Search Results

Search found 27973 results on 1119 pages for 'power point vba'.

Page 195/1119 | < Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • C#/.NET Little Wonders: ConcurrentBag and BlockingCollection

    - by James Michael Hare
    In the first week of concurrent collections, began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  The last post discussed the ConcurrentDictionary<T> .  Finally this week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see C#/.NET Little Wonders: A Redux. Recap As you'll recall from the previous posts, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  With .NET 4.0, a new breed of collections was born in the System.Collections.Concurrent namespace.  Of these, the final concurrent collection we will examine is the ConcurrentBag and a very useful wrapper class called the BlockingCollection. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this informative whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentBag<T> – Thread-safe unordered collection. Unlike the other concurrent collections, the ConcurrentBag<T> has no non-concurrent counterpart in the .NET collections libraries.  Items can be added and removed from a bag just like any other collection, but unlike the other collections, the items are not maintained in any order.  This makes the bag handy for those cases when all you care about is that the data be consumed eventually, without regard for order of consumption or even fairness – that is, it’s possible new items could be consumed before older items given the right circumstances for a period of time. So why would you ever want a container that can be unfair?  Well, to look at it another way, you can use a ConcurrentQueue and get the fairness, but it comes at a cost in that the ordering rules and synchronization required to maintain that ordering can affect scalability a bit.  Thus sometimes the bag is great when you want the fastest way to get the next item to process, and don’t care what item it is or how long its been waiting. The way that the ConcurrentBag works is to take advantage of the new ThreadLocal<T> type (new in System.Threading for .NET 4.0) so that each thread using the bag has a list local to just that thread.  This means that adding or removing to a thread-local list requires very low synchronization.  The problem comes in where a thread goes to consume an item but it’s local list is empty.  In this case the bag performs “work-stealing” where it will rob an item from another thread that has items in its list.  This requires a higher level of synchronization which adds a bit of overhead to the take operation. So, as you can imagine, this makes the ConcurrentBag good for situations where each thread both produces and consumes items from the bag, but it would be less-than-idea in situations where some threads are dedicated producers and the other threads are dedicated consumers because the work-stealing synchronization would outweigh the thread-local optimization for a thread taking its own items. Like the other concurrent collections, there are some curiosities to keep in mind: IsEmpty(), Count, ToArray(), and GetEnumerator() lock collection Each of these needs to take a snapshot of whole bag to determine if empty, thus they tend to be more expensive and cause Add() and Take() operations to block. ToArray() and GetEnumerator() are static snapshots Because it is based on a snapshot, will not show subsequent updates after snapshot. Add() is lightweight Since adding to the thread-local list, there is very little overhead on Add. TryTake() is lightweight if items in thread-local list As long as items are in the thread-local list, TryTake() is very lightweight, much more so than ConcurrentStack() and ConcurrentQueue(), however if the local thread list is empty, it must steal work from another thread, which is more expensive. Remember, a bag is not ideal for all situations, it is mainly ideal for situations where a process consumes an item and either decomposes it into more items to be processed, or handles the item partially and places it back to be processed again until some point when it will complete.  The main point is that the bag works best when each thread both takes and adds items. For example, we could create a totally contrived example where perhaps we want to see the largest power of a number before it crosses a certain threshold.  Yes, obviously we could easily do this with a log function, but bare with me while I use this contrived example for simplicity. So let’s say we have a work function that will take a Tuple out of a bag, this Tuple will contain two ints.  The first int is the original number, and the second int is the last multiple of that number.  So we could load our bag with the initial values (let’s say we want to know the last multiple of each of 2, 3, 5, and 7 under 100. 1: var bag = new ConcurrentBag<Tuple<int, int>> 2: { 3: Tuple.Create(2, 1), 4: Tuple.Create(3, 1), 5: Tuple.Create(5, 1), 6: Tuple.Create(7, 1) 7: }; Then we can create a method that given the bag, will take out an item, apply the multiplier again, 1: public static void FindHighestPowerUnder(ConcurrentBag<Tuple<int,int>> bag, int threshold) 2: { 3: Tuple<int,int> pair; 4:  5: // while there are items to take, this will prefer local first, then steal if no local 6: while (bag.TryTake(out pair)) 7: { 8: // look at next power 9: var result = Math.Pow(pair.Item1, pair.Item2 + 1); 10:  11: if (result < threshold) 12: { 13: // if smaller than threshold bump power by 1 14: bag.Add(Tuple.Create(pair.Item1, pair.Item2 + 1)); 15: } 16: else 17: { 18: // otherwise, we're done 19: Console.WriteLine("Highest power of {0} under {3} is {0}^{1} = {2}.", 20: pair.Item1, pair.Item2, Math.Pow(pair.Item1, pair.Item2), threshold); 21: } 22: } 23: } Now that we have this, we can load up this method as an Action into our Tasks and run it: 1: // create array of tasks, start all, wait for all 2: var tasks = new[] 3: { 4: new Task(() => FindHighestPowerUnder(bag, 100)), 5: new Task(() => FindHighestPowerUnder(bag, 100)), 6: }; 7:  8: Array.ForEach(tasks, t => t.Start()); 9:  10: Task.WaitAll(tasks); Totally contrived, I know, but keep in mind the main point!  When you have a thread or task that operates on an item, and then puts it back for further consumption – or decomposes an item into further sub-items to be processed – you should consider a ConcurrentBag as the thread-local lists will allow for quick processing.  However, if you need ordering or if your processes are dedicated producers or consumers, this collection is not ideal.  As with anything, you should performance test as your mileage will vary depending on your situation! BlockingCollection<T> – A producers & consumers pattern collection The BlockingCollection<T> can be treated like a collection in its own right, but in reality it adds a producers and consumers paradigm to any collection that implements the interface IProducerConsumerCollection<T>.  