Search Results

Search found 234 results on 10 pages for 'glsl'.

Page 2/10 | < Previous Page | 1 2 3 4 5 6 7 8 9 10  | Next Page >

  • GLSL subroutine not being used

    - by amoffat
    I'm using a gaussian blur fragment shader. In it, I thought it would be concise to include 2 subroutines: one for selecting the horizontal texture coordinate offsets, and another for the vertical texture coordinate offsets. This way, I just have one gaussian blur shader to manage. Here is the code for my shader. The {{NAME}} bits are template placeholders that I substitute in at shader compile time: #version 420 subroutine vec2 sample_coord_type(int i); subroutine uniform sample_coord_type sample_coord; in vec2 texcoord; out vec3 color; uniform sampler2D tex; uniform int texture_size; const float offsets[{{NUM_SAMPLES}}] = float[]({{SAMPLE_OFFSETS}}); const float weights[{{NUM_SAMPLES}}] = float[]({{SAMPLE_WEIGHTS}}); subroutine(sample_coord_type) vec2 vertical_coord(int i) { return vec2(0.0, offsets[i] / texture_size); } subroutine(sample_coord_type) vec2 horizontal_coord(int i) { //return vec2(offsets[i] / texture_size, 0.0); return vec2(0.0, 0.0); // just for testing if this subroutine gets used } void main(void) { color = vec3(0.0); for (int i=0; i<{{NUM_SAMPLES}}; i++) { color += texture(tex, texcoord + sample_coord(i)).rgb * weights[i]; color += texture(tex, texcoord - sample_coord(i)).rgb * weights[i]; } } Here is my code for selecting the subroutine: blur_program->start(); blur_program->set_subroutine("sample_coord", "vertical_coord", GL_FRAGMENT_SHADER); blur_program->set_int("texture_size", width); blur_program->set_texture("tex", *deferred_output); blur_program->draw(); // draws a quad for the fragment shader to run on and: void ShaderProgram::set_subroutine(constr name, constr routine, GLenum target) { GLuint routine_index = glGetSubroutineIndex(id, target, routine.c_str()); GLuint uniform_index = glGetSubroutineUniformLocation(id, target, name.c_str()); glUniformSubroutinesuiv(target, 1, &routine_index); // debugging int num_subs; glGetActiveSubroutineUniformiv(id, target, uniform_index, GL_NUM_COMPATIBLE_SUBROUTINES, &num_subs); std::cout << uniform_index << " " << routine_index << " " << num_subs << "\n"; } I've checked for errors, and there are none. When I pass in vertical_coord as the routine to use, my scene is blurred vertically, as it should be. The routine_index variable is also 1 (which is weird, because vertical_coord subroutine is the first listed in the shader code...but no matter, maybe the compiler is switching things around) However, when I pass in horizontal_coord, my scene is STILL blurred vertically, even though the value of routine_index is 0, suggesting that a different subroutine is being used. Yet the horizontal_coord subroutine explicitly does not blur. What's more is, whichever subroutine comes first in the shader, is the subroutine that the shader uses permanently. Right now, vertical_coord comes first, so the shader blurs vertically always. If I put horizontal_coord first, the scene is unblurred, as expected, but then I cannot select the vertical_coord subroutine! :) Also, the value of num_subs is 2, suggesting that there are 2 subroutines compatible with my sample_coord subroutine uniform. Just to re-iterate, all of my return values are fine, and there are no glGetError() errors happening. Any ideas?

    Read the article

  • Renderbuffer to GLSL shader?

    - by Dan
    I have a software that performs volume rendering through a raycasting approach. The actual raycasting shader writes the raycasted volume depth into a framebuffer object, through gl_FragDepth, that I bind before calling the shader. The problem I have is that I would like to use this depth in another shader that I call later on. I figured out that the only way to do that is to bind the framebuffer once the raycasting has finished, read the depthmap through something like glReadPixels(0, 0, m_winSize.x , m_winSize.y, GL_DEPTH_COMPONENT, GL_FLOAT, pixels); and write it to a 2D texture as usual glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, m_winSize.x, m_winSize.y, 0, GL_DEPTH_COMPONENT, GL_FLOAT, pixels) and then pass this 2D texture that contains a simple depth map to the other shader. However, I am not entirely sure that what I do is the proper way to do this. Is there anyway to pass the framebuffer that I fill up in my raycasting shader to the other shader?

