); $('body').append('<img src="'+img+'"/>'); } $('#save').click(function(){ var svg = $('#ec').html(); alert(svg); canvg('canvas', svg, {renderCallback: saveDaPicture(), ignoreMouse: true, ignoreAnimation: true}); }); The alert gives me : <svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="600" height="512"> <desc>Created with Raphael</desc> <defs></defs> <image x="0" y="0" width="300" height="512" preserveAspectRatio="none" href="imageurl.jpg"></image> <rect x="168" y="275" width="52" height="70" r="0" rx="0" ry="0" fill="none" stroke="#000" stroke-dasharray="8,3" transform="rotate(21.91207728 194 310)" style="opacity: 1; display: none; " opacity="1"></rect> <circle cx="50" cy="50" r="50" fill="none" stroke="#000"></circle> <image x="358" y="10" width="39" height="138" preserveAspectRatio="none" href="imageurl2.png" style="cursor: move; "></image> <image x="397" y="10" width="99" height="153" preserveAspectRatio="none" href="imageurl3.png" style="cursor: move; "></image> <image x="184" y="286" width="10" height="10" preserveAspectRatio="none" href="imageurl4.png" style="cursor: pointer; opacity: 1; display: none; " opacity="1"></image> <image x="204" y="286" width="10" height="10" preserveAspectRatio="none" href="imageurl5.png" style="cursor: pointer; opacity: 1; display: none; " opacity="1"></image> <image x="170" y="277" width="48" height="66" preserveAspectRatio="none" href="imageurl6.png" style="cursor: move; opacity: 1; " r="50" opacity="1" transform="rotate(21.91207728 194 310)"></image> </svg> which is the xml of the svg and if I believe canvg documentation, it's good. Anyway, with this code, the variable img, which should have the converted image data, got the data of an empty png with the dimensions of the svg. The only thing I guess is that the svg generated by Raphael JS is not well formated for canvg (like, href of image should be xlink:href if I follow the W3C recommandations ) Anyone got an idea on this problem ? :D

    Read the article

  • Have suggestions for these assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Plotting points so that they do not overlap if they have the same co-ordinates

    - by betamax
    Hi everyone, I have a function that takes longitude and latitude and converts it to x and y to be plotted. The conversion to X and Y is working fine and that is not what I have the problem with. I want to ensure that two points are not plotted in the same place. In one set of results there are about 30 on top of each other (because they have the same latitude and longitude), this number could be a lot larger. At the moment I am trying to achieve this by moving points to the left, right, top or bottom of the point to make a square. Once a square made up of points has been drawn, then moving to the next row on and drawing another square of points around the previous square. The code is Javascript but it is very generic so I guess it's slightly irrelevant. My code is as follows: var prevLong, prevLat, rand = 1, line = 1, spread = 8, i = 0; function plot_points(long, lat){ // CODE HERE TO CONVERT long and lat into x and y // System to not overlap the points if((prevLat == lat) && (prevLong == long)) { if(rand==1) { x += spread*line; } else if(rand==2) { x -= spread*line; } else if(rand==3) { y += spread*line; } else if(rand==4) { y -= spread*line; } else if(rand==5) { x += spread*line; y += spread*line; } else if(rand==6) { x -= spread*line; y -= spread*line; } else if(rand==7) { x += spread*line; y -= spread*line; } else if(rand==8) { x -= spread*line; y += spread*line; // x = double } else if(rand==9) { x += spread*line; y += spread; } else if(rand==10) { x += spread; y += spread*line; } else if(rand==11) { x -= spread*line; y -= spread; } else if(rand==12) { x -= spread; y -= spread*line; } else if(rand==13) { x += spread*line; y -= spread; } else if(rand==14) { x += spread; y -= spread*line; } else if(rand==15) { x += spread*line; y -= spread; } else if(rand==16) { x += spread; y -= spread*line; } else if(rand==17) { x -= spread*line; y += spread; } else if(rand==18) { x -= spread; y += spread*line; } else if(rand==19) { x -= spread*line; y += spread; } else if(rand==20) { x -= spread; y += spread*line; } if(rand == 20) {rand = 1; line++; } else { rand++; } i++ } else { line = 1; i = 0; } prevLat = latitude; prevLong = longitude; return [x,y]; } This is the output: It isn't working correctly and I don't even know if I am approaching the problem in a correct way at all. Has anyone had to do this before? What method would you suggest?

    Read the article

  • Double Linked List Insertion Sorting Bug

    - by house
    Hello, I have implemented an insertion sort in a double link list (highest to lowest) from a file of 10,000 ints, and output to file in reverse order. To my knowledge I have implemented such a program, however I noticed in the ouput file, a single number is out of place. Every other number is in correct order. The number out of place is a repeated number, but the other repeats of this number are in correct order. Its just strange how this number is incorrectly placed. Also the unsorted number is only 6 places out of sync. I have looked through my program for days now with no idea where the problem lies, so I turn to you for help. Below is the code in question, (side note: can my question be deleted by myself? rather my colleges dont thieve my code, if not how can it be deleted?) void DLLIntStorage::insertBefore(int inValue, node *nodeB) { node *newNode; newNode = new node(); newNode->prev = nodeB->prev; newNode->next = nodeB; newNode->value = inValue; if(nodeB->prev==NULL) { this->front = newNode; } else { nodeB->prev->next = newNode; } nodeB->prev = newNode; } void DLLIntStorage::insertAfter(int inValue, node *nodeB) { node *newNode; newNode = new node(); newNode->next = nodeB->next; newNode->prev = nodeB; newNode->value = inValue; if(nodeB->next == NULL) { this->back = newNode; } else { nodeB->next->prev = newNode; } nodeB->next = newNode; } void DLLIntStorage::insertFront(int inValue) { node *newNode; if(this->front == NULL) { newNode = new node(); this->front = newNode; this->back = newNode; newNode->prev = NULL; newNode->next = NULL; newNode->value = inValue; } else { insertBefore(inValue, this->front); } } void DLLIntStorage::insertBack(int inValue) { if(this->back == NULL) { insertFront(inValue); } else { insertAfter(inValue, this->back); } } ifstream& operator>> (ifstream &in, DLLIntStorage &obj) { int readInt, counter = 0; while(!in.eof()) { if(counter==dataLength) //stops at 10,000 { break; } in >> readInt; if(obj.front != NULL ) { obj.insertion(readInt); } else { obj.insertBack(readInt); } counter++; } return in; } void DLLIntStorage::insertion(int inValue) { node* temp; temp = this->front; if(temp->value >= inValue) { insertFront(inValue); return; } else { while(temp->next!=NULL && temp!=this->back) { if(temp->value >= inValue) { insertBefore(inValue, temp); return; } temp = temp->next; } } if(temp == this->back) { insertBack(inValue); } } Thankyou for your time.