If you don’t specify one at the time of construction, it will use a ConcurrentQueue<T> as its underlying store. If you don’t want to use the ConcurrentQueue, the ConcurrentStack and ConcurrentBag also implement the interface (though ConcurrentDictionary does not).  In addition, you are of course free to create your own implementation of the interface. So, for those who don’t remember the producers and consumers classical computer-science problem, the gist of it is that you have one (or more) processes that are creating items (producers) and one (or more) processes that are consuming these items (consumers).  Now, the crux of the problem is that there is a bin (queue) where the produced items are placed, and typically that bin has a limited size.  Thus if a producer creates an item, but there is no space to store it, it must wait until an item is consumed.  Also if a consumer goes to consume an item and none exists, it must wait until an item is produced. The BlockingCollection makes it trivial to implement any standard producers/consumers process set by providing that “bin” where the items can be produced into and consumed from with the appropriate blocking operations.  In addition, you can specify whether the bin should have a limited size or can be (theoretically) unbounded, and you can specify timeouts on the blocking operations. As far as your choice of “bin”, for the most part the ConcurrentQueue is the right choice because it is fairly light and maximizes fairness by ordering items so that they are consumed in the same order they are produced.  You can use the concurrent bag or stack, of course, but your ordering would be random-ish in the case of the former and LIFO in the case of the latter. So let’s look at some of the methods of note in BlockingCollection: BoundedCapacity returns capacity of the “bin” If the bin is unbounded, the capacity is int.MaxValue. Count returns an internally-kept count of items This makes it O(1), but if you modify underlying collection directly (not recommended) it is unreliable. CompleteAdding() is used to cut off further adds. This sets IsAddingCompleted and begins to wind down consumers once empty. IsAddingCompleted is true when producers are “done”. Once you are done producing, should complete the add process to alert consumers. IsCompleted is true when producers are “done” and “bin” is empty. Once you mark the producers done, and all items removed, this will be true. Add() is a blocking add to collection. If bin is full, will wait till space frees up Take() is a blocking remove from collection. If bin is empty, will wait until item is produced or adding is completed. GetConsumingEnumerable() is used to iterate and consume items. Unlike the standard enumerator, this one consumes the items instead of iteration. TryAdd() attempts add but does not block completely If adding would block, returns false instead, can specify TimeSpan to wait before stopping. TryTake() attempts to take but does not block completely Like TryAdd(), if taking would block, returns false instead, can specify TimeSpan to wait. Note the use of CompleteAdding() to signal the BlockingCollection that nothing else should be added.  This means that any attempts to TryAdd() or Add() after marked completed will throw an InvalidOperationException.  In addition, once adding is complete you can still continue to TryTake() and Take() until the bin is empty, and then Take() will throw the InvalidOperationException and TryTake() will return false. So let’s create a simple program to try this out.  Let’s say that you have one process that will be producing items, but a slower consumer process that handles them.  This gives us a chance to peek inside what happens when the bin is bounded (by default, the bin is NOT bounded). 1: var bin = new BlockingCollection<int>(5); Now, we create a method to produce items: 1: public static void ProduceItems(BlockingCollection<int> bin, int numToProduce) 2: { 3: for (int i = 0; i < numToProduce; i++) 4: { 5: // try for 10 ms to add an item 6: while (!bin.TryAdd(i, TimeSpan.FromMilliseconds(10))) 7: { 8: Console.WriteLine("Bin is full, retrying..."); 9: } 10: } 11:  12: // once done producing, call CompleteAdding() 13: Console.WriteLine("Adding is completed."); 14: bin.CompleteAdding(); 15: } And one to consume them: 1: public static void ConsumeItems(BlockingCollection<int> bin) 2: { 3: // This will only be true if CompleteAdding() was called AND the bin is empty. 4: while (!bin.IsCompleted) 5: { 6: int item; 7:  8: if (!bin.TryTake(out item, TimeSpan.FromMilliseconds(10))) 9: { 10: Console.WriteLine("Bin is empty, retrying..."); 11: } 12: else 13: { 14: Console.WriteLine("Consuming item {0}.", item); 15: Thread.Sleep(TimeSpan.FromMilliseconds(20)); 16: } 17: } 18: } Then we can fire them off: 1: // create one producer and two consumers 2: var tasks = new[] 3: { 4: new Task(() => ProduceItems(bin, 20)), 5: new Task(() => ConsumeItems(bin)), 6: new Task(() => ConsumeItems(bin)), 7: }; 8:  9: Array.ForEach(tasks, t => t.Start()); 10:  11: Task.WaitAll(tasks); Notice that the producer is faster than the consumer, thus it should be hitting a full bin often and displaying the message after it times out on TryAdd(). 1: Consuming item 0. 2: Consuming item 1. 3: Bin is full, retrying... 4: Bin is full, retrying... 5: Consuming item 3. 6: Consuming item 2. 7: Bin is full, retrying... 8: Consuming item 4. 9: Consuming item 5. 10: Bin is full, retrying... 11: Consuming item 6. 12: Consuming item 7. 13: Bin is full, retrying... 14: Consuming item 8. 15: Consuming item 9. 16: Bin is full, retrying... 17: Consuming item 10. 18: Consuming item 11. 19: Bin is full, retrying... 20: Consuming item 12. 21: Consuming item 13. 22: Bin is full, retrying... 23: Bin is full, retrying... 24: Consuming item 14. 25: Adding is completed. 26: Consuming item 15. 27: Consuming item 16. 28: Consuming item 17. 29: Consuming item 19. 30: Consuming item 18. Also notice that once CompleteAdding() is called and the bin is empty, the IsCompleted property returns true, and the consumers will exit. Summary The ConcurrentBag is an interesting collection that can be used to optimize concurrency scenarios where tasks or threads both produce and consume items.  In this way, it will choose to consume its own work if available, and then steal if not.  However, in situations where you want fair consumption or ordering, or in situations where the producers and consumers are distinct processes, the bag is not optimal. The BlockingCollection is a great wrapper around all of the concurrent queue, stack, and bag that allows you to add producer and consumer semantics easily including waiting when the bin is full or empty. That’s the end of my dive into the concurrent collections.  I’d also strongly recommend, once again, you read this excellent Microsoft white paper that goes into much greater detail on the efficiencies you can gain using these collections judiciously (here). Tweet Technorati Tags: C#,.NET,Concurrent Collections,Little Wonders