    Read the article

  • GLSL vertex shaders with movements vs vertex off the screen

    - by user827992
    If i have a vertex shader that manage some movements and variations about the position of some vertex in my OpenGL context, OpenGL is smart enough to just run this shader on only the vertex visible on the screen? This part of the OpenGL programmable pipeline is not clear to me because all the sources are not really really clear about this, they talk about fragments and pixels and I get that, but what about vertex shaders? If you need a reference i'm reading from this right now and this online book has a couple of examples about this.

    Read the article

  • How to read BC4 texture in GLSL?

    - by Question
    I'm supposed to receive a texture in BC4 format. In OpenGL, i guess this format is called GL_COMPRESSED_RED_RGTC1. The texture is not really a "texture", more like a data to handle at fragment shader. Usually, to get colors from a texture within a fragment shader, i do : uniform sampler2D TextureUnit; void main() { vec4 TexColor = texture2D(TextureUnit, vec2(gl_TexCoord[0])); (...) the result of which is obviously a v4, for RGBA. But now, i'm supposed to receive a single float from the read. I'm struggling to understand how this is achieved. Should i still use a texture sampler, and expect the value to be in a specific position (for example, within TexColor.r ?), or should i use something else ?

    Read the article

  • GLSL Shader Texture Performance

    - by Austin
    I currently have a project that renders OpenGL video using a vertex and fragment shader. The shaders work fine as-is, but in trying to add in texturing, I am running into performance issues and can't figure out why. Before adding texturing, my program ran just fine and loaded my CPU between 0%-4%. When adding texturing (specifically textures AND color -- noted by comment below), my CPU is 100% loaded. The only code I have added is the relevant texturing code to the shader, and the "glBindTexture()" calls to the rendering code. Here are my shaders and relevant rending code. Vertex Shader: #version 150 uniform mat4 mvMatrix; uniform mat4 mvpMatrix; uniform mat3 normalMatrix; uniform vec4 lightPosition; uniform float diffuseValue; layout(location = 0) in vec3 vertex; layout(location = 1) in vec3 color; layout(location = 2) in vec3 normal; layout(location = 3) in vec2 texCoord; smooth out VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertOut; void main(void) { gl_Position = mvpMatrix * vec4(vertex, 1.0); VertOut.normal = normalize(normalMatrix * normal); VertOut.toLight = normalize(vec3(mvMatrix * lightPosition - gl_Position)); VertOut.color = color; VertOut.diffuseValue = diffuseValue; VertOut.texCoord = texCoord; } Fragment Shader: #version 150 smooth in VertData { vec3 color; vec3 normal; vec3 toLight; float diffuseValue; vec2 texCoord; } VertIn; uniform sampler2D tex; layout(location = 0) out vec3 colorOut; void main(void) { float diffuseComp = max( dot(normalize(VertIn.normal), normalize(VertIn.toLight)) ), 0.0); vec4 color = texture2D(tex, VertIn.texCoord); colorOut = color.rgb * diffuseComp * VertIn.diffuseValue + color.rgb * (1 - VertIn.diffuseValue); // FOLLOWING LINE CAUSES PERFORMANCE ISSUES colorOut *= VertIn.color; } Relevant Rendering Code: // 3 textures have been successfully pre-loaded, and can be used // texture[0] is a 1x1 white texture to effectively turn off texturing glUseProgram(program); // Draw squares glBindTexture(GL_TEXTURE_2D, texture[1]); // Set attributes, uniforms, etc glDrawArrays(GL_QUADS, 0, 6*4); // Draw triangles glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 3*4); // Draw reference planes glBindTexture(GL_TEXTURE_2D, texture[0]); // Set attributes, uniforms, etc glDrawArrays(GL_LINES, 0, 4*81*2); // Draw terrain glBindTexture(GL_TEXTURE_2D, texture[2]); // Set attributes, uniforms, etc glDrawArrays(GL_TRIANGLES, 0, 501*501*6); // Release glBindTexture(GL_TEXTURE_2D, 0); glUseProgram(0); Any help is greatly appreciated!

