Search Results

Search found 10196 results on 408 pages for 'features'.

Page 2/408 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Weblog analyzer most useful features

    - by phq
    There are already a lot of questions asking which analyzer is the best. I try here to invert the question. Instead of asking which analyzer has the best features I'm looking for what are the best features. More interesting is to separate what an analyzer can do from what is useful spending time doing. What are the most useful features I should look for in a web server log analyzer? How are they useful, what problems can they solve?

    Read the article

  • Hidden features of Ruby

    - by squadette
    Continuing the "Hidden features of ..." meme, let's share the lesser-known but useful features of Ruby programming language. Try to limit this discussion with core Ruby, without any Ruby on Rails stuff. See also: Hidden features of C# Hidden features of Java Hidden features of JavaScript Hidden features of Ruby on Rails (Please, just one hidden feature per answer.) Thank you

    Read the article

  • Can't change (enable/disable) features on Windows 7

    - by Cristy
    I can't make any changes to Windows Features. Even if I just enter in Windows Features and press Ok I get: "An error has occured. Not all of the features were successfully changed." I noticed this while trying to install/uninstall IIS. If I try to install IIS from the Web Platform I get: [Windows package manager] The referenced assembly could not be found. Operation failed with 0x80073701 Any suggestions? EDIT: I have tried - Startup Repair. It says it has found problems but is unable to solve them - System restore (but didn't had an early enough restore point) :(

    Read the article

  • Hidden features of Clojure

    - by danlei
    Which lesser-known but useful features of Clojure do you find yourselves using? Feel free to share little tricks and idioms, but try to restrict yourselves to Core and Contrib. I found some really interesting information in answers to these similar questions: Hidden features of Haskell Hidden features of Python Hidden features of Java Hidden features of C There are many more "Hidden feature" questions for other languages, so I thought it would be nice to have one for Clojure, too.

    Read the article

  • Hidden features of Emacs Lisp?

    - by anon
    What are some features of Emacs Lisp that you use to solve real problems? One feature per answer Give an example and short description of the feature, not just a link to documentation Label the feature using bold title as the first line See also: Hidden features of Python Hidden features of Ruby Hidden features of Perl Hidden features of Java

    Read the article

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • Hidden features of PL/SQL

    - by Adam Paynter
    In light of the "Hidden features of..." series of questions, what little-known features of PL/SQL have become useful to you? Edit: Features specific to PL/SQL are preferred over features of Oracle's SQL syntax. However, because PL/SQL can use most of Oracle's SQL constructs, they may be included if they make programming in PL/SQL easier.

    Read the article

  • Server 2008R2 Server Manager Roles and Features won't refresh or allow addition of new roles or features

    - by MattChorba
    I have a standalone DC in an isolated lab. I have installed the SUR tool and found no errors. I ran SFC and found no errors. I have attempted to install Windows Backup feature using Powershell, but received the same error about the computer needing to be restarted. Powershell cmdlets will list all of the installed roles and features. The rest of Server Manager works without problems. What can I do to get Server Manager Roles and Features working properly again? Picture of Error: CheckSUR.log: ================================= Checking System Update Readiness. Binary Version 6.1.7601.21645 Package Version 13.0 2011-11-28 13:20 Checking Windows Servicing Packages Checking Package Manifests and Catalogs Checking Package Watchlist Checking Component Watchlist Checking Packages Checking Component Store Summary: Seconds executed: 413 No errors detected (w) Unable to get system disk properties 0x0000045D IOCTL_STORAGE_QUERY_PROPERTY Disk Cache CheckSUR.persist.log: ================================= Checking System Update Readiness. Binary Version 6.1.7601.21645 Package Version 13.0 2011-11-28 13:20 Checking Windows Servicing Packages Checking Package Manifests and Catalogs Checking Package Watchlist Checking Component Watchlist Checking Packages Checking Component Store Summary: Seconds executed: 413 No errors detected (w) Unable to get system disk properties 0x0000045D IOCTL_STORAGE_QUERY_PROPERTY Disk Cache

