Search Results

Search found 35 results on 2 pages for 'freescale'.

Page 2/2 | < Previous Page | 1 2 

  • Security in Robots and Automated Systems

    - by Roger Brinkley
    Alex Dropplinger posted a Freescale blog on Securing Robotics and Automated Systems where she asks the question,“How should we secure robotics and automated systems?”.My first thought on this was duh, make sure your robot is running Java. Java's built-in services for authentication, authorization, encryption/confidentiality, and the like can be leveraged and benefit robotic or autonomous implementations. Leveraging these built-in services and pluggable encryption models of Java makes adding security to an exist bot implementation much easier. But then I thought I should ask an expert on robotics so I fired the question off to Paul Perrone of Perrone Robotics. Paul's build automated vehicles and other forms of embedded devices like auto monitoring of commercial vehicles on highways.He says that most of the works that robots do now are autonomous so it isn't a problem in the short term. But long term projects like collision avoidance technology in automobiles are going to require it.Some of the work he's doing with his Java-based MAX, set of software building blocks containing a wide range of low level and higher level software modules that developers can use to build simple to complex robot and automation applications faster and cheaper, already provide some support for JAUS compliance and because their based on Java, access to standards based security APIs.But, as Paul explained to me, "the bottom line is…it depends on the criticality level of the bot, it's network connectivity, and whether or not a standards compliance is required."

    Read the article

  • Assign bitset member to char

    - by RedX
    I have some code here that uses bitsets to store many 1 bit values into a char. Basically struct BITS_8 { char _1:1; (...) char _8:1; } Now i was trying to pass one of these bits as a parameter into a function void func(char bit){ if(bit){ // do something }else{ // do something else } // and the call was struct BITS_8 bits; // all bits were set to 0 before bits._7 = 1; bits._8 = 1; func(bits._8); The solution was to single the bit out when calling the function: func(bits._8 & 0x128); But i kept going into //do something because other bits were set. I was wondering if this is the correct behaviour or if my compiler is broken. The compiler is an embedded compiler that produces code for freescale ASICs.

    Read the article

  • Java Spotlight Episode 104: Devoxx 4 Kids

    - by Roger Brinkley
    Stephan Jannsen talks about the new Devoxx 4 Kids that he launched this last weekend in Belgium. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes News WebSocket JSR Early Draft (JSR 356) JAX-RS 2 Public Draft (JSR 339) JMS2, JAX-RS 2, WebSocket, JSON integrated in GlassFish 4 Promoted Builds Java EE 7 Revised Scope - Q2 2013 JavaOne Content Available for Free Please try Oracle's Java Uninstall Applet OpenJDK Community and Project Scorecard Experimental new utility to detect issues in javadoc comments PermGen Elimination project is promoting JDK bug migration milestone: JIRA now the system of record Project Jigsaw: On the next train New OpenJDK Projects: ThreeTen & Project Sumatra Events Oct 15-17, JAX London, London, United Kingdom Oct 20, Devoxx 4 Kids Français, Brussels, Belgium Oct 22-23, Freescale Technology Forum - Japan, Tokyo, Japan Oct 23-25, EclipseCon Europe, Ludwigsburg, Germany Oct 30-Nov 1, Arm TechCon, Santa Clara, United States of America Oct 31, JFall, Hart van Holland, Netherlands Nov 2-3, JMaghreb, Rabat, Morocco Nov 5-9, Øredev Developer Conference, Malmö, Sweden Nov 13-17, Devoxx, Antwerp, Belgium Nov 20-22, DOAG 2012, Nuremberg, Germany Dec 3-5, jDays, Göteborg, Sweden Dec 4-6, JavaOne Latin America, Sao Paolo, Brazil Feature InterviewStephan Janssen is a serial entrepreneur that has founded several successful organizations such as the Belgian Java User Group (BeJUG) in 1996, JCS Int. in 1998, JavaPolis in 2002 and now Parleys.com in 2006. He has been using Java since its early releases in 1995 with experience of developing and implementing real world Java solutions in the finance and manufacturing industries. Today Stephan is the CTO of the Java Competence Center at RealDolmen. He was selected by BEA Systems as the first European (independent) BEA Technical Director. He has also been recognized by the Server Side as one of the 54 Who is Who in Enterprise Java 2004. Sun has recognized in 2005 his efforts for the Java Community and has engaged him in the Java Champion project. He has spoken at numerous Java and JUG conferences around the world.Devoxx 4 KidsNew to Java Programming Center -- Young Developers What’s Cool "Here is the draft proposal to add a public Base64 utility class for JDK8." Default methods for jdk8: request for code review Raspberry Pi Model B now ships with 512MB of RAM JDuchess roadshow on the Island of Java. Nety and Mila from Meruvian.First week roadshowSecond week roadshowThird week part 1

    Read the article

  • Cannot find FIS partition 'initramfs'......... need help!!!