    Read the article

  • Setting the values of a struct array from JS to GLSL

    - by mikidelux
    I've been trying to make a structure that will contain all the lights of my WebGL app, and I'm having troubles setting up it's values from JS. The structure is as follows: struct Light { vec4 position; vec4 ambient; vec4 diffuse; vec4 specular; vec3 spotDirection; float spotCutOff; float constantAttenuation; float linearAttenuation; float quadraticAttenuation; float spotExponent; float spotLightCosCutOff; }; uniform Light lights[numLights]; After testing LOTS of things I made it work but I'm not happy with the code I wrote: program.uniform.lights = []; program.uniform.lights.push({ position: "", diffuse: "", specular: "", ambient: "", spotDirection: "", spotCutOff: "", constantAttenuation: "", linearAttenuation: "", quadraticAttenuation: "", spotExponent: "", spotLightCosCutOff: "" }); program.uniform.lights[0].position = gl.getUniformLocation(program, "lights[0].position"); program.uniform.lights[0].diffuse = gl.getUniformLocation(program, "lights[0].diffuse"); program.uniform.lights[0].specular = gl.getUniformLocation(program, "lights[0].specular"); program.uniform.lights[0].ambient = gl.getUniformLocation(program, "lights[0].ambient"); ... and so on I'm sorry for making you look at this code, I know it's horrible but I can't find a better way. Is there a standard or recommended way of doing this properly? Can anyone enlighten me?

    Read the article

  • GLSL billboard move center of rotation

    - by Jacob Kofoed
    I have successfully set up a billboard shader that works, it can take in a quad and rotate it so it always points toward the screen. I am using this vertex-shader: void main(){ vec4 tmpPos = (MVP * bufferMatrix * vec4(0.0, 0.0, 0.0, 1.0)) + (MV * vec4( vertexPosition.x * 1.0 * bufferMatrix[0][0], vertexPosition.y * 1.0 * bufferMatrix[1][1], vertexPosition.z * 1.0 * bufferMatrix[2][2], 0.0) ); UV = UVOffset + vertexUV * UVScale; gl_Position = tmpPos; BufferMatrix is the model-matrix, it is an attribute to support Instance-drawing. The problem is best explained through pictures: This is the start position of the camera: And this is the position, looking in from 45 degree to the right: Obviously, as each character is it's own quad, the shader rotates each one around their own center towards the camera. What I in fact want is for them to rotate around a shared center, how would I do this? What I have been trying to do this far is: mat4 translation = mat4(1.0); translation = glm::translate(translation, vec3(pos)*1.f * 2.f); translation = glm::scale(translation, vec3(scale, 1.f)); translation = glm::translate(translation, vec3(anchorPoint - pos) / vec3(scale, 1.f)); Where the translation is the bufferMatrix sent to the shader. What I am trying to do is offset the center, but this might not be possible with a single matrix..? I am interested in a solution that doesn't require CPU calculations each frame, but rather set it up once and then let the shader do the billboard rotation. I realize there's many different solutions, like merging all the quads together, but I would first like to know if the approach with offsetting the center is possible. If it all seems a bit confusing, it's because I'm a little confused myself.

    Read the article

  • OpenGLES GLSL Shader attributes always bound to 0

    - by codemonkey
    So I have a very simple vertex shader as follows #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } Which I load, as well as the fragment shader: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } Which I then load, compile, and link to my shader program. I check for link status using glGetProgramiv(shaderProgram, GL_LINK_STATUS, &shaderSuccess); which returns GL_TRUE so I think its ok. However, when I query the active attributes and uniforms using #ifdef DEBUG int totalAttributes = -1; glGetProgramiv(shaderProgram, GL_ACTIVE_ATTRIBUTES, &totalAttributes); for(int i=0; i<totalAttributes; ++i) { int name_len=-1, num=-1; GLenum type = GL_ZERO; char name[100]; glGetActiveAttrib(shaderProgram, GLuint(i), sizeof(name)-1, &name_len, &num, &type, name ); name[name_len] = 0; GLuint location = glGetAttribLocation(shaderProgram, name); fprintf(stderr, "Attribute %s is bound at %d\n", name, location); } int totalUniforms = -1; glGetProgramiv(shaderProgram, GL_ACTIVE_UNIFORMS, &totalUniforms); for(int i=0; i<totalUniforms; ++i) { int name_len=-1, num=-1; GLenum type = GL_ZERO; char name[100]; glGetActiveUniform(shaderProgram, GLuint(i), sizeof(name)-1, &name_len, &num, &type, name ); name[name_len] = 0; GLuint location = glGetUniformLocation(shaderProgram, name); fprintf(stderr, "Uniform %s is bound at %d\n", name, location); } #endif I get: Attribute inColor is bound at 0 Attribute position is bound at 1 Uniform mvp is bound at 0 Which leads to failure when trying to use the shader to render the objects. I have tried switching the order of declaration of position & inColor, but still, only position is bound with the other two giving 0 Can someone please explain why this is happening? Thanks