    Read the article

  • Are their any suggestions for this new assembly language?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller exit End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Are there any suggestions for these new assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Random Complete System Unresponsiveness Running Mathematical Functions

    - by Computer Guru
    I have a program that loads a file (anywhere from 10MB to 5GB) a chunk at a time (ReadFile), and for each chunk performs a set of mathematical operations (basically calculates the hash). After calculating the hash, it stores info about the chunk in an STL map (basically <chunkID, hash>) and then writes the chunk itself to another file (WriteFile). That's all it does. This program will cause certain PCs to choke and die. The mouse begins to stutter, the task manager takes 2 min to show, ctrl+alt+del is unresponsive, running programs are slow.... the works. I've done literally everything I can think of to optimize the program, and have triple-checked all objects. What I've done: Tried different (less intensive) hashing algorithms. Switched all allocations to nedmalloc instead of the default new operator Switched from stl::map to unordered_set, found the performance to still be abysmal, so I switched again to Google's dense_hash_map. Converted all objects to store pointers to objects instead of the objects themselves. Caching all Read and Write operations. Instead of reading a 16k chunk of the file and performing the math on it, I read 4MB into a buffer and read 16k chunks from there instead. Same for all write operations - they are coalesced into 4MB blocks before being written to disk. Run extensive profiling with Visual Studio 2010, AMD Code Analyst, and perfmon. Set the thread priority to THREAD_MODE_BACKGROUND_BEGIN Set the thread priority to THREAD_PRIORITY_IDLE Added a Sleep(100) call after every loop. Even after all this, the application still results in a system-wide hang on certain machines under certain circumstances. Perfmon and Process Explorer show minimal CPU usage (with the sleep), no constant reads/writes from disk, few hard pagefaults (and only ~30k pagefaults in the lifetime of the application on a 5GB input file), little virtual memory (never more than 150MB), no leaked handles, no memory leaks. The machines I've tested it on run Windows XP - Windows 7, x86 and x64 versions included. None have less than 2GB RAM, though the problem is always exacerbated under lower memory conditions. I'm at a loss as to what to do next. I don't know what's causing it - I'm torn between CPU or Memory as the culprit. CPU because without the sleep and under different thread priorities the system performances changes noticeably. Memory because there's a huge difference in how often the issue occurs when using unordered_set vs Google's dense_hash_map. What's really weird? Obviously, the NT kernel design is supposed to prevent this sort of behavior from ever occurring (a user-mode application driving the system to this sort of extreme poor performance!?)..... but when I compile the code and run it on OS X or Linux (it's fairly standard C++ throughout) it performs excellently even on poor machines with little RAM and weaker CPUs. What am I supposed to do next? How do I know what the hell it is that Windows is doing behind the scenes that's killing system performance, when all the indicators are that the application itself isn't doing anything extreme? Any advice would be most welcome.

    Read the article

  • Java multiple class compositing and boiler plate reduction

    - by h2g2java
    We all know why Java does/should not have multiple inheritance. So this is not questioning about what has already been debated till-cows-come-home. This discusses what we would do when we wish to create a class that has the characteristics of two or more other classes. Probably, most of us would do this to "inherit" from three classes. For simplicity, I left out the constructor.: class Car extends Vehicle { final public Transport transport; final public Machine machine; } So that, Car class directly inherits methods and objects of Vehicle class, but would have to refer to transport and machine explicitly to refer to objects instantiated in Transport and Machine. Car car = new Car(); car.drive(); // from Vehicle car.transport.isAmphibious(); // from Transport car.machine.getCO2Footprint(); // from Machine I thought this was a good idea until when I encounter frameworks that require setter and getter methods. For example, the XML <Car amphibious='false' footPrint='1000' model='Fordstatic999'/> would look for the methods setAmphibious(..), setFootPrint(..) and setModel(..). Therefore, I have to project the methods from Transport and Machine classes class Car extends Vehicle { final public Transport transport; final public Machine machine; public void setAmphibious(boolean b){ this.transport.setAmphibious(b); } public void setFootPrint(String fp){ this.machine.setFootPrint(fp); } } This is OK, if there were just a few characteristics. Right now, I am trying to adapt all of SmartGWT into GWT UIBinder, especially those classes that are not a GWT widget. There are lots of characteristics to project. Wouldn't it be nice if there exists some form of annotation framework that is like this: class Car extends Vehicle @projects {Transport @projects{Machine @projects Guzzler}} { /* No need to explicitly instantiate Transport, Machine or Guzzler */ .... } Where, in case of common names of characteristics exist, the characteristics of Machine would take precedence Guzzler's, and Transport's would have precedence over Machine's, and Vehicle's would have precedence over Transport's. The annotation framework would then instantiate Transport, Machine and Guzzler as hidden members of Car and expand to break-out the protected/public characteristics, in the precedence dictated by the @project annotation sequence, into actual source code or into byte-code. Preferably into byte-code. So that the setFootPrint method is found in both Machine and Guzzler, only that of Machine's would be projected. Questions: Don't you think this is a good idea to have such a framework? Does such a framework already exist? Tell me where/what. Is there an eclipse plugin that does it? Is there a proposal or plan anywhere that you know about such an annotation framework? It would be wonderful too, if the annotation/plugin framework lets me specify that boolean, int, or whatever else needs to be converted from String and does the conversion/parsing for me too. Please advise, somebody. I hope wording of my question was clear enough. Thx. Edited: To avoid OO enthusiasts jumping to conclusion, I have renamed the title of this question.

    Read the article

  • How to design a C / C++ library to be usable in many client languages?

    - by Brian Schimmel
    I'm planning to code a library that should be usable by a large number of people in on a wide spectrum of platforms. What do I have to consider to design it right? To make this questions more specific, there are four "subquestions" at the end. Choice of language Considering all the known requirements and details, I concluded that a library written in C or C++ was the way to go. I think the primary usage of my library will be in programs written in C, C++ and Java SE, but I can also think of reasons to use it from Java ME, PHP, .NET, Objective C, Python, Ruby, bash scrips, etc... Maybe I cannot target all of them, but if it's possible, I'll do it. Requirements It would be to much to describe the full purpose of my library here, but there are some aspects that might be important to this question: The library itself will start out small, but definitely will grow to enormous complexity, so it is not an option to maintain several versions in parallel. Most of the complexity will be hidden inside the library, though The library will construct an object graph that is used heavily inside. Some clients of the library will only be interested in specific attributes of specific objects, while other clients must traverse the object graph in some way Clients may change the objects, and the library must be notified thereof The library may change the objects, and the client must be notified thereof, if it already has a handle to that object The library must be multi-threaded, because it will maintain network connections to several other hosts While some requests to the library may be handled synchronously, many of them will take too long and must be processed in the background, and notify the client on success (or failure) Of course, answers are welcome no matter if they address my specific requirements, or if they answer the question in a general way that matters to a wider audience! My assumptions, so far So here are some of my assumptions and conclusions, which I gathered in the past months: Internally I can use whatever I want, e.g. C++ with operator overloading, multiple inheritance, template meta programming... as long as there is a portable compiler which handles it (think of gcc / g++) But my interface has to be a clean C interface that does not involve name mangling Also, I think my interface should only consist of functions, with basic/primitive data types (and maybe pointers) passed as parameters and return values If I use pointers, I think I should only use them to pass them back to the library, not to operate directly on the referenced memory For usage in a C++ application, I might also offer an object oriented interface (Which is also prone to name mangling, so the App must either use the same compiler, or include the library in source form) Is this also true for usage in C# ? For usage in Java SE / Java EE, the Java native interface (JNI) applies. I have some basic knowledge about it, but I should definitely double check it. Not all client languages handle multithreading well, so there should be a single thread talking to the client For usage on Java ME, there is no such thing as JNI, but I might go with Nested VM For usage in Bash scripts, there must be an executable with a command line interface For the other client languages, I have no idea For most client languages, it would be nice to have kind of an adapter interface written in that language. I think there are tools to automatically generate this for Java and some others For object oriented languages, it might be possible to create an object oriented adapter which hides the fact that the interface to the library is function based - but I don't know if its worth the effort Possible subquestions is this possible with manageable effort, or is it just too much portability? are there any good books / websites about this kind of design criteria? are any of my assumptions wrong? which open source libraries are worth studying to learn from their design / interface / souce? meta: This question is rather long, do you see any way to split it into several smaller ones? (If you reply to this, do it as a comment, not as an answer)

    Read the article

  • Policy-based template design: How to access certain policies of the class?