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Media Player is missing from the list in "Turn Windows features on or off"

    - by arsaKasra
    I decided to reinstall Media Player in Vista [this way], so I figured I should turn it off as a Windows feature. But when I continue with the procedure, I get an incomplete list of features, here's an image: I looked around a bit, wondering if that is only an option available in 7, and I have seen people saying different things. So, is this only available for 7 or is there something wrong going on here? Can I make Media Player to show up in here? I am on a Toshiba Satellite A100 with Vista Home Premium OEM. I don't have my recovery disks or any restore point. Just to mention, I currently do have Media Player and it's working fine. Sorry if I can't think of any more details to add, please ask me for anything I should have included.

    Read the article

  • PowerShell Script To Find Where SharePoint 2007 Features Are Activated

    - by Brian T. Jackett
    Recently I posted a script to find where SharePoint 2010 Features Are Activated.  I built the original version to use SharePoint 2010 PowerShell commandlets as that saved me a number of steps for filtering and gathering features at each level.  If there was ever demand for a 2007 version I could modify the script to handle that by using the object model instead of commandlets.  Just the other week a fellow SharePoint PFE Jason Gallicchio had a customer asking about a version for SharePoint 2007.  With a little bit of work I was able to convert the script to work against SharePoint 2007.   Solution    Below is the converted script that works against a SharePoint 2007 farm.  Note: There appears to be a bug with the 2007 version that does not give accurate results against a SharePoint 2010 farm.  I ran the 2007 version against a 2010 farm and got fewer results than my 2010 version of the script.  Discussing with some fellow PFEs I think the discrepancy may be due to sandboxed features, a new concept in SharePoint 2010.  I have not had enough time to test or confirm.  For the time being only use the 2007 version script against SharePoint 2007 farms and the 2010 version against SharePoint 2010 farms.    Note: This script is not optimized for medium to large farms.  In my testing it took 1-3 minutes to recurse through my demo environment.  This script is provided as-is with no warranty.  Run this in a smaller dev / test environment first. 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 function Get-SPFeatureActivated { # see full script for help info, removed for formatting [CmdletBinding()] param(     [Parameter(position = 1, valueFromPipeline=$true)]     [string]     $Identity )#end param     Begin     {         # load SharePoint assembly to access object model         [void][System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SharePoint")             # declare empty array to hold results. Will add custom member for Url to show where activated at on objects returned from Get-SPFeature.         $results = @()                 $params = @{}     }     Process     {         if([string]::IsNullOrEmpty($Identity) -eq $false)         {             $params = @{Identity = $Identity}         }                 # create hashtable of farm features to lookup definition ids later         $farm = [Microsoft.SharePoint.Administration.SPFarm]::Local                         # check farm features         $results += ($farm.FeatureDefinitions | Where-Object {$_.Scope -eq "Farm"} | Where-Object {[string]::IsNullOrEmpty($Identity) -or ($_.DisplayName -eq $Identity)} |                          % {Add-Member -InputObject $_ -MemberType noteproperty -Name Url -Value ([string]::Empty) -PassThru} |                          Select-Object -Property Scope, DisplayName, Id, Url)                 # check web application features         $contentWebAppServices = $farm.services | ? {$_.typename -like "Windows SharePoint Services Web Application"}                 foreach($webApp in $contentWebAppServices.WebApplications)         {             $results += ($webApp.Features | Select-Object -ExpandProperty Definition | Where-Object {[string]::IsNullOrEmpty($Identity) -or ($_.DisplayName -eq $Identity)} |                          % {Add-Member -InputObject $_ -MemberType noteproperty -Name Url -Value $webApp.GetResponseUri(0).AbsoluteUri -PassThru} |                          Select-Object -Property Scope, DisplayName, Id, Url)                         # check site collection features in current web app             foreach($site in ($webApp.Sites))             {                 $results += ($site.Features | Select-Object -ExpandProperty Definition | Where-Object {[string]::IsNullOrEmpty($Identity) -or ($_.DisplayName -eq $Identity)} |                                  % {Add-Member -InputObject $_ -MemberType noteproperty -Name Url -Value $site.Url -PassThru} |                                  Select-Object -Property Scope, DisplayName, Id, Url)                                 # check site features in current site collection                 foreach($web in ($site.AllWebs))                 {                     $results += ($web.Features | Select-Object -ExpandProperty Definition | Where-Object {[string]::IsNullOrEmpty($Identity) -or ($_.DisplayName -eq $Identity)} |                                      % {Add-Member -InputObject $_ -MemberType noteproperty -Name Url -Value $web.Url -PassThru} |                                      Select-Object -Property Scope, DisplayName, Id, Url)                                                        $web.Dispose()                 }                 $site.Dispose()             }         }     }     End     {         $results     } } #end Get-SPFeatureActivated Get-SPFeatureActivated   Conclusion    I have posted this script to the TechNet Script Repository (click here).  As always I appreciate any feedback on scripts.  If anyone is motivated to run this 2007 version script against a SharePoint 2010 to see if they find any differences in number of features reported versus what they get with the 2010 version script I’d love to hear from you.         -Frog Out