    Read the article

  • Ubuntu tweak and Mozilla (firefox and thunderbird) cache

    - by Avatar Parto
    I usually use Ubuntu tweak to do cleanup jobs on my PC. This includes apt and program cached data and old kernels. This goes alright for most programs except Mozilla based application - Firefox and Thunderbird. Ubuntu tweak doesn't seem to know where their cache folders are and always returns 'zero packages can be cleaned' even when the cache folder is full. Check screenshot below: I am looking for a way to clean up ALL my cache data and unneeded packages at one point. If someone knows how to change the ubuntu tweak cache folders for Firefox and Thunderbird, that would be perfect. I tried bleachbit last but it crashed my PC to a point I had to re-install Ubuntu. I am using Ubuntu tweak 0.8.6 on Ubuntu 13.04. Thanxs.

    Read the article

  • What Did You Do? is a Bad Question

    - by Ajarn Mark Caldwell
    Brian Moran (blog | Twitter) did a great presentation today for the PASS Professional Development Virtual Chapter on The Art of Questions.  One of the points that Brian made was that there are good questions and bad (or at least not-as-good) questions.  Good questions tend to open-up the conversation and engender positive reactions (perhaps even trust and respect) between the participants; and bad questions tend to close-down a conversation either through the narrow list of possible responses (e.g. strictly Yes/No) or through the negative reactions they can produce.  And this explains why I so frequently had problems troubleshooting real-time problems with users in the past.  I’ll explain that in more detail below, but before we go on, let me recommend that you watch the recording of Brian’s presentation to learn why the question Why is often problematic in the U.S. and yet we so often resort to it. For a short portion (3 years) of my career, I taught basic computer skills and Office applications in an adult vocational school, and this gave me ample opportunity to do live troubleshooting of user challenges with computers.  And like many people who ended up in computer related jobs, I also have had numerous times where I was called upon by less computer-savvy individuals to help them with some challenge they were having, whether it was part of my job or not.  One of the things that I noticed, especially during my time as a teacher, was that when I was helping somebody, typically the first question I would ask them was, “What did you do?”  This seemed to me like a good way to start my detective work trying to figure out what happened, what went wrong, how to fix it, and how to help the person avoid it again in the future.  I always asked it in a polite tone of voice as I was just trying to gather the facts before diving in deeper.  However; 99.999% of the time, I always got the same answer, “Nothing!”  For a long time this frustrated me because (remember I’m in detective mode at that point) I knew it could not possibly be true.  They HAD to have done SOMETHING…just tell me what were the last actions you took before this problem presented itself.  But no, they always stuck with “Nothing”.  At which point, with frustration growing, and not a little bit of disdain for their lack of helpfulness, I would usually ask them to move aside while I took over their machine and got them out of whatever they had gotten themselves into.  After a while I just grew used to the fact that this was the answer I would usually receive, but I always kept asking because for the .001% of the people who would actually tell me, I could then help them understand what went wrong and how to avoid it in the future. Now, after hearing Brian’s talk, I understand what the problem was.  Even though I meant to just be in an information gathering mode, the words I was using, “What did YOU do?” have such a strong negative connotation that people would instinctively go into defense-mode and stop sharing information that might make them look bad.  Many of them probably were not even consciously aware that they had gone on the defensive, but the self-preservation instinct, especially self-preservation of the ego, is so strong that people would end up there without even realizing it. So, if “What did you do” is a bad question, what would have been better?  Well, one suggestion that Brian makes in his talk is something along the lines of, “Can you tell me what led up to this?” or “what was happening on the computer right before this came up?”  It’s subtle, but the point is to take the focus off of the person and their behavior; instead depersonalizing it and talk about events from more of a 3rd-party observer point of view.  With this approach, people will be more likely to talk about what the computer did and what they did in response to it without feeling the interrogation spotlight is on them.  They are also more likely to mention other events that occurred around the same time that may or may not be related, but which could certainly help you troubleshoot a larger problem if it is not just user actions.  And that is the ultimate goal of your asking the questions.  So yes, it does matter how you ask the question; and there are such things as good questions and bad questions.  Excellent topic Brian!  Thanks for getting the thinking gears churning! (Cross-posted to the Professional Development Virtual Chapter blog.)