    - by dehmann
    I have a class that uses several policies that are templated. It is called Dish in the following example. I store many of these Dishes in a vector (using a pointer to simple base class), but then I'd like to extract and use them. But I don't know their exact types. Here is the code; it's a bit long, but really simple: #include <iostream> #include <vector> struct DishBase { int id; DishBase(int i) : id(i) {} }; std::ostream& operator<<(std::ostream& out, const DishBase& d) { out << d.id; return out; } // Policy-based class: template<class Appetizer, class Main, class Dessert> class Dish : public DishBase { Appetizer appetizer_; Main main_; Dessert dessert_; public: Dish(int id) : DishBase(id) {} const Appetizer& get_appetizer() { return appetizer_; } const Main& get_main() { return main_; } const Dessert& get_dessert() { return dessert_; } }; struct Storage { typedef DishBase* value_type; typedef std::vector<value_type> Container; typedef Container::const_iterator const_iterator; Container container; Storage() { container.push_back(new Dish<int,double,float>(0)); container.push_back(new Dish<double,int,double>(1)); container.push_back(new Dish<int,int,int>(2)); } ~Storage() { // delete objects } const_iterator begin() { return container.begin(); } const_iterator end() { return container.end(); } }; int main() { Storage s; for(Storage::const_iterator it = s.begin(); it != s.end(); ++it){ std::cout << **it << std::endl; std::cout << "Dessert: " << *it->get_dessert() << std::endl; // ?? } return 0; } The tricky part is here, in the main() function: std::cout << "Dessert: " << *it->get_dessert() << std::endl; // ?? How can I access the dessert? I don't even know the Dessert type (it is templated), let alone the complete type of the object that I'm getting from the storage. This is just a toy example, but I think my code reduces to this. I'd just like to pass those Dish classes around, and different parts of the code will access different parts of it (in the example: its appetizer, main dish, or dessert).

    Read the article

  • Adding to database with multiple text boxes

    - by kira423
    What I am trying to do with this script is allow users to update a url for their websites, and since each user isn't going to have the same amount of websites is is hard for me to just add $_POST['website'] for each of these. Here is the script <?php include("config.php"); include("header.php"); include("functions.php"); if(!isset($_SESSION['username']) && !isset($_SESSION['password'])){ header("Location: pubs.php"); } $getmember = mysql_query("SELECT * FROM `publishers` WHERE username = '".$_SESSION['username']."'"); $info = mysql_fetch_array($getmember); $getsites = mysql_query("SELECT * FROM `websites` WHERE publisher = '".$info['username']."'"); $postback = $_POST['website']; $webname = $_POST['webid']; if($_POST['submit']){ var_dump( $_POST['website'] ); $update = mysql_query("UPDATE `websites` SET `postback` = '$postback' WHERE name = '$webname'"); } print" <div id='center'> <span id='tools_lander'><a href='export.php'>Export Campaigns</a></span> <div id='calendar_holder'> <h3>Please define a postback for each of your websites below. The following variables should be used when creating your postback.<br /> cid = Campaign ID<br /> sid = Sub ID<br /> rate = Campaign Rate<br /> status = Status of Lead. 1 means payable 2 mean reversed<br /> A sample postback URL would be <br /> http://www.example.com/postback.php?cid=#cid&sid=#sid&rate=#rate&status=#status</h3> <table class='balances' align='center'> <form method='POST' action=''>"; while($website = mysql_fetch_array($getsites)){ print" <tr> <input type ='hidden' name='webid' value='".$website['id']."' /> <td style='font-weight:bold;'>".$website['name']."'s Postback:</td> <td><input type='text' style='width:400px;' name='website[]' value='".$website['postback']."' /></td> </tr>"; } print" <td style='float:right;position:relative;left:150px;'><input type='submit' name='submit' style='font-size:15px;height:30px;width:100px;' value='Submit' /></td> </form> </table> </div>"; include("footer.php"); ?> What I am attempting to do insert the what is inputted in the text boxes to their corresponding websites, and I cannot think of any other way to do it, and this obviously does not works and returns a notice stating Array to string conversion If there is a more logical way to do this please let me know.

    Read the article

  • Calling system commands from Perl

    - by Dan J
    In an older version of our code, we called out from Perl to do an LDAP search as follows: # Pass the base DN in via the ldapsearch-specific environment variable # (rather than as the "-b" paramater) to avoid problems of shell # interpretation of special characters in the DN. $ENV{LDAP_BASEDN} = $ldn; $lcmd = "ldapsearch -x -T -1 -h $gLdapServer" . <snip> " > $lworkfile 2>&1"; system($lcmd); if (($? != 0) || (! -e "$lworkfile")) { # Handle the error } The code above would result in a successful LDAP search, and the output of that search would be in the file $lworkfile. Unfortunately, we recently reconfigured openldap on this server so that a "BASE DC=" is specified in /etc/openldap/ldap.conf and /etc/ldap.conf. That change seems to mean ldapsearch ignores the LDAP_BASEDN environment variable, and so my ldapsearch fails. I've tried a couple of different fixes but without success so far: (1) I tried going back to using the "-b" argument to ldapsearch, but escaping the shell metacharacters. I started writing the escaping code: my $ldn_escaped = $ldn; $ldn_escaped =~ s/\/\\/g; $ldn_escaped =~ s/`/\`/g; $ldn_escaped =~ s/$/\$/g; $ldn_escaped =~ s/"/\"/g; That threw up some Perl errors because I haven't escaped those regexes properly in Perl (the line number matches the regex with the backticks in). Backticks found where operator expected at /tmp/mycommand line 404, at end of line At the same time I started to doubt this approach and looked for a better one. (2) I then saw some Stackoverflow questions (here and here) that suggested a better solution. Here's the code: print("Processing..."); # Pass the arguments to ldapsearch by invoking open() with an array. # This ensures the shell does NOT interpret shell metacharacters. my(@cmd_args) = ("-x", "-T", "-1", "-h", "$gLdapPool", "-b", "$ldn", <snip> ); $lcmd = "ldapsearch"; open my $lldap_output, "-|", $lcmd, @cmd_args; while (my $lline = <$lldap_output>) { # I can parse the contents of my file fine } $lldap_output->close; The two problems I am having with approach (2) are: a) Calling open or system with an array of arguments does not let me pass > $lworkfile 2>&1 to the command, so I can't stop the ldapsearch output being sent to screen, which makes my output look ugly: Processing...ldap_bind: Success (0) additional info: Success b) I can't figure out how to choose which location (i.e. path and file name) to the file handle passed to open, i.e. I don't know where $lldap_output is. Can I move/rename it, or inspect it to find out where it is (or is it not actually saved to disk)? Based on the problems with (2), this makes me think I should return back to approach (1), but I'm not quite sure how to

    Read the article

  • Where do I start ?