    Read the article

  • Bump mapping Problem GLSL

    - by jmfel1926
    I am having a slight problem with my Bump Mapping project. Although everything works OK (at least from what I know) there is a slight mistake somewhere and I get incorrect shading on the brick wall when the light goes to the one side or the other as seen in the picture below: The light is on the right side so the shading on the wall should be the other way. I have provided the shaders to help find the issue (I do not have much experience with shaders). Shaders: varying vec3 viewVec; varying vec3 position; varying vec3 lightvec; attribute vec3 tangent; attribute vec3 binormal; uniform vec3 lightpos; uniform mat4 cameraMat; void main() { gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform(); position = vec3(gl_ModelViewMatrix * gl_Vertex); lightvec = vec3(cameraMat * vec4(lightpos,1.0)) - position ; vec3 eyeVec = vec3(gl_ModelViewMatrix * gl_Vertex); viewVec = normalize(-eyeVec); } uniform sampler2D colormap; uniform sampler2D normalmap; varying vec3 viewVec; varying vec3 position; varying vec3 lightvec; vec3 vv; uniform float diffuset; uniform float specularterm; uniform float ambientterm; void main() { vv=viewVec; vec3 normals = normalize(texture2D(normalmap,gl_TexCoord[0].st).rgb * 2.0 - 1.0); normals.y = -normals.y; //normals = (normals * gl_NormalMatrix).xyz ; vec3 distance = lightvec; float dist_number =length(distance); float final_dist_number = 2.0/pow(dist_number,diffuset); vec3 light_dir=normalize(lightvec); vec3 Halfvector = normalize(light_dir+vv); float angle=max(dot(Halfvector,normals),0.0); angle= pow(angle,specularterm); vec3 specular=vec3(angle,angle,angle); float diffuseterm=max(dot(light_dir,normals),0.0); vec3 diffuse = diffuseterm * texture2D(colormap,gl_TexCoord[0].st).rgb; vec3 ambient = ambientterm *texture2D(colormap,gl_TexCoord[0].st).rgb; vec3 diffusefinal = diffuse * final_dist_number; vec3 finalcolor=diffusefinal+specular+ambient; gl_FragColor = vec4(finalcolor, 1.0); }

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • How to detect GLSL warnings?

    - by msell
    After compiling a shader with glCompileShader, I can call glGetShaderiv with GL_COMPILE_STATUS to check if the shader compiled successfully. I can also call glGetShaderInfoLog to get information about possible errors, warnings or other info. The information log returned by this function is unspecified. In a tool where users can write their own shaders, I would like to print all errors and warnings from the compilation, but nothing if no warnings or errors were found. The problem is that the GL_COMPILE_STATUS returns only false if the compilation failed and true otherwise. If no problems were found, some drivers return empty info log from glGetShaderInfoLog, but some drivers can return something else such as "No errors.", which I do not want to print to the user. How is this problem generally solved?

    Read the article

  • Developing GLSL Shaders?

    - by skln
    I want to create shaders but I need a tool to create and see the visual result before I put them into my game. As to determine if there is something wrong with my game or if it's something with the shader I created. I've looked at some like Render Monkey and OpenGL Shader Designer from what I recall of Render Monkey it had a way to define your own attributes (now as "in" for vertex shaders = 330) easily though I can't remember to what extent. Shader Designer requires a plugin that I didn't even bother to look at creating cause it's an external process and plugin. Are there any tools out there that support a scripting language and I could easily provide specific input such as float movement = sin(elapsedTime()); and then define in float movement; in the vertex shader ? It'd be cool if anyone could share how they develop shaders, if they just code away and then plug it into their game hoping to get the result they wanted.

    Read the article

  • Phone complains that identical GLSL struct definition differs in vert/frag programs

    - by stephelton
    When I provide the following struct definition in linked frag and vert shaders, my phone (Samsung Vibrant / Android 2.2) complains that the definition differs. struct Light { mediump vec3 _position; lowp vec4 _ambient; lowp vec4 _diffuse; lowp vec4 _specular; bool _isDirectional; mediump vec3 _attenuation; // constant, linear, and quadratic components }; uniform Light u_light; I know the struct is identical because its included from another file. These shaders work on a linux implementation and on my Android 3.0 tablet. Both shaders declare "precision mediump float;" The exact error is: Uniform variable u_light type/precision does not match in vertex and fragment shader Am I doing anything wrong here, or is my phone's implementation broken? Any advice (other than file a bug report?)

    Read the article

  • GLSL custom interpolation filter

    - by Cyan
    I'm currently building a fragment shader which is using several textures to render the final pixel color. The textures are not really textures, they are in fact "input data" to be used in the formula to generate the final color. The problem I've got is that the texture are getting bi-linear-filtered, and therefore the input data as well. This results in many unwanted side-effects, especially when final rendered texture is "zoomed" compared to original resolution. Removing the side effect is a complex task, and only result in "average" rendering. I was thinking : well, all my problems seems to come from the "default" bi-linear filtering on these input data. I can't move to GL_NEAREST either, since it would create "blocky" rendering. So i guess the better way to proceed is to be fully in charge of the interpolation. For this to work, i would need the input data at their "natural" resolution (so that means 4 samples), and a relative position between the sampled points. Is that possible, and if yes, how ? [EDIT] Since i started this question, i found this internet entry, which seems to (mostly) answer my needs. http://www.gamerendering.com/2008/10/05/bilinear-interpolation/ One aspect of the solution worry me though : the dimensions of the texture must be provided in an argument. It seems there is no way to "find this information transparently". Adding an argument into the rendering pipeline is unwelcomed though, since it's not under my responsibility, and translates into adding complexity for others.

    Read the article

  • NPR GLSL Tutorials

    - by anon
    Anyone have a good list of tutorials on doing Non photo realistic rendering with GLSL ? I have seen books on GLSL, and books on NPR, but very few books/tutorials on doing NPR with GLSL. (I want to do it with GLSL as I want real time). Thanks!

    Read the article

  • GLSL: How Do I cast a float into an int?

    - by dugla
    In a GLSL fragment shader I am trying to cast a float into an int. The compiler has other ideas. It complains thusly: ERROR: 0:60: '=' : cannot convert from 'mediump float' to 'highp int' I am trying to do this: mediump float indexf = floor(2.0 * mixer); highp int index = indexf; I (vainly) tried to raise the precision of the int above the float to appease the GL Gods but no joy. Could someone please school me here? Thanks, Doug

    Read the article

  • What are the steps taken by this GLSL code?

    - by user827992
    1 void main(void) 2 { 3 vec2 pos = mod(gl_FragCoord.xy, vec2(50.0)) - vec2(25.0); 4 float dist_squared = dot(pos, pos); 5 6 gl_FragColor = (dist_squared < 400.0) 7 ? vec4(.90, .90, .90, 1.0) 8 : vec4(.20, .20, .40, 1.0); 9 } taken from http://people.freedesktop.org/~idr/OpenGL_tutorials/03-fragment-intro.html Now, this looks really trivial and simple, but my problem is with the mod function. This function is taking 2 vec2 as inputs but is supposed to take just 2 atomic arguments according to the official documentation, also this function makes an implicit use of the floor function that only accepts, again, 1 atomic argument. Can someone explain this to me step by step and point out what I'm not getting here? It's some kind of OpenGL trick? OpenGL Math trick? in the GLSL docs i always find and explicit reference to the type accepted by the function and vec2 it's not there.

    Read the article

  • My GLSL shader isn't compiling even though it should. What should I investigate?