    Read the article

  • Prioritizing Product Features

    - by Robert May
    A very common task in Agile Environments is prioritization.  Teams that are functioning well will prioritize new features, old features, the backlog, and any other source of stories for the team, and they’ll do it regularly. Not all teams are good at prioritizing according to the real return on investment that building stories will yield to the company.  This is unfortunate.  Too often, teams end up building features that are less valuable, and everyone seems to know it except perhaps the product owner!  Most features built into software are never even used.  Clearly, not much return for features that go unused. So how does a company avoid building features that add little value to the company?  This is a tough question to answer, but usually, this prioritization starts at the top with the executives of the company.  After all, they’re responsible for the overall vision of the company. Here’s what I recommend: Know your market. Know your customers and users. Know where you’re going and what you want to achieve. Implement the Vision Know Your Market We often see companies that don’t know their market.  Personally, I’m surprised by this.  These companies don’t know who their competitors are, don’t know what features make their product desirable in the market, and in many cases, get by with saying, “I’ve been doing this for XX years.  I know what the market wants!”  In many cases, they equate “marketing” with “advertising” and don’t understand the difference. This is almost never true.  Good companies will spend significant amounts of time and money finding out who they’re competing against and what makes their competitors successful in the marketplace.  Good companies understand that marketing involves more than just advertising.  Often, marketing is mostly research and analysis, not sales.  Until you understand your market, you cannot know what features will give you the best return on your investment dollar. Good companies have a marketing department and can answer the next important step which is to know your customers and your users. Know your Customers and Users First, note that I included both customers and users.  They’re often not the same thing.  Users use the product that you build.  Customers buy the product that you build.  It’s a subtle difference, but too often, I’ve seen companies that focus exclusively on one or the other and are not successful simply because they ignore an important part of the group. If your company is doing appropriate marketing, you know that these are two different aspects of your product and that both deserve attention to have a product that is successful in your target market.  Your marketing department should be spending a lot of time understanding these personas and then conveying that information to the company. I’m always surprised when development teams think that they can build a product that people want to use without understanding the users of that product.  Developers think differently than most people in the world.  They know what the computer is doing.  The computer isn’t magic to them.  So when they assume that they know how to build something, they bring with them quite a bit of baggage.  Never assume that you know your customer unless you’re regularly having interaction with them.  Also, don’t just leave this to Marketing or Product Management.  Take them time to get your developers out with the customers as well.  Developers are very smart people, and often, seeing how someone uses their software inspires them to make a much better product. Very often, because the users and customers aren’t know, teams will spend a significant amount of time building apps that are super flexible and configurable so that any possible combination of feature can be used.  This demonstrates a clear lack of understanding of the customer.  Most configuration questions can quickly be answered by talking to the customer.  In most cases, if your software requires significant setup and configuration before its usable, you probably don’t know your customers and users very well. Until you know your customers, you cannot know what features will be most valuable to your customers and you cannot build those features in a way that your customers can use. Know Where You’re Going and What You Want to Achieve Many companies suffer from not having a plan.  Executives will tell the team to make them a plan.  The team, not knowing their market and customers and users, will come up with a plan that doesn’t reflect reality and doesn’t consider ROI.  Management then wonders why the product is doing poorly in the market place. Instead of leaving this up to the teams, as executives, work with Marketing to understand what broad categories of features will sell the most product in the marketplace.  Then, once you’ve determined that, give this vision to the team and let them run with it.  Revise the vision as needed, but avoid changing streams frequently.  Sure, sometimes you need to, but often, executives will change priorities many times a month, leading to nothing more than confusion.  If the team has a vision, they’ll be able to execute that vision far better than they could otherwise. By knowing what products are most important, you can set budgetary goals and guidelines that will help you achieve the vision that was created. Implement the Vision Creating the vision is often where the general executives stop participating in the plan.  The team is responsible for implementing that vision.  Executives should attend showcases and and should remain aware of the progress that the team is making towards meeting the vision, however. Once a broad vision has been created, the team should break that vision down into minimal market features (MMF).  These MMFs should be sized using story points so that, using the team’s velocity, an estimated cost can be determined for each feature.  The product management team should then try to quantify the relative value of the MMFs based on customer feedback and interviews.  Once the value and cost of creating the feature is understood, a return on investment can be calculated.  The features should then be prioritized with the MMF’s that have the highest value and lowest cost rising to the top of features to implement.  Don’t let politics get in the way! Once the MMF’s have been prioritized, they should go through release planning to schedule them for implementation. Conclusion By having a good grasp on the strategy of the company, your Agile teams can be much more effective.  Each and every story the team is implementing will roll up into features that matter to the company and provide ROI to them.  The steps outlined in this post should be repeated on a regular basis.  I recommend reviewing them at least once per quarter to make sure that the vision hasn’t shifted and that the teams are still working on what matters most to the company. Technorati Tags: Agile,Product Owner,ROI