    - by Panthe
    Brief History: Just graduated high school, learned a bit of python and C++, have no friends with any helpful computer knowledge at all. Out of anyone i met in my school years I was probably the biggest nerd, but no one really knew. I consider my self to have a vast amount of knowledge on computers and tech then the average person. built/fixed tons of computers, and ability to troubleshoot pretty much any problem I came across. Now that high school is over, Ive really been thinking about my career. Loving, living computers for the past 15 years of my life I decided to take my ability's and try to learn computer programming, why I didn't start earlier I don't know, seems to be big mistake on my part... Doing some research I concluded that Python was the first programming language I should learn, since it was high level and easier to understand then C++ and Java. I also knew that to become good at what I did I needed to know more then just 2 or 3 languages, which didn't seem like a big problem considering once I learned the way Python worked, mainly syntax changed, and the rest would come naturally. I watched a couple of youtube videos, downloaded some book pdf's and snooped around from some tutorials here and there to get the hang of what to do. A two solid weeks had passed of trying to understand the syntax, create small programs that used the basic functions and understanding how it worked, I think i have got the hang of it. It breaks down into what ive been dealing with all this time (although i kinda knew) is that, input,output, loops, functions and other things derived from 0's and 1's storing data and recalling it, ect. (A VERY BASIC IDEA). Ive been able to create small programs, Hangman, file storing, temperature conversion, Caeser Cipher decode/encoding, Fibonacci Sequence and more, which i can create and understand how each work. Being 2 weeks into this, I have learned alot. Nothing at all compared to what i should be learning in the years to come if i get a grip on what I'm doing. While doing these programs I wont stop untill I've done doing a practice problem on a book, which embarresing enough will take me a couple hour depending on the complexity of it. I absolutly will not put aside the challenge until its complete, WHICH CAN BE EXTREMELY DRAINING, ive tried most problems without cheating and reached success, which makes me feel extremely proud of my self after completing something after much trial and error. After all this I have met the demon, alogrithm's which seem to be key to effiecent code. I cant seem to rap my head around some of the computer codes people put out there using numbers, and sometimes even basic functions, I have been able to understand them after a while but i know there are alot more complex things to come, considering my self smart, functions that require complex codes, actually hurt my brain. NOTHING EVER IN LIFE HURT MY BRAIN....... not even math classes in highschool, trying to understand some of the stuff people put out there makes me feel like i have a mental disadvantage lol... i still walk forward though, crossing my fingers that the understanding will come with time. Sorry if is this is long i just wish someone takes all these things into consideration when answering my question. even through all these downsides im still pushing through and continuing to try and get good at this, i know reading these tutorials wont make me any good unless i can become creative and make my own, understand other peoples programs, so this leads me to the simple question i could have asked in the beginning..... WHERE IN THE WORLD DO I START ? Ive been trying to find out how to understand some of the open source projects, how i can work with experianced coders to learn from them and help them, but i dont think thats even possible by the way how far people's knowledge is compared to me, i have no freinds who i can learn from, can someone help me and guide me into the right direction.. i have a huge motivation to get good at coding, anything information would be extremely helpful

    Read the article

  • Do you have suggestions for these assembly mnemonics?

    - by Noctis Skytower
    Greetings! Last semester in college, my teacher in the Computer Languages class taught us the esoteric language named Whitespace. In the interest of learning the language better with a very busy schedule (midterms), I wrote an interpreter and assembler in Python. An assembly language was designed to facilitate writing programs easily, and a sample program was written with the given assembly mnemonics. Now that it is summer, a new project has begun with the objective being to rewrite the interpreter and assembler for Whitespace 0.3, with further developments coming afterwards. Since there is so much extra time than before to work on its design, you are presented here with an outline that provides a revised set of mnemonics for the assembly language. This post is marked as a wiki for their discussion. Have you ever had any experience with assembly languages in the past? Were there some instructions that you thought should have been renamed to something different? Did you find yourself thinking outside the box and with a different paradigm than in which the mnemonics were named? If you can answer yes to any of those questions, you are most welcome here. Subjective answers are appreciated! Stack Manipulation (IMP: [Space]) Stack manipulation is one of the more common operations, hence the shortness of the IMP [Space]. There are four stack instructions. hold N Push the number onto the stack copy Duplicate the top item on the stack copy N Copy the nth item on the stack (given by the argument) onto the top of the stack swap Swap the top two items on the stack drop Discard the top item on the stack drop N Slide n items off the stack, keeping the top item Arithmetic (IMP: [Tab][Space]) Arithmetic commands operate on the top two items on the stack, and replace them with the result of the operation. The first item pushed is considered to be left of the operator. add Addition sub Subtraction mul Multiplication div Integer Division mod Modulo Heap Access (IMP: [Tab][Tab]) Heap access commands look at the stack to find the address of items to be stored or retrieved. To store an item, push the address then the value and run the store command. To retrieve an item, push the address and run the retrieve command, which will place the value stored in the location at the top of the stack. save Store load Retrieve Flow Control (IMP: [LF]) Flow control operations are also common. Subroutines are marked by labels, as well as the targets of conditional and unconditional jumps, by which loops can be implemented. Programs must be ended by means of [LF][LF][LF] so that the interpreter can exit cleanly. L: Mark a location in the program call L Call a subroutine goto L Jump unconditionally to a label if=0 L Jump to a label if the top of the stack is zero if<0 L Jump to a label if the top of the stack is negative return End a subroutine and transfer control back to the caller halt End the program I/O (IMP: [Tab][LF]) Finally, we need to be able to interact with the user. There are IO instructions for reading and writing numbers and individual characters. With these, string manipulation routines can be written. The read instructions take the heap address in which to store the result from the top of the stack. print chr Output the character at the top of the stack print int Output the number at the top of the stack input chr Read a character and place it in the location given by the top of the stack input int Read a number and place it in the location given by the top of the stack Question: How would you redesign, rewrite, or rename the previous mnemonics and for what reasons?

    Read the article

  • Test whether pixel is inside the blobs for ofxOpenCV

    - by mia
    I am doing an application of the concept of the dodgeball and need to test of the pixel of the ball is in the blobs capture(which is the image of the player) I am stucked and ran out of idea of how to implement it. I manage to do a little progress which have the blobs but I not sure how to test it. Please help. I am a newbie who in a desperate condition. Thank you. This is some of my code. void testApp::setup(){ #ifdef _USE_LIVE_VIDEO vidGrabber.setVerbose(true); vidGrabber.initGrabber(widthS,heightS); #else vidPlayer.loadMovie("fingers.mov"); vidPlayer.play(); #endif widthS = 320; heightS = 240; colorImg.allocate(widthS,heightS); grayImage.allocate(widthS,heightS); grayBg.allocate(widthS,heightS); grayDiff.allocate(widthS,heightS); ////<---what I want bLearnBakground = true; threshold = 80; //////////circle////////////// counter = 0; radius = 0; circlePosX = 100; circlePosY=200; } void testApp::update(){ ofBackground(100,100,100); bool bNewFrame = false; #ifdef _USE_LIVE_VIDEO vidGrabber.grabFrame(); bNewFrame = vidGrabber.isFrameNew(); #else vidPlayer.idleMovie(); bNewFrame = vidPlayer.isFrameNew(); #endif if (bNewFrame){ if (bLearnBakground == true){ grayBg = grayImage; // the = sign copys the pixels from grayImage into grayBg (operator overloading) bLearnBakground = false; } #ifdef _USE_LIVE_VIDEO colorImg.setFromPixels(vidGrabber.getPixels(),widthS,heightS); #else colorImg.setFromPixels(vidPlayer.getPixels(),widthS,heightS); #endif grayImage = colorImg; grayDiff.absDiff(grayBg, grayImage); grayDiff.threshold(threshold); contourFinder.findContours(grayDiff, 20, (340*240)/3, 10, true); // find holes } ////////////circle//////////////////// counter = counter + 0.05f; if(radius>=50){ circlePosX = ofRandom(10,300); circlePosY = ofRandom(10,230); } radius = 5 + 3*(counter); } void testApp::draw(){ // draw the incoming, the grayscale, the bg and the thresholded difference ofSetColor(0xffffff); //white colour grayDiff.draw(10,10);// draw start from point (0,0); // we could draw the whole contour finder // or, instead we can draw each blob individually, // this is how to get access to them: for (int i = 0; i < contourFinder.nBlobs; i++){ contourFinder.blobs[i].draw(10,10); } ///////////////circle////////////////////////// //let's draw a circle: ofSetColor(0,0,255); char buffer[255]; float a = radius; sprintf(buffer,"radius = %i",a); ofDrawBitmapString(buffer, 120, 300); if(radius>=50) { ofSetColor(255,255,255); counter = 0; } else{ ofSetColor(255,0,0); } ofFill(); ofCircle(circlePosX,circlePosY,radius); }

    Read the article

  • STL find performs bettern than hand-crafter loop

    - by dusha
    Hello all, I have some question. Given the following C++ code fragment: #include <boost/progress.hpp> #include <vector> #include <algorithm> #include <numeric> #include <iostream> struct incrementor { incrementor() : curr_() {} unsigned int operator()() { return curr_++; } private: unsigned int curr_; }; template<class Vec> char const* value_found(Vec const& v, typename Vec::const_iterator i) { return i==v.end() ? "no" : "yes"; } template<class Vec> typename Vec::const_iterator find1(Vec const& v, typename Vec::value_type val) { return find(v.begin(), v.end(), val); } template<class Vec> typename Vec::const_iterator find2(Vec const& v, typename Vec::value_type val) { for(typename Vec::const_iterator i=v.begin(), end=v.end(); i<end; ++i) if(*i==val) return i; return v.end(); } int main() { using namespace std; typedef vector<unsigned int>::const_iterator iter; vector<unsigned int> vec; vec.reserve(10000000); boost::progress_timer pt; generate_n(back_inserter(vec), vec.capacity(), incrementor()); //added this line, to avoid any doubts, that compiler is able to // guess the data is sorted random_shuffle(vec.begin(), vec.end()); cout << "value generation required: " << pt.elapsed() << endl; double d; pt.restart(); iter found=find1(vec, vec.capacity()); d=pt.elapsed(); cout << "first search required: " << d << endl; cout << "first search found value: " << value_found(vec, found)<< endl; pt.restart(); found=find2(vec, vec.capacity()); d=pt.elapsed(); cout << "second search required: " << d << endl; cout << "second search found value: " << value_found(vec, found)<< endl; return 0; } On my machine (Intel i7, Windows Vista) STL find (call via find1) runs about 10 times faster than the hand-crafted loop (call via find2). I first thought that Visual C++ performs some kind of vectorization (may be I am mistaken here), but as far as I can see assembly does not look the way it uses vectorization. Why is STL loop faster? Hand-crafted loop is identical to the loop from the STL-find body. I was asked to post program's output. Without shuffle: value generation required: 0.078 first search required: 0.008 first search found value: no second search required: 0.098 second search found value: no With shuffle (caching effects): value generation required: 1.454 first search required: 0.009 first search found value: no second search required: 0.044 second search found value: no Many thanks, dusha. P.S. I return the iterator and write out the result (found or not), because I would like to prevent compiler optimization, that it thinks the loop is not required at all. The searched value is obviously not in the vector.

    Read the article

  • How to convert image to bitmap code for bluetooth print in iphone

    - by John Patel
    I am interested to print image from iPhone programmatically using bluetooth printer device. In one of the sample code I have implemented code for Text print but in that sample I am not getting how to convert image into format, like unsigned char buffer3[796]={ 0x55 , 0x66 , 0x77 , 0x88 , 0x44 , 0x1B , 0x58 , 0x31 , 0x19, 0x20, 0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x80 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x01 ,0xC0 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x01 ,0x80 ,0x00 ,0x03 ,0x60 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x03 ,0xA0 ,0x00 ,0x07 ,0xB0 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x05 ,0x60 ,0x00 ,0x07 ,0xD8 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x05 ,0xA0 ,0x00 ,0x13 ,0xEC ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x04 ,0x20 ,0x00 ,0x29 ,0xF4 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x03 ,0xC0 ,0x00 ,0x64 ,0xF9 ,0x00 ,0x0F ,0xFF ,0x9C ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFC ,0x7F ,0xF9 ,0xC0 ,0x3D ,0xFF ,0xF1 ,0xFF ,0xE3 ,0xFF ,0xC0 ,0x00 ,0x00 ,0xF2 ,0x73 ,0x80 ,0x0F ,0xFF ,0x9C ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFE ,0x7F ,0xFD ,0xE0 ,0x3D ,0xFF ,0xF1 ,0xFF ,0xE3 ,0xFF ,0xC0 ,0x00 ,0x00 ,0x79 ,0x26 ,0xC0 ,0x0F ,0xFF ,0xDC ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFE ,0xFF ,0xFD ,0xF0 ,0x7D ,0xFF ,0xFB ,0xFF ,0xF7 ,0xFF ,0xE0 ,0x00 ,0x03 ,0x3C ,0x8F ,0x60 ,0x0C ,0x01 ,0xDC ,0x01 ,0xC0 ,0x19 ,0x80 ,0x00 ,0x70 ,0x0E ,0xE0 ,0x1D ,0xF0 ,0x7D ,0x80 ,0x3B ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x04 ,0x9E ,0x8F ,0xB0 ,0x0E ,0x01 ,0xDC ,0x01 ,0xC0 ,0x19 ,0x80 ,0x00 ,0x70 ,0x0E ,0xE0 ,0x1D ,0xF8 ,0xFD ,0x80 ,0x33 ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x0E ,0x4F ,0x27 ,0xD8 ,0x0F ,0xFF ,0x9C ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFC ,0xE0 ,0x1D ,0xF9 ,0xFD ,0xFF ,0xF3 ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x0F ,0x26 ,0x53 ,0xC8 ,0x0F ,0xFF ,0x9C ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFC ,0xEF ,0xFD ,0xDD ,0xDD ,0xFF ,0xF3 ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x07 ,0x90 ,0xC9 ,0xF0 ,0x0F ,0xFF ,0xDC ,0x01 ,0xC0 ,0x19 ,0xFF ,0xC0 ,0x7F ,0xFE ,0xEF ,0xFD ,0xDF ,0x9D ,0xFF ,0xFB ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x03 ,0xC9 ,0xE4 ,0xE0 ,0x0C ,0x00 ,0xDC ,0x01 ,0xC0 ,0x19 ,0x80 ,0x00 ,0x70 ,0x06 ,0xE7 ,0xFD ,0xCF ,0x9D ,0x80 ,0x3B ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x01 ,0xF0 ,0xF2 ,0x40 ,0x0E ,0x01 ,0xDC ,0x00 ,0xC0 ,0x19 ,0x80 ,0x00 ,0x70 ,0x0E ,0xE0 ,0x1D ,0xCF ,0x1D ,0x80 ,0x3B ,0x80 ,0x77 ,0x00 ,0xE0 ,0x00 ,0x00 ,0xE6 ,0x79 ,0x00 ,0x0F ,0xFF ,0xDF ,0xFC ,0xFF ,0xF9 ,0xFF ,0xC0 ,0x7F ,0xFE ,0xE0 ,0x1D ,0xC7 ,0x1D ,0xFF ,0xFB ,0xFF ,0xF7 ,0xFF ,0xE0 ,0x00 ,0x00 ,0x49 ,0x3D ,0x00 ,0x0F ,0xFF ,0x9F ,0xFC ,0xFF ,0xF9 ,0xFF ,0xC0 ,0x7F ,0xFE ,0xE0 ,0x1D ,0xC2 ,0x1D ,0xFF ,0xF1 ,0xFF ,0xE3 ,0xFF ,0xC0 ,0x00 ,0x00 ,0x1C ,0x9E ,0x00 ,0x0F ,0xFF ,0x1F ,0xFC ,0x7F ,0xE1 ,0xFF ,0xC0 ,0x7F ,0xFC ,0xE0 ,0x1D ,0xC0 ,0x1D ,0xFF ,0xE0 ,0xFF ,0xC1 ,0xFF ,0x80 ,0x00 ,0x00 ,0x1E ,0x4C ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x0F ,0x20 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x07 ,0x90 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x03 ,0xE0 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x01 ,0xC0 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x80 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 }; //[self addLabel:@"buffer3 is selected"]; [[session outputStream] write:(const uint8_t *)buffer3 maxLength:796];//send print package*/ This is sample code for Image print I am not able to print any other image because I am not having idea how to convert UIImage or NSData to the below mentioned Bit code. If any proper step by step method to do Image to bitmap conversion, then please let me know this.

    Read the article

  • map<string, vector<string>> reassignment of vector value

    - by user2950936
    I am trying to write a program that takes lines from an input file, sorts the lines into 'signatures' for the purpose of combining all words that are anagrams of each other. I have to use a map, storing the 'signatures' as the keys and storing all words that match those signatures into a vector of strings. Afterwards I must print all words that are anagrams of each other on the same line. Here is what I have so far: #include <iostream> #include <string> #include <algorithm> #include <map> #include <fstream> using namespace std; string signature(const string&); void printMap(const map<string, vector<string>>&); int main(){ string w1,sig1; vector<string> data; map<string, vector<string>> anagrams; map<string, vector<string>>::iterator it; ifstream myfile; myfile.open("words.txt"); while(getline(myfile, w1)) { sig1=signature(w1); anagrams[sig1]=data.push_back(w1); //to my understanding this should always work, } //either by inserting a new element/key or //by pushing back the new word into the vector<string> data //variable at index sig1, being told that the assignment operator //cannot be used in this way with these data types myfile.close(); printMap(anagrams); return 0; } string signature(const string& w) { string sig; sig=sort(w.begin(), w.end()); return sig; } void printMap(const map& m) { for(string s : m) { for(int i=0;i<m->second.size();i++) cout << m->second.at(); cout << endl; } } The first explanation is working, didn't know it was that simple! However now my print function is giving me: prob2.cc: In function âvoid printMap(const std::map<std::basic_string<char>, std::vector<std::basic_string<char> > >&)â: prob2.cc:43:36: error: cannot bind âstd::basic_ostream<char>::__ostream_type {aka std::basic_ostream<char>}â lvalue to âstd::basic_ostream<char>&&â In file included from /opt/centos/devtoolset-1.1/root/usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../include/c++/4.7.2/iostream:40:0, Tried many variations and they always complain about binding void printMap(const map<string, vector<string>> &mymap) { for(auto &c : mymap) cout << c.first << endl << c.second << endl; }

    Read the article

  • How to play audio in Java Application

    - by user577829
    I'm making a java application and I need to play audio. I'm playing mainly small sound files of my cannon firing (its a cannon shooting game) and the projectiles exploding, though I plan on having looping background music. I have found two different methods to accomplish this, but both don't work how I want. The first method is literally a method: public void playSoundFile(File file) {//http://java.ittoolbox.com/groups/technical-functional/java-l/sound-in-an-application-90681 try { //get an AudioInputStream AudioInputStream ais = AudioSystem.getAudioInputStream(file); //get the AudioFormat for the AudioInputStream AudioFormat audioformat = ais.getFormat(); System.out.println("Format: " + audioformat.toString()); System.out.println("Encoding: " + audioformat.getEncoding()); System.out.println("SampleRate:" + audioformat.getSampleRate()); System.out.println("SampleSizeInBits: " + audioformat.getSampleSizeInBits()); System.out.println("Channels: " + audioformat.getChannels()); System.out.println("FrameSize: " + audioformat.getFrameSize()); System.out.println("FrameRate: " + audioformat.getFrameRate()); System.out.println("BigEndian: " + audioformat.isBigEndian()); //ULAW format to PCM format conversion if ((audioformat.getEncoding() == AudioFormat.Encoding.ULAW) || (audioformat.getEncoding() == AudioFormat.Encoding.ALAW)) { AudioFormat newformat = new AudioFormat(AudioFormat.Encoding.PCM_SIGNED, audioformat.getSampleRate(), audioformat.getSampleSizeInBits() * 2, audioformat.getChannels(), audioformat.getFrameSize() * 2, audioformat.getFrameRate(), true); ais = AudioSystem.getAudioInputStream(newformat, ais); audioformat = newformat; } //checking for a supported output line DataLine.Info datalineinfo = new DataLine.Info(SourceDataLine.class, audioformat); if (!AudioSystem.isLineSupported(datalineinfo)) { //System.out.println("Line matching " + datalineinfo + " is not supported."); } else { //System.out.println("Line matching " + datalineinfo + " is supported."); //opening the sound output line SourceDataLine sourcedataline = (SourceDataLine) AudioSystem.getLine(datalineinfo); sourcedataline.open(audioformat); sourcedataline.start(); //Copy data from the input stream to the output data line int framesizeinbytes = audioformat.getFrameSize(); int bufferlengthinframes = sourcedataline.getBufferSize() / 8; int bufferlengthinbytes = bufferlengthinframes * framesizeinbytes; byte[] sounddata = new byte[bufferlengthinbytes]; int numberofbytesread = 0; while ((numberofbytesread = ais.read(sounddata)) != -1) { int numberofbytesremaining = numberofbytesread; sourcedataline.write(sounddata, 0, numberofbytesread); } } } catch (Exception e) { e.printStackTrace(); } } The problem with this is that my entire program stops until the sound file is finished, or at least nearly finished. The second method is this: File file = new File("Launch1.wav"); AudioClip clip; try { clip = JApplet.newAudioClip(file.toURL()); clip.play(); } catch (Exception e) { e.getMessage(); } The problem I have here is that every time the sound file ends early or doesn't play at all depending on where I place the code. Is their any way to play sound without the above mentioned problems? Am I doing something wrong? Any help is greatly appreciated.