    Read the article

  • DNS add-on domain setup and redirect

    - by brian
    I have several domains which I'd like to point to another (I'll call it foo.com). A couple of things aren't entirely clear to me. First, the DNS. I'm using Kloxo/HyperVM. Do I need to create separate DNS entries for each domain? Or do I just create separate CNAME or other records under foo.com? I thought it was the latter but when I click on "Add CNAME" I'm prompted to fill in the subdomain portion of foo.com. The nameservers have already been set to point to my VPS. For the redirect, would the following be appropriate within the vhost conf for foo.com? ServerName www.foo.com ServerAlias foo.com foo.net foo.org bar.com bar.net bar.org RewriteCond %{HTTP_HOST} ^foo.com [NC] RewriteCond %{HTTP_HOST} *foo.net [NC,OR] RewriteCond %{HTTP_HOST} *foo.org [NC,OR] RewriteCond %{HTTP_HOST} *bar.com [NC,OR] RewriteCond %{HTTP_HOST} *bar.net [NC,OR] RewriteCond %{HTTP_HOST} *bar.org [NC] RewriteRule ^(.*)$ http://www.foo.com/$1 [R=301,NC] (The first condition is just to force the "www" part)

    Read the article

  • Typing commands into a terminal always returns "-bash: /usr/bin/python: is a directory"

    - by Artur Sapek
    I think I messed something up on my Ubuntu server while trying to upgrade to Python 2.7.2. Every time I type in a command that doesn't have a response, the default from bash is this: -bash: /usr/bin/python: is a directory Just like it would say if I typed the name of a directory. But this happens every time I enter a command that doesn't do anything. artur@SERVER:~$ dslkfjdsklfdshjk -bash: /usr/bin/python: is a directory I remember messing with the update-alternatives to point at python at some point, perhaps that could be it? Any inklings as to why this is happening? Related to this problem is also the fact that when I try using easy_install it tells me -bash: /usr/bin/easy_install: /usr/bin/python: bad interpeter: Permission denied /etc/fstab/ is set to exec. I've read that could fix the second problem but it hasn't.

    Read the article

  • Which comes first DNS or name servers?

    - by Thomas Clayson
    Which comes first? DNS or nameservers? Its just I'm editing a domain and want to point it to different hosting servers. Now, normally I'd just set the nameservers to the new hosting nameservers, but this doesn't seem to be working (the control panels not brilliant - doesn't say "accepted" or "success" - and whois searches are turning up nothing - although I should leave it a while longer). Anyway - the point is, in the DNS records there are two A records (one for " " and one for "www") which have an ip address associated with them. So this is what I don't understand. If I change the nameservers, do I have to remove the DNS records? Will name servers "overwrite" a DNS record? Or vice versa? Thank you.

    Read the article

  • You Couldn’t Write it !! ( part 1 )

    - by GrumpyOldDBA
    This post was inspired by a developer and I think illustrates the gulf that can sometimes exist between IT and the business. I should point out that this post is the diplomatic version! Initially I was sent a simple search for a person with a question about why the query plan showed a sort when there was no sort in the query and why did the sort show it was 40% of the query. ( The point about the sort belongs to another post some time. ) Easy answer to the duration was that this was a leading wild...(read more)

    Read the article

  • No VB6 to VS2010 direct upgrade path

    - by Chris Williams
    From the "is this really news?" department... From looking at the currently available versions of 2010, there is no direct upgrade path from VB6 to VS2010. Anyone still using VB6 and wishing to upgrade to VS2010 has two options:  Use the upgrade tool from an earlier version of VS (like 2005 or 2008) and then run the upgrade in VS2010 to get the rest of the way... or rewrite your code. I'll leave it as an exercise to the reader which is the better option. I'd like to take a moment to point out the obvious: A) If you're still using VB6 at this point, you probably don't care about VS2010 compatibility. B) Running your code through 2 upgrade wizards isn't going to result in anything resembling best practices. C) Bemoaning the lack of support in 2010 for a 12 year old version of an extinct programming language helps nobody. This public service announcement is brought to you by the letter C. Thank you.

    Read the article

  • Building Simple Workflows in Oozie

    - by dan.mcclary
    Introduction More often than not, data doesn't come packaged exactly as we'd like it for analysis. Transformation, match-merge operations, and a host of data munging tasks are usually needed before we can extract insights from our Big Data sources. Few people find data munging exciting, but it has to be done. Once we've suffered that boredom, we should take steps to automate the process. We want codify our work into repeatable units and create workflows which we can leverage over and over again without having to write new code. In this article, we'll look at how to use Oozie to create a workflow for the parallel machine learning task I described on Cloudera's site. Hive Actions: Prepping for Pig In my parallel machine learning article, I use data from the National Climatic Data Center to build weather models on a state-by-state basis. NCDC makes the data freely available as gzipped files of day-over-day observations stretching from the 1930s to today. In reading that post, one might get the impression that the data came in a handy, ready-to-model files with convenient delimiters. The truth of it is that I need to perform some parsing and projection on the dataset before it can be modeled. If I get more observations, I'll want to retrain and test those models, which will require more parsing and projection. This is a good opportunity to start building up a workflow with Oozie. I store the data from the NCDC in HDFS and create an external Hive table partitioned by year. This gives me flexibility of Hive's query language when I want it, but let's me put the dataset in a directory of my choosing in case I want to treat the same data with Pig or MapReduce code. CREATE EXTERNAL TABLE IF NOT EXISTS historic_weather(column 1, column2) PARTITIONED BY (yr string) STORED AS ... LOCATION '/user/oracle/weather/historic'; As new weather data comes in from NCDC, I'll need to add partitions to my table. That's an action I should put in the workflow. Similarly, the weather data requires parsing in order to be useful as a set of columns. Because of their long history, the weather data is broken up into fields of specific byte lengths: x bytes for the station ID, y bytes for the dew point, and so on. The delimiting is consistent from year to year, so writing SerDe or a parser for transformation is simple. Once that's done, I want to select columns on which to train, classify certain features, and place the training data in an HDFS directory for my Pig script to access. ALTER TABLE historic_weather ADD IF NOT EXISTS PARTITION (yr='2010') LOCATION '/user/oracle/weather/historic/yr=2011'; INSERT OVERWRITE DIRECTORY '/user/oracle/weather/cleaned_history' SELECT w.stn, w.wban, w.weather_year, w.weather_month, w.weather_day, w.temp, w.dewp, w.weather FROM ( FROM historic_weather SELECT TRANSFORM(...) USING '/path/to/hive/filters/ncdc_parser.py' as stn, wban, weather_year, weather_month, weather_day, temp, dewp, weather ) w; Since I'm going to prepare training directories with at least the same frequency that I add partitions, I should also add that to my workflow. Oozie is going to invoke these Hive actions using what's somewhat obviously referred to as a Hive action. Hive actions amount to Oozie running a script file containing our query language statements, so we can place them in a file called weather_train.hql. Starting Our Workflow Oozie offers two types of jobs: workflows and coordinator jobs. Workflows are straightforward: they define a set of actions to perform as a sequence or directed acyclic graph. Coordinator jobs can take all the same actions of Workflow jobs, but they can be automatically started either periodically or when new data arrives in a specified location. To keep things simple we'll make a workflow job; coordinator jobs simply require another XML file for scheduling. The bare minimum for workflow XML defines a name, a starting point, and an end point: <workflow-app name="WeatherMan" xmlns="uri:oozie:workflow:0.1"> <start to="ParseNCDCData"/> <end name="end"/> </workflow-app> To this we need to add an action, and within that we'll specify the hive parameters Also, keep in mind that actions require <ok> and <error> tags to direct the next action on success or failure. <action name="ParseNCDCData"> <hive xmlns="uri:oozie:hive-action:0.2"> <job-tracker>localhost:8021</job-tracker> <name-node>localhost:8020</name-node> <configuration> <property> <name>oozie.hive.defaults</name> <value>/user/oracle/weather_ooze/hive-default.xml</value> </property> </configuration> <script>ncdc_parse.hql</script> </hive> <ok to="WeatherMan"/> <error to="end"/> </action> There are a couple of things to note here: I have to give the FQDN (or IP) and port of my JobTracker and NameNode. I have to include a hive-default.xml file. I have to include a script file. The hive-default.xml and script file must be stored in HDFS That last point is particularly important. Oozie doesn't make assumptions about where a given workflow is being run. You might submit workflows against different clusters, or have different hive-defaults.xml on different clusters (e.g. MySQL or Postgres-backed metastores). A quick way to ensure that all the assets end up in the right place in HDFS is just to make a working directory locally, build your workflow.xml in it, and copy the assets you'll need to it as you add actions to workflow.xml. At this point, our local directory should contain: workflow.xml hive-defaults.xml (make sure this file contains your metastore connection data) ncdc_parse.hql Adding Pig to the Ooze Adding our Pig script as an action is slightly simpler from an XML standpoint. All we do is add an action to workflow.xml as follows: <action name="WeatherMan"> <pig> <job-tracker>localhost:8021</job-tracker> <name-node>localhost:8020</name-node> <script>weather_train.pig</script> </pig> <ok to="end"/> <error to="end"/> </action> Once we've done this, we'll copy weather_train.pig to our working directory. However, there's a bit of a "gotcha" here. My pig script registers the Weka Jar and a chunk of jython. If those aren't also in HDFS, our action will fail from the outset -- but where do we put them? The Jython script goes into the working directory at the same level as the pig script, because pig attempts to load Jython files in the directory from which the script executes. However, that's not where our Weka jar goes. While Oozie doesn't assume much, it does make an assumption about the Pig classpath. Anything under working_directory/lib gets automatically added to the Pig classpath and no longer requires a REGISTER statement in the script. Anything that uses a REGISTER statement cannot be in the working_directory/lib directory. Instead, it needs to be in a different HDFS directory and attached to the pig action with an <archive> tag. Yes, that's as confusing as you think it is. You can get the exact rules for adding Jars to the distributed cache from Oozie's Pig Cookbook. Making the Workflow Work We've got a workflow defined and have collected all the components we'll need to run. But we can't run anything yet, because we still have to define some properties about the job and submit it to Oozie. We need to start with the job properties, as this is essentially the "request" we'll submit to the Oozie server. In the same working directory, we'll make a file called job.properties as follows: nameNode=hdfs://localhost:8020 jobTracker=localhost:8021 queueName=default weatherRoot=weather_ooze mapreduce.jobtracker.kerberos.principal=foo dfs.namenode.kerberos.principal=foo oozie.libpath=${nameNode}/user/oozie/share/lib oozie.wf.application.path=${nameNode}/user/${user.name}/${weatherRoot} outputDir=weather-ooze While some of the pieces of the properties file are familiar (e.g., JobTracker address), others take a bit of explaining. The first is weatherRoot: this is essentially an environment variable for the script (as are jobTracker and queueName). We're simply using them to simplify the directives for the Oozie job. The oozie.libpath pieces is extremely important. This is a directory in HDFS which holds Oozie's shared libraries: a collection of Jars necessary for invoking Hive, Pig, and other actions. It's a good idea to make sure this has been installed and copied up to HDFS. The last two lines are straightforward: run the application defined by workflow.xml at the application path listed and write the output to the output directory. We're finally ready to submit our job! After all that work we only need to do a few more things: Validate our workflow.xml Copy our working directory to HDFS Submit our job to the Oozie server Run our workflow Let's do them in order. First validate the workflow: oozie validate workflow.xml Next, copy the working directory up to HDFS: hadoop fs -put working_dir /user/oracle/working_dir Now we submit the job to the Oozie server. We need to ensure that we've got the correct URL for the Oozie server, and we need to specify our job.properties file as an argument. oozie job -oozie http://url.to.oozie.server:port_number/ -config /path/to/working_dir/job.properties -submit We've submitted the job, but we don't see any activity on the JobTracker? All I got was this funny bit of output: 14-20120525161321-oozie-oracle This is because submitting a job to Oozie creates an entry for the job and places it in PREP status. What we got back, in essence, is a ticket for our workflow to ride the Oozie train. We're responsible for redeeming our ticket and running the job. oozie -oozie http://url.to.oozie.server:port_number/ -start 14-20120525161321-oozie-oracle Of course, if we really want to run the job from the outset, we can change the "-submit" argument above to "-run." This will prep and run the workflow immediately. Takeaway So, there you have it: the somewhat laborious process of building an Oozie workflow. It's a bit tedious the first time out, but it does present a pair of real benefits to those of us who spend a great deal of time data munging. First, when new data arrives that requires the same processing, we already have the workflow defined and ready to run. Second, as we build up a set of useful action definitions over time, creating new workflows becomes quicker and quicker.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • TechEd 2012: Day 3 &ndash; Morning TFS