    - by vikramtheone
    Hi Guys, I have a Ubuntu 9.04 Linux running on Freescale's i.MX515(ARM Cortex based) board with me. There were about 250 updates pending and I did that today, well some of the updates failed because of the infamous errors: E: dpkg was interrupted, you must manually run 'sudo dpkg --configure -a' to correct the problem. E: Couldn't rebuild package cache E: dpkg was interrupted, you must manually run 'sudo dpkg --configure -a' to correct the problem. So, when I do the 'sudo dpkg --configure -a' I get new errors related to FIS partition: Cannot find FIS partition 'initramfs' User postinst hook script [/usr/sbin/flash-kernel] exited with value 1 dpkg: error processing linux-image-2.6.28-18-imx51 (--configure): subprocess post-installation script returned error exit status 1 dpkg: dependency problems prevent configuration of linux-image-imx51: linux-image-imx51 depends on linux-image-2.6.28-18-imx51; however: Package linux-image-2.6.28-18-imx51 is not configured yet. dpkg: error processing linux-image-imx51 (--configure): dependency problems - leaving unconfigured dpkg: dependency problems prevent configuration of linux-imx51: linux-imx51 depends on linux-image-imx51 (= 2.6.28.18.23); however: Package linux-image-imx51 is not configured yet. dpkg: error processing linux-imx51 (--configure): dependency problems - leaving unconfigured Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-2.6.28-18-imx51 Cannot find FIS partition 'initramfs' dpkg: subprocess post-installation script returned error exit status 1 Whats going wrong here, need help!!! I'm a newbie. Regards Vikram

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • Webcam video stream processing.

    - by vikramtheone
    Hi Guys, I'm working with an image processing project, my final goal is to detect features on a real time video and finally track those features. I will be working with an Embedded Processor Platform called Freescale's i.MX515, it is a 32-bit media processor running on Ubuntu 9.04. Right now I'm working on the algorithms to locate the features, so, I'm using still images. When I'm satisfied with the results I will have to start using a video stream and I don't want to make use of a video file as a source stream, because then I will have to worry about video decoders then. Instead I would like to plug in a USB Wecam to the embedded platform (It has USB ports on it), directly take the frames as they are captured and send it to my application. I will take care to buy a webcam which will be supported in Linux (Device driver). But my question is will I be able to capture the incoming video stream from the webcam and send it to my application? Will I be able to configure the webcam and DMA to write the incoming frames in a particular memory location whose pointer I can simply pass to my application? (Confused!!!) I hope I could convey my doubts, can anyone guide me with what steps that I have to take to achieve all of these easily? Do you foresee any impossibility here? Help!!! Regards Vikram

    Read the article

  • Footprint of Lua on a PPC Micro

    - by Adam Shiemke
    We're developing some code on Freescale PPC micros (5517 and 5668 at the moment), and I was wondering if we could put Lua on them. The devices need to be easily programmed/reconfigured in the field, and the current product uses a proprietary interpreted logic language that can be loaded in, and our software (written in C) runs an interpreter. I would like to move to a better language (the implementation is a bit buggy and slow), so I'm considering Lua, but the memory footprint must be very low. For the 5517 (which we may not use), the maximum RAM is 80K. Things are better on the 5668, with 592K of RAM. So does anyone know if I can put Lua on bare metal? We're effectively not running an OS. If so, are there any estimates on what kind of memory footprint we might see? How much effort it would take? Failing this, does anyone know of any kind of interpreter that might be better in a memory-constrained environment without an OS? Or are we better just rolling our own?

    Read the article

  • Take Two: Comparing JVMs on ARM/Linux

    - by user12608080
    Although the intent of the previous article, entitled Comparing JVMs on ARM/Linux, was to introduce and highlight the availability of the HotSpot server compiler (referred to as c2) for Java SE-Embedded ARM v7,  it seems, based on feedback, that everyone was more interested in the OpenJDK comparisons to Java SE-E.  In fact there were two main concerns: The fact that the previous article compared Java SE-E 7 against OpenJDK 6 might be construed as an unlevel playing field because version 7 is newer and therefore potentially more optimized. That the generic compiler settings chosen to build the OpenJDK implementations did not put those versions in a particularly favorable light. With those considerations in mind, we'll institute the following changes to this version of the benchmarking: In order to help alleviate an additional concern that there is some sort of benchmark bias, we'll use a different suite, called DaCapo.  Funded and supported by many prestigious organizations, DaCapo's aim is to benchmark real world applications.  Further information about DaCapo can be found at http://dacapobench.org. At the suggestion of Xerxes Ranby, who has been a great help through this entire exercise, a newer Linux distribution will be used to assure that the OpenJDK implementations were built with more optimal compiler settings.  The Linux distribution in this instance is Ubuntu 11.10 Oneiric Ocelot. Having experienced difficulties getting Ubuntu 11.10 to run on the original D2Plug ARMv7 platform, for these benchmarks, we'll switch to an embedded system that has a supported Ubuntu 11.10 release.  That platform is the Freescale i.MX53 Quick Start Board.  It has an ARMv7 Coretex-A8 processor running at 1GHz with 1GB RAM. We'll limit comparisons to 4 JVM implementations: Java SE-E 7 Update 2 c1 compiler (default) Java SE-E 6 Update 30 (c1 compiler is the only option) OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 CACAO build 1.1.0pre2 OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 JamVM build-1.6.0-devel Certain OpenJDK implementations were eliminated from this round of testing for the simple reason that their performance was not competitive.  The Java SE 7u2 c2 compiler was also removed because although quite respectable, it did not perform as well as the c1 compilers.  Recall that c2 works optimally in long-lived situations.  Many of these benchmarks completed in a relatively short period of time.  To get a feel for where c2 shines, take a look at the first chart in this blog. The first chart that follows includes performance of all benchmark runs on all platforms.  Later on we'll look more at individual tests.  In all runs, smaller means faster.  The DaCapo aficionado may notice that only 10 of the 14 DaCapo tests for this version were executed.  The reason for this is that these 10 tests represent the only ones successfully completed by all 4 JVMs.  Only the Java SE-E 6u30 could successfully run all of the tests.  Both OpenJDK instances not only failed to complete certain tests, but also experienced VM aborts too. One of the first observations that can be made between Java SE-E 6 and 7 is that, for all intents and purposes, they are on par with regards to performance.  While it is a fact that successive Java SE releases add additional optimizations, it is also true that Java SE 7 introduces additional complexity to the Java platform thus balancing out any potential performance gains at this point.  We are still early into Java SE 7.  We would expect further performance enhancements for Java SE-E 7 in future updates. In comparing Java SE-E to OpenJDK performance, among both OpenJDK VMs, Cacao results are respectable in 4 of the 10 tests.  The charts that follow show the individual results of those four tests.  Both Java SE-E versions do win every test and outperform Cacao in the range of 9% to 55%. For the remaining 6 tests, Java SE-E significantly outperforms Cacao in the range of 114% to 311% So it looks like OpenJDK results are mixed for this round of benchmarks.  In some cases, performance looks to have improved.  But in a majority of instances, OpenJDK still lags behind Java SE-Embedded considerably. Time to put on my asbestos suit.  Let the flames begin...

    Read the article

  • More GCC link time issues: undefined reference to main

    - by vikramtheone
    Hi Guys, I'm writing software for a Cortex-A8 processor and I have to write some ARM assembly code to access specific registers. I'm making use of the gnu compilers and related tool chains, these tools are installed on the processor board(Freescale i.MX515) with Ubuntu. I make a connection to it from my host PC(Windows) using WinSCP and the PuTTY terminal. As usual I started with a simple C project having main.c and functions.s. I compile the main.c using GCC, assemble the functions.s using as and link the generated object files using once again GCC, but I get strange errors during this process. An important finding - Meanwhile, I found out that my assembly code may have some issues because when I individually assemble it using the command as -o functions.o functions.s and try running the generated functions.o using ./functions.o command, the bash shell is failing to recognize this file as an executable(on pressing tab functions.o is not getting selected/PuTTY is not highlighting the file). Can anyone suggest whats happening here? Are there any specific options I have to send, to GCC during the linking process? The errors I see are strange and beyond my understanding, I don't understand to what the GCC is referring. I'm pasting here the contents of main.c, functions.s, the Makefile and the list of errors. Help, please!!! Vikram main.c #include <stdio.h> #include <stdlib.h> int main(void) { puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */ return EXIT_SUCCESS; } functions.s * Main program */ .equ STACK_TOP, 0x20000800 .text .global _start .syntax unified _start: .word STACK_TOP, start .type start, function start: movs r0, #10 movs r1, #0 .end Makefile all: hello hello: main.o functions.o gcc -o main.o functions.o main.o: main.c gcc -c -mcpu=cortex-a8 main.c functions.o: functions.s as -mcpu=cortex-a8 -o functions.o functions.s Errors ubuntu@ubuntu-desktop:~/Documents/Project/Others/helloworld$ make gcc -c -mcpu=cortex-a8 main.c as -mcpu=cortex-a8 -o functions.o functions.s gcc -o main.o functions.o functions.o: In function `_start': (.text+0x0): multiple definition of `_start' /usr/lib/gcc/arm-linux-gnueabi/4.3.3/../../../crt1.o:init.c:(.text+0x0): first defined here /usr/lib/gcc/arm-linux-gnueabi/4.3.3/../../../crt1.o: In function `_start': init.c:(.text+0x30): undefined reference to `main' collect2: ld returned 1 exit status make: *** [hello] Error 1

    Read the article

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

< Previous Page | 1 2