    - by reapz
    I'm porting an iOS game to Android. One of the shaders I'm using wouldn't compile until I reduced the number of uniform variables. Here are the uniform definitions: uniform highp mat4 ViewProjMatrix; uniform mediump vec3 LightDirWorld; uniform mediump int BoneCount; uniform highp mat4 BoneMatrixArray[8]; uniform highp mat3 BoneMatrixArrayIT[8]; uniform mediump int LightCount; uniform mediump vec3 LightPos[4]; // This used to be 12, but now 4, next lines also uniform lowp vec3 LightColour[4]; uniform mediump vec3 LightInnerOuterFalloff[4]; My issue is that the GLSL shader wouldn't compile until I reduced the count of the above arrays from 12 to 4. My understanding is that if those 3 lines were arrays of 12 then I would be using 56 vertex uniform vectors. I query the system at startup (GL_MAX_VERTEX_UNIFORM_VECTORS) and it says that 128 are available. Why wouldn't it compile with 56? I'm having issues on the Kindle Fire.

    Read the article

  • How to setup my texture cordinates correctly in GLSL 150 and OpenGL 3.3?

    - by RubyKing
    I'm trying to do texture mapping in GLSL 150 and OpenGL 3.3 Here are my shaders I've tried my best to get this correct as possible hopefully this is :) I'm guessing you want to know what the problem is well my texture shows but not in its fullest form just one section of it not the full texture on the quad. All I can think of is its the texture cordinates in the main.cpp which is at the bottom of this post. FRAGMENT SHADER #version 150 in vec2 Texcoord_VSPS; out vec4 color; // Values that stay constant for the whole mesh. uniform sampler2D myTextureSampler; //Main Entry Point void main() { // Output color = color of the texture at the specified UV color = texture2D( myTextureSampler, Texcoord_VSPS ); } VERTEX SHADER #version 150 //Position Container in vec3 position; //Container for TexCoords attribute vec2 Texcoord0; out vec2 Texcoord_VSPS; //out vec2 ex_texcoord; //TO USE A DIFFERENT COORDINATE SYSTEM JUST MULTIPLY THE MATRIX YOU WANT //Main Entry Point void main() { //Translations and w Cordinates stuff gl_Position = vec4(position.xyz, 1.0); Texcoord_VSPS = Texcoord0; } LINK TO MAIN.CPP http://pastebin.com/t7Vg9L0k

    Read the article

  • GLSL shader render to texture not saving alpha value

    - by quadelirus
    I am rendering to a texture using a GLSL shader and then sending that texture as input to a second shader. For the first texture I am using RGB channels to send color data to the second GLSL shader, but I want to use the alpha channel to send a floating point number that the second shader will use as part of its program. The problem is that when I read the texture in the second shader the alpha value is always 1.0. I tested this in the following way: at the end of the first shader I did this: gl_FragColor(r, g, b, 0.1); and then in the second texture I read the value of the first texture using something along the lines of vec4 f = texture2D(previous_tex, pos); if (f.a != 1.0) { gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0); return; } No pixels in my output are black, whereas if I change the above code to read gl_FragColor(r, g, 0.1, 1.0); //Notice I'm now sending 0.1 for blue and in the second shader vec4 f = texture2D(previous_tex, pos); if (f.b != 1.0) { gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0); return; } All the appropriate pixels are black. This means that for some reason when I set the alpha value to something other than 1.0 in the first shader and render to a texture, it is still seen as being 1.0 by the second shader. Before I render to texture I glDisable(GL_BLEND); It seems pretty clear to me that the problem has to do with OpenGL handling alpha values in some way that isn't obvious to me since I can use the blue channel in the way I want, and figured someone out there will instantly see the problem.

    Read the article

  • Qt 4.6 OpenGL GLSL

    - by Zeke
    I'm trying to find like NeHe's tutorials for Qt that are all in GLSL. Because lets face it, OpenGL in the old days are dead and Shaders are the only way now. And with Qt-4.6 they introduced the QMatrix4x4, QVector3, and the Shader classes. But I cannot find any tutorials for this. All the ones I do find, all use crappy SDL and/or GLUT (Which are just plain useless).

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10  | Next Page >