    - by Tim Murphy
    My morning sessions for day three were dominated by Team Foundation Server.  This has been a hot topic for our clients lately, so this topic really stuck a chord. The speaker for the first session was from Boeing.  It was nice to hear how how a company mixes both agile and waterfall project management.   The approaches that he presented were very pragmatic.  For their needs reporting is the crucial part of their decision to use TFS.  This was interesting since this is probably the last aspect that most shops would think about. The challenge of getting users to adopt TFS was brought up by the audience.  As with the other discussion point he took a very level headed stance.  The approach he was prescribing was to eat the elephant a bite at a time instead of all at once.  If you try to convert you entire shop at once the culture shock will most likely kill the effort. Another key point he reminded us of is that you need to make sure that standards and compliance are taken into account when you setup TFS.  If you don’t implement a tool and processes around it that comply with the standards bodies that govern your business you are in for a world of hurt. Ultimately the reason they chose TFS was because it was the first tool that incorporated all the ALM features that they needed. Reduced licensing cost because of all the different tools they would need to buy to complete the same tasks.  They got to this point by doing an industry evaluation.  Although TFS came out on top he said that it still has a big gap is in the Java area.  Of course in this market there are vendors helping to close that gap. The second session was on how continuous feedback in agile is a new focus in VS2012.  The problems they intended to address included cycle time and average time to repair, root cause analysis. The speakers fired features at us as if they were firing a machine gun.  I will just say that I am looking forward to digging into the product after seeing this presentation.  Beyond that I will simply list some of the key features that caught my attention. Feature – Ability to link documents into tasks as artifacts Web access portal PowerPoint storyboards Exploratory testing Request feedback (allows users to record notes, screen shots and video/audio) See you after the second half. del.icio.us Tags: TechEd,TechEd 2012,TFS,Team Foundation Server

    Read the article

  • How do you administer cups remotely using the web interface?

    - by Evan
    I have an Ubuntu server in my apartment and I just got a printer, so it's time to share! In the past I've used CUPS on my Desktop and I'd just point the browsers to localhost:631 to set things up. Can I used the web based admin tools remotely? I've been playing with the /etc/cups/cupsd.conf file and am currently at the point where I can direct a browser on my LAN to server-ip:631 but I'm getting the 403 Forbidden error. If it's not possible or it's a bad idea for security reasons to allow remote administrator of CUPS, would it be possible to accomplish this using an SSH tunnel to the sever?

    Read the article

  • Experiments in Wackiness: Allowing percents, angle-brackets, and other naughty things in the ASP.NET

    - by The Official Microsoft IIS Site
    Just because you CAN do something doesn't mean you SHOULD. However, it's always nice to do something crazy so that you can better understand a system. Warning: There is no warranty implied here. I'm loading the gun and showing you where to point it. If you point it at your foot, that's your business. Safety mechanisms exist for a reason and if you're going to to use this tip to just "get an app to work" but you're not sure why it's broken and you're just...(read more)

    Read the article

  • Code Trivia #6

    - by João Angelo
    It’s time for yet another code trivia and it’s business as usual. What will the following program output to the console? using System; using System.Drawing; using System.Threading; class Program { [ThreadStatic] static Point Mark = new Point(1, 1); static void Main() { Thread.CurrentThread.Name = "A"; MoveMarkUp(); var helperThread = new Thread(MoveMarkUp) { Name = "B" }; helperThread.Start(); helperThread.Join(); } static void MoveMarkUp() { Mark.Y++; Console.WriteLine("{0}:{1}", Thread.CurrentThread.Name, Mark); } }

    Read the article

  • Should we exclude code for the code coverage analysis?