    Read the article

  • destructor and copy-constructor calling..(why does it get called at these times)

    - by sil3nt
    Hello there, I have the following code #include <iostream> using namespace std; class Object { public: Object(int id){ cout << "Construct(" << id << ")" << endl; m_id = id; } Object(const Object& obj){ cout << "Copy-construct(" << obj.m_id << ")" << endl; m_id = obj.m_id; } Object& operator=(const Object& obj){ cout << m_id << " = " << obj.m_id << endl; m_id = obj.m_id; return *this; } ~Object(){ cout << "Destruct(" << m_id << ")" << endl; } private: int m_id; }; Object func(Object var) { return var; } int main(){ Object v1(1); cout << "( a )" << endl; Object v2(2); v2 = v1; cout << "( b )" << endl; Object v4 = v1; Object *pv5; pv5 = &v1; pv5 = new Object(5); cout << "( c )" << endl; func(v1); cout << "( d )" << endl; delete pv5; } which outputs Construct(1) ( a ) Construct(2) 2 = 1 ( b ) Copy-construct(1) Construct(5) ( c ) Copy-construct(1) Copy-construct(1) Destruct(1) Destruct(1) ( d ) Destruct(5) Destruct(1) Destruct(1) Destruct(1) I have some issues with this, firstly why does Object v4 = v1; call the copy constructor and produce Copy-construct(1) after the printing of ( b ). Also after the printing of ( c ) the copy-constructor is again called twice?, Im not certain of how this function works to produce that Object func(Object var) { return var; } and just after that Destruct(1) gets called twice before ( d ) is printed. sorry for the long question, I'm confused with the above.

    Read the article

  • Make interchangeable class types via pointer casting only, without having to allocate any new objects?

    - by HostileFork
    UPDATE: I do appreciate "don't want that, want this instead" suggestions. They are useful, especially when provided in context of the motivating scenario. Still...regardless of goodness/badness, I've become curious to find a hard-and-fast "yes that can be done legally in C++11" vs "no it is not possible to do something like that". I want to "alias" an object pointer as another type, for the sole purpose of adding some helper methods. The alias cannot add data members to the underlying class (in fact, the more I can prevent that from happening the better!) All aliases are equally applicable to any object of this type...it's just helpful if the type system can hint which alias is likely the most appropriate. There should be no information about any specific alias that is ever encoded in the underlying object. Hence, I feel like you should be able to "cheat" the type system and just let it be an annotation...checked at compile time, but ultimately irrelevant to the runtime casting. Something along these lines: Node<AccessorFoo>* fooPtr = Node<AccessorFoo>::createViaFactory(); Node<AccessorBar>* barPtr = reinterpret_cast< Node<AccessorBar>* >(fooPtr); Under the hood, the factory method is actually making a NodeBase class, and then using a similar reinterpret_cast to return it as a Node<AccessorFoo>*. The easy way to avoid this is to make these lightweight classes that wrap nodes and are passed around by value. Thus you don't need casting, just Accessor classes that take the node handle to wrap in their constructor: AccessorFoo foo (NodeBase::createViaFactory()); AccessorBar bar (foo.getNode()); But if I don't have to pay for all that, I don't want to. That would involve--for instance--making a special accessor type for each sort of wrapped pointer (AccessorFooShared, AccessorFooUnique, AccessorFooWeak, etc.) Having these typed pointers being aliased for one single pointer-based object identity is preferable, and provides a nice orthogonality. So back to that original question: Node<AccessorFoo>* fooPtr = Node<AccessorFoo>::createViaFactory(); Node<AccessorBar>* barPtr = reinterpret_cast< Node<AccessorBar>* >(fooPtr); Seems like there would be some way to do this that might be ugly but not "break the rules". According to ISO14882:2011(e) 5.2.10-7: An object pointer can be explicitly converted to an object pointer of a different type.70 When a prvalue v of type "pointer to T1" is converted to the type "pointer to cv T2", the result is static_cast(static_cast(v)) if both T1 and T2 are standard-layout types (3.9) and the alignment requirements of T2 are no stricter than those of T1, or if either type is void. Converting a prvalue of type "pointer to T1" to the type "pointer to T2" (where T1 and T2 are object types and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the original pointer value. The result of any other such pointer conversion is unspecified. Drilling into the definition of a "standard-layout class", we find: has no non-static data members of type non-standard-layout-class (or array of such types) or reference, and has no virtual functions (10.3) and no virtual base classes (10.1), and has the same access control (clause 11) for all non-static data members, and has no non-standard-layout base classes, and either has no non-static data member in the most-derived class and at most one base class with non-static data members, or has no base classes with non-static data members, and has no base classes of the same type as the first non-static data member. Sounds like working with something like this would tie my hands a bit with no virtual methods in the accessors or the node. Yet C++11 apparently has std::is_standard_layout to keep things checked. Can this be done safely? Appears to work in gcc-4.7, but I'd like to be sure I'm not invoking undefined behavior.

    Read the article

  • How do I learn algorithms?

    - by Panthe
    Brief History: Just graduated high school, learned a bit of python and C++, have no friends with any helpful computer knowledge at all. Out of anyone i met in my school years I was probably the biggest nerd, but no one really knew. I consider my self to have a vast amount of knowledge on computers and tech then the average person. built/fixed tons of computers, and ability to troubleshoot pretty much any problem I came across. Now that high school is over, Ive really been thinking about my career. Loving, living computers for the past 15 years of my life I decided to take my ability's and try to learn computer programming, why I didn't start earlier I don't know, seems to be big mistake on my part... Doing some research I concluded that Python was the first programming language I should learn, since it was high level and easier to understand then C++ and Java. I also knew that to become good at what I did I needed to know more then just 2 or 3 languages, which didn't seem like a big problem considering once I learned the way Python worked, mainly syntax changed, and the rest would come naturally. I watched a couple of youtube videos, downloaded some book pdf's and snooped around from some tutorials here and there to get the hang of what to do. A two solid weeks had passed of trying to understand the syntax, create small programs that used the basic functions and understanding how it worked, I think i have got the hang of it. It breaks down into what ive been dealing with all this time (although i kinda knew) is that, input,output, loops, functions and other things derived from 0's and 1's storing data and recalling it, ect. (A VERY BASIC IDEA). Ive been able to create small programs, Hangman, file storing, temperature conversion, Caeser Cipher decode/encoding, Fibonacci Sequence and more, which i can create and understand how each work. Being 2 weeks into this, I have learned alot. Nothing at all compared to what i should be lear ning in the years to come if i get a grip on what I'm doing. While doing these programs I wont stop untill I've done doing a practice problem on a book, which embarresing enough will take me a couple hour depending on the complexity of it. I absolutly will not put aside the challenge until its complete, WHICH CAN BE EXTREMELY DRAINING, ive tried most problems without cheating and reached success, which makes me feel extremely proud of my self after completing something after much trial and error. After all this I have met the demon, alogrithm's which seem to be key to effiecent code. I cant seem to rap my head around some of the computer codes people put out there using numbers, and sometimes even basic functions, I have been able to understand them after a while but i know there are alot more complex things to come, considering my self smart, functions that require complex codes, actually hurt my brain. NOTHING EVER IN LIFE HURT MY BRAIN....... not even math classes in highschool, trying to understand some of the stuff people put out there makes me feel like i have a mental disadvantage lol... i still walk forward though, crossing my fingers that the understanding will come with time. Sorry if is this is long i just wish someone takes all these things into consideration when answering my question. even through all these downsides im still pushing through and continuing to try and get good at this, i know reading these tutorials wont make me any good unless i can become creative and make my own, understand other peoples programs, so this leads me to the simple question i could have asked in the beginning..... WHERE IN THE WORLD DO I START ? Ive been trying to find out how to understand some of the open source projects, how i can work with experianced coders to learn from them and help them, but i dont think thats even possible by the way how far people's knowledge is compared to me, i have no freinds who i can learn from, can someone help me and guide me into the right direction.. i have a huge motivation to get good at coding, anything information would be extremely helpful

    Read the article

  • Problems with passing an anonymous temporary function-object to a templatized constructor.