    Read the article

  • Hidden Features IntelliJ IDEA

    - by Teja Kantamneni
    Just another Hidden features and tips and tricks WIKI. After seeing the hidden features of eclipse, java, spring framework I thought we need to have a list of the features, TIPS for IntelliJ too which is the best and the Intelligent IDE available for java.

    Read the article

  • Hidden features of HTTP

    - by Gumbo
    What hidden features of HTTP do you think are worth mentioning? By hidden features I mean features that already are part of the standard but widely rather unknown or unused. Just one feature per answer please.

    Read the article

  • C#/.net features to cut off assuming no backward compatibility needed?

    - by Gulshan
    Any product or framework evolves. Mainly it's done to catch up the needs of it's users, leverage new computing powers and simply make it better. Sometimes the primary design goal also changes with the product. C# or .net framework is no exception. As we see, the present day 4th version is very much different comparing with the first one. But thing comes as a barricade to this evolution- backward compatibility. In most of frameworks/products there are features would have been cut off if there was no need to support backward compatibility. According to you, what are these features in C#/.net? Please mention one feature per answer.

    Read the article

  • *Hidden Features* in your operating system that increase productivity?

    - by AdityaGameProgrammer
    As developers how much time, or do you spend time, In learning the hidden features tricks of your operating system ? How important do you feel is this for productivity in day to day programming? tasks. What do you mean when you list knowledge of an OS in your resume? What are your most useful hidden -less known features For example: A common problem of How can i open the cmd window in a specific location a do it yourself solution in say xp and what to do if something breaks Or are these something you look into as and when you find the need to do so?

    Read the article

  • C# or .Net features to cut off assuming no backward compatibility needed?

    - by Gulshan
    Any product or framework evolves. Mainly it's done to catch up the needs of it's users, leverage new computing powers and simply make it better. Sometimes the primary design goal also changes with the product. C# or .net framework is no exception. As we see, the present day 4th version is very much different comparing with the first one. But thing comes as a barricade to this evolution- backward compatibility. In most of frameworks/products there are features would have been cut off if there was no need to support backward compatibility. According to you, what are these features in C#/.net? Please mention one feature per answer.