    - by romaintaz
    I'm working on several applications, mainly legacy ones. Currently, their code coverage is quite low: generally between 10 and 50%. Since several weeks, we have recurrent discussions with the Bangalore teams (main part of the development is made offshore in India) regarding the exclusions of packages or classes for Cobertura (our code coverage tool, even if we are currently migrating to JaCoCo). Their point of view is the following: as they will not write any unit tests on some layers of the application (1), these layers should be simply excluded from the code coverage measure. In others words, they want to limit the code coverage measure to the code that is tested or should be tested. Also, when they work on unit test for a complex class, the benefits - purely in term of code coverage - will be unnoticed due in a large application. Reducing the scope of the code coverage will make this kind of effort more visible... The interest of this approach is that we will have a code coverage measure that indicates the current status of the part of the application we consider as testable. However, my point of view is that we are somehow faking the figures. This solution is an easy way to reach higher level of code coverage without any effort. Another point that bothers me is the following: if we show a coverage increase from one week to another, how can we tell if this good news is due to the good work of the developers, or simply due to new exclusions? In addition, we will not be able to know exactly what is considered in the code coverage measure. For example, if I have a 10,000 lines of code application with 40% of code coverage, I can deduct that 40% of my code base is tested (2). But what happen if we set exclusions? If the code coverage is now 60%, what can I deduct exactly? That 60% of my "important" code base is tested? How can I As far as I am concerned, I prefer to keep the "real" code coverage value, even if we can't be cheerful about it. In addition, thanks to Sonar, we can easily navigate in our code base and know, for any module / package / class, its own code coverage. But of course, the global code coverage will still be low. What is your opinion on that subject? How do you do on your projects? Thanks. (1) These layers are generally related to the UI / Java beans, etc. (2) I know that's not true. In fact, it only means that 40% of my code base

    Read the article

  • planar shadow matrix and plane b value

    - by DevExcite
    I implemented planar shadows with the function D3DXMatrixShadow. As you know, we need plane and light factor to calculate a shadow matrix. The problem is that when I set the plane as D3DXPLANE p(0, -1, 0, 0.1f), the shadows by directional light are correctly rendered, but the shadows by point light are not rendered. However, if I use D3DXPLANE p(0, 1, 0, 0.1f), the situation is reversed, shadows by directional light are not drawn, the shadows by point light are ok. I cannot understand why it happens. Is it normal or am i missing something? Please explain to me why this happens. Thanks in advance.

    Read the article

  • Blogspot as a simple CMS

    - by G1ug
    Blogger/Blogspot recently released a new version of their software. This new version appears to have features relevant to a simple CMS (static page, albeit limited). I read from their Buzz Blog about a few websites that don't necessarily look like a typical Blogspot blog but rather somewhat a typical website deployed using a minimal CMS software: http://buzz.blogger.com/2011/07/you-can-do-some-amazing-things-with.html Can anyone point resources where I can learn how to do these? (Preferably case-studies with some steps how to create such website as oppose to Blogger HOWTO). Plus point if you can also tell me the infrastructure of Blogger.com (software stack, etc). Thanks

    Read the article

  • What would be a best way to code a rudimentary LIMS?

    - by Sam
    Hi, I hope that I am asking the right question at right place. If not, please do not hesitate to point me to the right place. I am working in a laboratory, where computers/programming/programmers are all used only as support. But I believe that we need better information organization and management. Given the diverse information generated in the lab I believe that we need some sort of Laboratory Information Management System. Is there a good starting point to do this? I am myself not a trained programmer. I can code reasonably well in python and R, and if necessary I can learn MySql, php.

    Read the article

  • Ask the Readers: How Do You Remote Desktop Access Distant Computers?

    - by Jason Fitzpatrick
    You’re at a computer at point A, but the computer you want to interact with is at point B, and the only thing connecting you is a series of network switches and cabling. How do you comfortably control the remote computer? While there are a variety of ways to control a computer from afar, sometimes there’s just no good substitute for accessing the user interface as if you were sitting at the computer–a feat made possibly by remote desktop software. This week we want to hear about both your favorite remote desktop tool and your best tips for getting the most out of a remote desktop session–from banishing lag to improving mouse-cursor tracking, any tips are fair game. Sound off in the comments below with your remote desktop tips and then check back in on Friday for the What You Said roundup. Java is Insecure and Awful, It’s Time to Disable It, and Here’s How What Are the Windows A: and B: Drives Used For? HTG Explains: What is DNS?

    Read the article

  • Difference between $ and # in ADF/JSF/JSP

    - by pavan.pvj
    Found this one interesting. So, picked it from one of the books and posting here.JSP 2.1 and JSF 1.2 - both of them use a unified Expression language. One major and the most obvious difference is between $ and #. JSP 2.1 uses $ and JSF 1.2 uses # in an EL. $ - immediate evaluation# - deferred evaluation$ - $ syntax executes expressions eagerly/immediately, which means that the result is returned immediately when the page renders.# - # syntax defers the expression evaluation to a point defined by the implementing technology. In general, JSF uses deferred EL evaluation because of its multiple lifecycle phases in which events are handled. To ensure the model is prepared before the values are accessed by EL, it must defer EL evaluation until the appropriate point in the life cycle.Note: This is picked up from Oracle Fusion Developer Guide (ISBN: 9780071622547). There is also a very good article here:http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

    Read the article

  • Objective-C Moving UIView along a curved path

    - by PruitIgoe
    I'm not sure if I am approaching this the correct way. In my app, when a user touches the screen I capture the point and create an arc from a fixed point to that touch point. I then want to move a UIView along that arc. Here's my code: ViewController.m //method to "shoot" object - KIP_Projectile creates the arc, KIP_Character creates the object I want to move along the arc ... //get arc for trajectory KIP_Projectile* vThisProjectile = [[KIP_Projectile alloc] initWithFrame:CGRectMake(51.0, fatElvisCenterPoint-30.0, touchPoint.x, 60.0)]; vThisProjectile.backgroundColor = [UIColor clearColor]; [self.view addSubview:vThisProjectile]; ... KIP_Character* thisChar = [[KIP_Character alloc] initWithFrame:CGRectMake(51, objCenterPoint-5, imgThisChar.size.width, imgThisChar.size.height)]; thisChar.backgroundColor = [UIColor clearColor]; thisChar.charID = charID; thisChar.charType = 2; thisChar.strCharType = @"Projectile"; thisChar.imgMyImage = imgThisChar; thisChar.myArc = vThisProjectile; [thisChar buildImage]; [thisChar traceArc]; in KIP_Projectile I build the arc using this code: - (CGMutablePathRef) createArcPathFromBottomOfRect : (CGRect) rect : (CGFloat) arcHeight { CGRect arcRect = CGRectMake(rect.origin.x, rect.origin.y + rect.size.height - arcHeight, rect.size.width, arcHeight); CGFloat arcRadius = (arcRect.size.height/2) + (pow(arcRect.size.width, 2) / (8*arcRect.size.height)); CGPoint arcCenter = CGPointMake(arcRect.origin.x + arcRect.size.width/2, arcRect.origin.y + arcRadius); CGFloat angle = acos(arcRect.size.width / (2*arcRadius)); CGFloat startAngle = radians(180) + angle; CGFloat endAngle = radians(360) - angle; CGMutablePathRef path = CGPathCreateMutable(); CGPathAddArc(path, NULL, arcCenter.x, arcCenter.y, arcRadius, startAngle, endAngle, 0); return path; } - (void)drawRect:(CGRect)rect { CGContextRef currentContext = UIGraphicsGetCurrentContext(); _myArcPath = [self createArcPathFromBottomOfRect:self.bounds:30.0]; CGContextSetLineWidth(currentContext, 1); CGFloat red[4] = {1.0f, 0.0f, 0.0f, 1.0f}; CGContextSetStrokeColor(currentContext, red); CGContextAddPath(currentContext, _myArcPath); CGContextStrokePath(currentContext); } Works fine. The arc is displayed with a red stroke on the screen. In KIP_Character, which has been passed it's relevant arc, I am using this code but getting no results. - (void) traceArc { CGMutablePathRef myArc = _myArc.myArcPath; // Set up path movement CAKeyframeAnimation *pathAnimation = [CAKeyframeAnimation animationWithKeyPath:@"position"]; pathAnimation.calculationMode = kCAAnimationPaced; pathAnimation.fillMode = kCAFillModeForwards; pathAnimation.removedOnCompletion = NO; pathAnimation.path = myArc; CGPathRelease(myArc); [self.layer addAnimation:pathAnimation forKey:@"savingAnimation"]; } Any help here would be appreciated.

    Read the article

  • Ubuntu, Gnome, PAM and ecryptfs

    - by Michel
    I would like to have a directory accessible to a couple of users, and not readable by maintenance types ... I can do what I want using ecryptfs and a password known only to the "couple of users" in question, who then can mount the directory and use as they see fit. I would love to be able to automate that process and unlock the directory at login - again, only for the "couple users" in question, without asking a password. Gnome-keyring is able to store passphrases/passwords encrypted; and, apparently, if I could get a key identity to ecryptfs, Gnome PAM modules would allow the key with that identity to be unlocked, and the directory could be mounted. Alas, I have found no way to go from point A (Gnome PAM keyring module) to point B (use the unlocked key in ecryptfs). Another use of the same mechanism would allow to build a "key escrow" mechanism, where keys to encrypted volumes are safekept with, e.g., HR; so that company information in encrypted directories can be recovered if you pass under the proverbial bus.

    Read the article

  • LiveCD does not work on my desktop

    - by Boris
    I've installed Oneiric on my laptop without any issue using the LiveCD downloaded here (from the French Ubuntu community server). But on my desktop, weird things happen: During the 1st try booting with the LiveCD on my desktop, my 2 year old child just hit the keyboard, and after several error messages the desktop loaded and I've been able to test Oneiric. But I wanted to redo a boot before installing Oneiric to avoid mistakes. So during the 2nd time I tried to boot with the LiveCD, I couldn't access to the point where I can choose to test or install. Before trying a 3rd time, I've "cleaned the system" from System Parameter System. But after that I'm still not able to access to the point where I can choose to test or install. Now it stops all the time on a black screen. I do not understand why several boot attempts with same CD have several results. So I wonder if the state of my current installation 11.04 can affect re-booting with my CD 11.10 ?

    Read the article

  • Polishing the MonologFX API

    - by HecklerMark
    Earlier this week, I released "into the wild" a new JavaFX 2.x dialog library, MonologFX, that incorporated some elements of DialogFX and new features I'd been working on over time. While I did try to get the API to a point of reasonable completion (nothing is ever truly "finished", of course!), there was one bit of functionality that I'd included without providing any real "polish": that of the button icons. Good friend and fellow JFXtras teammate José Pereda Llamas suggested I fix that oversight and provide an update (thanks much, José!), thus this post. If you'd like to take a peek at the new streamlined syntax, I've updated the earlier post; please click here if you'd like to review it. If you want to give MonologFX a try, just point your browser to GitHub to download the updated code and/or .jar. All the best,Mark

    Read the article

< Previous Page | 191 192 193 194 195 196 197 198 199 200 201 202  | Next Page >