    - by Akanksh
    I am trying to attach a function-object to be called on destruction of a templatized class. However, I can not seem to be able to pass the function-object as a temporary. The warning I get is (if the comment the line xi.data = 5;): warning C4930: 'X<T> xi2(writer (__cdecl *)(void))': prototyped function not called (was a variable definition intended?) with [ T=int ] and if I try to use the constructed object, I get a compilation error saying: error C2228: left of '.data' must have class/struct/union I apologize for the lengthy piece of code, but I think all the components need to be visible to assess the situation. template<typename T> struct Base { virtual void run( T& ){} virtual ~Base(){} }; template<typename T, typename D> struct Derived : public Base<T> { virtual void run( T& t ) { D d; d(t); } }; template<typename T> struct X { template<typename R> X(const R& r) { std::cout << "X(R)" << std::endl; ptr = new Derived<T,R>(); } X():ptr(0) { std::cout << "X()" << std::endl; } ~X() { if(ptr) { ptr->run(data); delete ptr; } else { std::cout << "no ptr" << std::endl; } } Base<T>* ptr; T data; }; struct writer { template<typename T> void operator()( const T& i ) { std::cout << "T : " << i << std::endl; } }; int main() { { writer w; X<int> xi2(w); //X<int> xi2(writer()); //This does not work! xi2.data = 15; } return 0; }; The reason I am trying this out is so that I can "somehow" attach function-objects types with the objects without keeping an instance of the function-object itself within the class. Thus when I create an object of class X, I do not have to keep an object of class writer within it, but only a pointer to Base<T> (I'm not sure if I need the <T> here, but for now its there). The problem is that I seem to have to create an object of writer and then pass it to the constructor of X rather than call it like X<int> xi(writer(); I might be missing something completely stupid and obvious here, any suggestions?

    Read the article

  • Defend PHP; convince me it isn't horrible

    - by Jason L
    I made a tongue-in-cheek comment in another question thread calling PHP a terrible language and it got down-voted like crazy. Apparently there are lots of people here who love PHP. So I'm genuinely curious. What am I missing? What makes PHP a good language? Here are my reasons for disliking it: PHP has inconsistent naming of built-in and library functions. Predictable naming patterns are important in any design. PHP has inconsistent parameter ordering of built-in functions, eg array_map vs. array_filter which is annoying in the simple cases and raises all sorts of unexpected behaviour or worse. The PHP developers constantly deprecate built-in functions and lower-level functionality. A good example is when they deprecated pass-by-reference for functions. This created a nightmare for anyone doing, say, function callbacks. A lack of consideration in redesign. The above deprecation eliminated the ability to, in many cases, provide default keyword values for functions. They fixed this in PHP 5, but they deprecated the pass-by-reference in PHP 4! Poor execution of name spaces (formerly no name spaces at all). Now that name spaces exist, what do we use as the dereference character? Backslash! The character used universally for escaping, even in PHP! Overly-broad implicit type conversion leads to bugs. I have no problem with implicit conversions of, say, float to integer or back again. But PHP (last I checked) will happily attempt to magically convert an array to an integer. Poor recursion performance. Recursion is a fundamentally important tool for writing in any language; it can make complex algorithms far simpler. Poor support is inexcusable. Functions are case insensitive. I have no idea what they were thinking on this one. A programming language is a way to specify behavior to both a computer and a reader of the code without ambiguity. Case insensitivity introduces much ambiguity. PHP encourages (practically requires) a coupling of processing with presentation. Yes, you can write PHP that doesn't do so, but it's actually easier to write code in the incorrect (from a sound design perspective) manner. PHP performance is abysmal without caching. Does anyone sell a commercial caching product for PHP? Oh, look, the designers of PHP do. Worst of all, PHP convinces people that designing web applications is easy. And it does indeed make much of the effort involved much easier. But the fact is, designing a web application that is both secure and efficient is a very difficult task. By convincing so many to take up programming, PHP has taught an entire subgroup of programmers bad habits and bad design. It's given them access to capabilities that they lack the understanding to use safely. This has led to PHP's reputation as being insecure. (However, I will readily admit that PHP is no more or less secure than any other web programming language.) What is it that I'm missing about PHP? I'm seeing an organically-grown, poorly-managed mess of a language that's spawning poor programmers. So convince me otherwise!

    Read the article

  • How can I pipe two Perl CORE::system commands in a cross-platform way?

    - by Pedro Silva
    I'm writing a System::Wrapper module to abstract away from CORE::system and the qx operator. I have a serial method that attempts to connect command1's output to command2's input. I've made some progress using named pipes, but POSIX::mkfifo is not cross-platform. Here's part of what I have so far (the run method at the bottom basically calls system): package main; my $obj1 = System::Wrapper->new( interpreter => 'perl', arguments => [-pe => q{''}], input => ['input.txt'], description => 'Concatenate input.txt to STDOUT', ); my $obj2 = System::Wrapper->new( interpreter => 'perl', arguments => [-pe => q{'$_ = reverse $_}'}], description => 'Reverse lines of input input', output => { '>' => 'output' }, ); $obj1->serial( $obj2 ); package System::Wrapper; #... sub serial { my ($self, @commands) = @_; eval { require POSIX; POSIX->import(); require threads; }; my $tmp_dir = File::Spec->tmpdir(); my $last = $self; my @threads; push @commands, $self; for my $command (@commands) { croak sprintf "%s::serial: type of args to serial must be '%s', not '%s'", ref $self, ref $self, ref $command || $command unless ref $command eq ref $self; my $named_pipe = File::Spec->catfile( $tmp_dir, int \$command ); POSIX::mkfifo( $named_pipe, 0777 ) or croak sprintf "%s::serial: couldn't create named pipe %s: %s", ref $self, $named_pipe, $!; $last->output( { '>' => $named_pipe } ); $command->input( $named_pipe ); push @threads, threads->new( sub{ $last->run } ); $last = $command; } $_->join for @threads; } #... My specific questions: Is there an alternative to POSIX::mkfifo that is cross-platform? Win32 named pipes don't work, as you can't open those as regular files, neither do sockets, for the same reasons. 2. The above doesn't quite work; the two threads get spawned correctly, but nothing flows across the pipe. I suppose that might have something to do with pipe deadlocking or output buffering. What throws me off is that when I run those two commands in the actual shell, everything works as expected. Point 2 is solved; a -p fifo file test was not testing the correct file.

    Read the article

< Previous Page | 188 189 190 191 192 193 194 195 196 197 198 199  | Next Page >