    Read the article

  • PowerShell Script To Find Where SharePoint 2010 Features Are Activated

    - by Brian Jackett
    The script on this post will find where features are activated within your SharePoint 2010 farm.   Problem    Over the past few months I’ve gotten literally dozens of emails, blog comments, or personal requests from people asking “how do I find where a SharePoint feature has been activated?”  I wrote a script to find which features are installed on your farm almost 3 years ago.  There is also the Get-SPFeature PowerShell commandlet in SharePoint 2010.  The problem is that these only tell you if a feature is installed not where they have been activated.  This is especially important to know if you have multiple web applications, site collections, and /or sites.   Solution    The default call (no parameters) for Get-SPFeature will return all features in the farm.  Many of the parameter sets accept filters for specific scopes such as web application, site collection, and site.  If those are supplied then only the enabled / activated features are returned for that filtered scope.  Taking the concept of recursively traversing a SharePoint farm and merging that with calls to Get-SPFeature at all levels of the farm you can find out what features are activated at that level.  Store the results into a variable and you end up with all features that are activated at every level.    Below is the script I came up with (slight edits for posting on blog).  With no parameters the function lists all features activated at all scopes.  If you provide an Identity parameter you will find where a specific feature is activated.  Note that the display name for a feature you see in the SharePoint UI rarely matches the “internal” display name.  I would recommend using the feature id instead.  You can download a full copy of the script by clicking on the link below.    Note: This script is not optimized for medium to large farms.  In my testing it took 1-3 minutes to recurse through my demo environment.  This script is provided as-is with no warranty.  Run this in a smaller dev / test environment first.   001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 function Get-SPFeatureActivated { # see full script for help info, removed for formatting [CmdletBinding()] param(   [Parameter(position = 1, valueFromPipeline=$true)]   [Microsoft.SharePoint.PowerShell.SPFeatureDefinitionPipeBind]   $Identity )#end param   Begin   {     # declare empty array to hold results. Will add custom member `     # for Url to show where activated at on objects returned from Get-SPFeature.     $results = @()         $params = @{}   }   Process   {     if([string]::IsNullOrEmpty($Identity) -eq $false)     {       $params = @{Identity = $Identity             ErrorAction = "SilentlyContinue"       }     }       # check farm features     $results += (Get-SPFeature -Farm -Limit All @params |              % {Add-Member -InputObject $_ -MemberType noteproperty `                 -Name Url -Value ([string]::Empty) -PassThru} |              Select-Object -Property Scope, DisplayName, Id, Url)     # check web application features     foreach($webApp in (Get-SPWebApplication))     {       $results += (Get-SPFeature -WebApplication $webApp -Limit All @params |                % {Add-Member -InputObject $_ -MemberType noteproperty `                   -Name Url -Value $webApp.Url -PassThru} |                Select-Object -Property Scope, DisplayName, Id, Url)       # check site collection features in current web app       foreach($site in ($webApp.Sites))       {         $results += (Get-SPFeature -Site $site -Limit All @params |                  % {Add-Member -InputObject $_ -MemberType noteproperty `                     -Name Url -Value $site.Url -PassThru} |                  Select-Object -Property Scope, DisplayName, Id, Url)                          $site.Dispose()         # check site features in current site collection         foreach($web in ($site.AllWebs))         {           $results += (Get-SPFeature -Web $web -Limit All @params |                    % {Add-Member -InputObject $_ -MemberType noteproperty `                       -Name Url -Value $web.Url -PassThru} |                    Select-Object -Property Scope, DisplayName, Id, Url)           $web.Dispose()         }       }     }   }   End   {     $results   } } #end Get-SPFeatureActivated   Snippet of output from Get-SPFeatureActivated   Conclusion    This script has been requested for a long time and I’m glad to finally getting a working “clean” version.  If you find any bugs or issues with the script please let me know.  I’ll be posting this to the TechNet Script Center after some internal review.  Enjoy the script and I hope it helps with your admin / developer needs.         -Frog Out

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >