Search Results

Search found 9724 results on 389 pages for 'legend properties'.

Page 2/389 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • JFreeChart Legend Display

    - by Richard B
    In my JFreeChart timeseries plots I find the legends lines to thin to see the colour accurately. Another post [ jfreechart - change sample of colors in legend ] suggested overriding a renderer method as follows: renderer = new XYLineAndShapeRenderer() { private static final long serialVersionUID = 1L; public Shape lookupLegendShape(int series) { return new Rectangle(15, 15); } }; this approach works fine until you do what I did renderer.setSeriesShapesVisible(i, false); Once I did that the legend reverts back to a line. Is there any way round this?

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • c# Properties.Settings.Default Doesn't work as expected

    - by Jack
    I've been working on a program to automate my backup checks with LogMeIn backup (a windows forms based program). I now need a way to store user settings, to save information easily. I've never worked with the Application/User settings that is somewhat "built-in" - and decided to try it, but ran into problems. I added four settings for now: IncludeCriteria (Specialized.StringCollection) ExcludeCriteria (Specialized.StringCollection) ReportPath (string) ReportType (int) But the behavior doesn't act as expected (go figure). After saving some values in my program, I go back into edit/view my settings values using the VS 2008 settings editor. None of my values are stored. While I think this may be because those values are just default values, wouldn't that be where they can be stored/read/changed? Here is my load form code (still very unrefined): private void setupForm() { txtPath.Text = BackupReport.Properties.Settings.Default.ReportPath == null ? "" : BackupReport.Properties.Settings.Default.ReportPath; if (BackupReport.Properties.Settings.Default.ReportType == 0) { radioHTML.Checked = true; } else radioExcel.Checked = true; if (BackupReport.Properties.Settings.Default.IncludeCriteria.Count > 0) { listIncludeCriteria.DataSource = Properties.Settings.Default.IncludeCriteria; //foreach (string s in Properties.Settings.Default.IncludeCriteria) // listIncludeCriteria.Items.Add(s); } if (BackupReport.Properties.Settings.Default.ExcludeCriteria.Count > 0) { listExcludeCriteria.DataSource = BackupReport.Properties.Settings.Default.ExcludeCriteria; //foreach (string s in Properties.Settings.Default.ExcludeCriteria) // listExcludeCriteria.Items.Add(s); } } listIncludeCriteria is just a listbox. When the user saves I call this method: private void saveSettings() { //var settings = BackupReport.Properties.Settings; if (txtPath.Text != "") { BackupReport.Properties.Settings.Default.ReportPath = txtPath.Text; } if (listIncludeCriteria.Items.Count > 0) { //BackupReport.Properties.Settings.Default.IncludeCriteria = (StringCollection)listIncludeCriteria.Items.AsQueryable(); foreach (var i in listIncludeCriteria.Items) { if (!isIncludeDuplicate(i.ToString())) BackupReport.Properties.Settings.Default.IncludeCriteria.Add(i.ToString()); } } if (listExcludeCriteria.Items.Count > 0) { //BackupReport.Properties.Settings.Default.ExcludeCriteria = (StringCollection)listExcludeCriteria.Items.AsQueryable(); foreach (var i in listExcludeCriteria.Items) { if (!isExcludeDuplicate(i.ToString())) Properties.Settings.Default.ExcludeCriteria.Add(i.ToString()); } } if (radioExcel.Checked == true) BackupReport.Properties.Settings.Default.ReportType = 1; else BackupReport.Properties.Settings.Default.ReportType = 0; BackupReport.Properties.Settings.Default.Save(); //Properties.Settings.Default.Save(); this.DialogResult = DialogResult.OK; this.Close(); } The wierd thing is when the form loads, the path I put in the first time seems to come up (ReportPath) - even the listBoxes are populated with a bunch of crap I put in - yet I cant find these values anywhere. Any help would be appreciated! Josh

    Read the article

  • Ongoing confusion about ivars and properties in objective C

    - by Earl Grey
    After almost 8 months being in ios programming, I am again confused about the right approach. Maybe it is not the language but some OOP principle I am confused about. I don't know.. I was trying C# a few years back. There were fields (private variables, private data in an object), there were getters and setters (methods which exposed something to the world) ,and properties which was THE exposed thing. I liked the elegance of the solution, for example there could be a class that would have a property called DailyRevenue...a float...but there was no private variable called dailyRevenue, there was only a field - an array of single transaction revenues...and the getter for DailyRevenue property calculated the revenue transparently. If somehow the internals of daily revenue calculation would change, it would not affect somebody who consumed my DailyRevenue property in any way, since he would be shielded from getter implementation. I understood that sometimes there was , and sometimes there wasn't a 1-1 relationship between fields and properties. depending on the requirements. It seemed ok in my opinion. And that properties are THE way to acces the data in object. I know the difference betweeen private, protected, and public keyword. Now lets get to objectiveC. On what factor should I base my decision about making someting only an ivar or making it as a property? Is the mental model the same as I describe above? I know that ivars are "protected" by default, not "private" asi in c#..But thats ok I think, no big deal for my presnet level of understanding the whole ios development. The point is ivars are not accesible from outside (given i don't make them public..but i won't). The thing that clouds my clear understanding is that I can have IBOutlets from ivars. Why am I seeing internal object data in the UI? *Why is it ok?* On the other hand, if I make an IBOutlet from property, and I do not make it readonly, anybody can change it. Is this ok too? Let's say I have a ParseManager object. This object would use a built in Foundation framework class called NSXMLParser. Obviously my ParseManager will utilize this nsxmlparser's capabilities but will also do some additional work. Now my question is, who should initialize this NSXMLParser object and in which way should I make a reference to it from the ParseManager object, when there is a need to parse something. A) the ParseManager -1) in its default init method (possible here ivar - or - ivar+ppty) -2) with lazyloading in getter (required a ppty here) B) Some other object - who will pass a reference to NSXMLParser object to the ParseManager object. -1) in some custom initializer (initWithParser:(NSXMLPArser *) parser) when creating the ParseManager object.. A1 - the problem is, we create a parser and waste memory while it is not yet needed. However, we can be sure that all methods that are part ot ParserManager object, can use the ivar safely, since it exists. A2 - the problem is, the nsxmlparser is exposed to outside world, although it could be read only. Would we want a parser to be exposed in some scenario? B1 - this could maybe be useful when we would want to use more types of parsers..i dont know... I understand that architectural requirements and and language is not the same. But clearly the two are in relation. How to get out of that mess of my? Please bear with me, I wasn't able to come up with a single ultimate question. And secondly, it's better to not scare me with some superadvanced newspeak that talks about some crazy internals (what the compiler does) and edge cases.

    Read the article

  • Function like C# properties?

    - by alan2here
    I was directed here from SO as a better stack exchange site for this question. I've been thinking about the neatness and expression of C# properties over functions, although they only currently work where no parameters are used, and wondered. Is is possible, and if so why not, to have a stand alone function like C# property. For example: public class test { private byte n = 4; public test() { func = 2; byte n2 = func; func; } private byte func { get { return n; } set { n = value; } func { n++; } } } edit: Sorry for the vagueness first time round. I'm going to add some info and motivation. The 'n++' here is just a simple example, a placeholder, it's not intended to be representative of the actual code that would be used. I'm also looking at this from the point of view of looking at the property command as is, not in the context of using it for 'get_xyz' and 'set_xyz' member functions, which is certainly useful, but of instead comparing it more abstractly to functions and other programic elements. A 'get' property can be used instead of a function that takes no parameters, and syntactically they are perhaps only aesthetically, but as I see it noticeably nicer. However, properties also add the potential for an extra layer of polymorphism, one that relates to the 'func = 4;' getting, 'int n = func;' setting or 'func;' function like context in which they are used as well as the more common parameter based polymorphism. Potentially allowing for a lot of expression and contextual information reguarding how other would use your functions. As in many places uses and definitions would remain the same, it shouldn't break existing code. private byte func { get { } get bool { } set { } func { } func(bool) { } func(byte, myType) { } // etc... } So a read only function would look like this: private byte func { get { } } A normal function like this: private void func { func { } } A function with parameter polymorphism like this: private byte func { func(bool) { } func(byte, myType) { } } And a function that could return a value, or just compute, depending on the context it is used, that also has more conventional parameter polymorphism as well, like so: private byte func { get { } func(bool) { } func(byte, myType) { } }

    Read the article

  • Generate md5 and other checksums from properties menu (added "Digests" tab)

    - by Chuck
    I am trying to restore a function that I had on my last box. It added a tab in the properties menu of any file called "Digests". From there I could choose any/all of the hash formats, click hash and it would generate said checksums right there. What I am trying to find out is either the name of the package or acquire the location of it's installation. I have started a thread on UbuntuForums pertaining to this already

    Read the article

  • JavaFX - the right way to use Properties with domain objects

    - by pjm56
    JavaFX has provided a bunch of new Property objects, such as javafx.beans.property.DoubleProperty which allow you to define fields which can be automatically observed and synchronised. In many JFX examples, the MVC model class has a number of these Property fields, which can then bind automatically to the view. However, this seems to be encouraging us to put JFX properties into our Domain objects (if you assume that the Model class is going to be a domain object), which strikes me as a poor separation of concerns (i.e. putting GUI code in the Domain). Has anyone seen this problem being solved in 'real life' and, if so, how was it done?

    Read the article

  • Zelda Adventure is an Epic Legend of Zelda Minecraft Game

    - by Jason Fitzpatrick
    What do you get when you combine a passion for The Legend of Zelda and Minecraft? A playable Zelda epic built entirely within Minecraft. Minecraft enthusiast Gary520 has invested some serious time into an amazing rendition of the Legend of Zelda universe done entirely in Minecraft. Zelda Adventure combines elements from across the Legend of Zelda games including characters, weapons, quests, and more. Watch the trailer above to see it in action. Currently the game is not in public release but you can grab a beta release with the first five dungeons on the Minecraft forums here (the Minecraft site seems to be down for maintenance, if anyone has a mirror to the file throw a link in the comments section). Zelda Adventure Trailer [YouTube via Wired] What is a Histogram, and How Can I Use it to Improve My Photos?How To Easily Access Your Home Network From Anywhere With DDNSHow To Recover After Your Email Password Is Compromised

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • JBoss AS: use .xml files in the properties-service.xml

    - by fgysin
    The properties service (configured in properties-service.xml) in JBoss application server lets you specify external .properties files that are loaded and can then be accessed as system properties from the deployed applications. (See here http://community.jboss.org/wiki/PropertiesService for more info...) Is it also possible to load config files in the .xml format instead of .properties? I know it is possible for certain given configs like for example the mail-service.xml and the jboss-log4j.xml... But they are both loaded directly by JBoss, and not via the properties service.

    Read the article

  • Properties vs. Fields: Need help grasping the uses of Properties over Fields.

    - by pghtech
    First off, I have read through a list of postings on this topic and I don't feel I have grasped properties because of what I had come to understand about encapsulation and field modifiers (private, public..ect). One of the main aspects of C# that I have come to learn is the importance of data protection within your code by the use of encapsulation. I 'thought' I understood that to be because of the ability of the use of the modifiers (private, public, internal, protected). However, after learning about properties I am sort of torn in understanding not only properties uses, but the overall importance/ability of data protection (what I understood as encapsulation) within C#. To be more specific, everything I have read when I got to properties in C# is that you should try to use them in place of fields when you can because of: 1) they allow you to change the data type when you can't when directly accessing the field directly. 2) they add a level of protection to data access However, from what I 'thought' I had come to know about the use of field modifiers did #2, it seemed to me that properties just generated additional code unless you had some reason to change the type (#1) - because you are (more or less) creating hidden methods to access fields as opposed to directly. Then there is the whole modifiers being able to be added to Properties which further complicates my understanding for the need of properties to access data. I have read a number of chapters from different writers on "properties" and none have really explained a good understanding of properties vs. fields vs. encapsulation (and good programming methods). Can someone explain: 1) why I would want to use properties instead of fields (especially when it appears I am just adding additional code 2) any tips on recognizing the use of properties and not seeing them as simply methods (with the exception of the get;set being apparent) when tracing other peoples code? 3) Any general rules of thumb when it comes to good programming methods in relation to when to use what? Thanks and sorry for the long post - I didn't want to just ask a question that has been asked 100x without explaining why I am asking it again.

    Read the article

  • HTC Legend get’s 2.2 Froyo update – India

    - by Boonei
    HTC Legend started to received 2.2 Froyo update from yesterday night. If you did not receive an automatic update prompt, please check the same manually in your phone, I am pretty sure you will get it now. Ok, lets get into business Good news Update went off smooth – over Wi-Fi App’s like, Flash light, App sharing, easy adding of attachments in sms, etc are part of update Google Maps 5.0 [But no 3D view] Much awaited Good voice with full integration with the phone!!!! Flash 10 Now for really bad news Phone seems to slow down a lot, that’s not something that we really want New browser with the Froyo update does not seems be all that good as the one installed already Since phone is little sluggish, the really smooth touch effects seem to be bad! This article titled,HTC Legend get’s 2.2 Froyo update – India, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • java Properties - to expose or not to expose?

    - by ring bearer
    This might be an age old problem and I am sure everyone has their own ways. Suppose I have some properties defined such as secret.user.id=user secret.password=password website.url=http://stackoverflow.com Suppose I have 100 different classes and places where I need to use these properties. Which one is good (1) I create a Util class that will load all properties and serve them using a key constant Such as : Util is a singleton that loads all properties and keeps up on getInstance() call. Util myUtil = Util.getInstance(); String user = myUtil.getConfigByKey(Constants.SECRET_USER_ID); String password = myUtil.getConfigByKey(Constants.SECRET_PASSWORD); .. //getConfigByKey() - inturns invokes properties.get(..) doSomething(user, password) So wherever I need these properties, I can do steps above. (2) I create a meaningful Class to represent these properties; say, ApplicationConfig and provide getters to get specific properties. So above code may look like: ApplicationConfig config = ApplicationConfig.getInstance(); doSomething(config.getSecretUserId(), config.getPassword()); //ApplicationConfig would have instance variables that are initialized during // getInstance() after loading from properties file. Note: The properties file as such will have only minor changes in the future. My personal choice is (2) - let me hear some comments?

    Read the article

  • Using Ant to merge two different properties files

    - by Justin
    I have a default properties file, and some deployment specific properties files that override certain settings from the default, based on deployment environment. I would like my Ant build script to merge the two properties files (overwriting default values with deployment specific values), and then output the resulting properties to a new file. I tried doing it like so but I was unsuccessful: <target depends="init" name="configure-target-environment"> <filterset id="application-properties-filterset"> <filtersfile file="${build.config.path}/${target.environment}/application.properties" /> </filterset> <copy todir="${web-inf.path}/conf" file="${build.config.path}/application.properties" overwrite="true" failonerror="true" > <filterset refid="application-properties-filterset" /> </copy> </target>

    Read the article

  • how to show legend in graphs using flot

    - by robezy
    Hi, I'm using flot library to show plot graph. I need to show the legend in a separate div. Quoted from flot api. If you want the legend to appear somewhere else in the DOM, you can specify "container" as a jQuery object/expression to put the legend table into. So i wrote the legend options as below. "legend":{"show":true,"container":"jQuery("#placeholder")"}} Unfortunately it is not showing anything? is this the correct way of writing legend option? One good thing is it not showing default legend. so i guess the problem is with way i wrote the container . Any thoughts? Thanks

    Read the article

  • Load properties file in JAR?

    - by apryor48
    I'm having trouble when one of the jars that my web app depends on tries to load a properties file from within the jar. Here is the code in the jar. static { Properties props = new Properties(); try { props.load(ClassLoader.getSystemResourceAsStream("someProps.properties")); } catch (IOException e) { e.printStackTrace(); } someProperty = props.getProperty("someKey"); } The properties file is in my "src/main/resources" directory of the Maven project. When I run this code from my junit test in Eclipse, it executes just fine. When the project is built with Maven into a jar, and included as a dependency in my webb app, it fails to locate the properties file. I know that the properties file is at the base directory of the depended on jar, I don't know how to fix this. Please help!

    Read the article

  • How to change the amount of RAM displayed in System Properties

    - by Nicu Zecheru
    I have this product that requires at least 1 GB Physical Memory in order to be installed. On my XP Pro machine I have 1 GB of RAM but in System Properties only 0.99 GB of RAM is displayed. The problem is that the product installer checks the memory displayed in System Properties (just a guess, not sure) and cannot continue the setup because it sees only 0.99 GB. Is there any way to change the displayed memory in the System Properties? Or how can I trick the installer to skip the memory check? Thanks.

    Read the article

  • How to configure log4j with a properties file

    - by Dan
    How do I get log4j to pick up a properties file. I'm writing a Java desktop app which I want to use log4j. In my main method if have this: PropertyConfigurator.configure("log4j.properties"); The log4j.properties file sits in the same directory when I open the Jar. Yet I get this error: log4j:ERROR Could not read configuration file [log4j.properties]. java.io.FileNotFoundException: log4j.properties (The system cannot find the file specified) What am I doing wrong?

    Read the article

  • documenting class properties

    - by intuited
    I'm writing a lightweight class whose properties are intended to be publicly accessible, and only sometimes overridden in specific instantiations. There's no provision in the Python language for creating docstrings for class properties, or any sort of properties, for that matter. What is the accepted way, should there be one, to document these properties? Currently I'm doing this sort of thing: class Albatross(object): """A bird with a flight speed exceeding that of an unladen swallow. Properties: """ flight_speed = 691 __doc__ += """ flight_speed (691) The maximum speed that such a bird can attain """ nesting_grounds = "Throatwarbler Man Grove" __doc__ += """ nesting_grounds ("Throatwarbler Man Grove") The locale where these birds congregate to reproduce. """ def __init__(**keyargs): """Initialize the Albatross from the keyword arguments.""" self.__dict__.update(keyargs) Although this style doesn't seem to be expressly forbidden in the docstring style guidelines, it's also not mentioned as an option. The advantage here is that it provides a way to document properties alongside their definitions, while still creating a presentable class docstring, and avoiding having to write comments that reiterate the information from the docstring. I'm still kind of annoyed that I have to actually write the properties twice; I'm considering using the string representations of the values in the docstring to at least avoid duplication of the default values. Is this a heinous breach of the ad hoc community conventions? Is it okay? Is there a better way? For example, it's possible to create a dictionary containing values and docstrings for the properties and then add the contents to the class __dict__ and docstring towards the end of the class declaration; this would alleviate the need to type the property names and values twice. I'm pretty new to python and still working out the details of coding style, so unrelated critiques are also welcome.

    Read the article

  • Axis2 webservice (aar archive) properties file

    - by XpiritO
    Hi there, guys. I'm currently developing a set of SOAP webservices over Axis2, deployed over a clustered WebLogic 10.3.2 environment. My webservices use some user settings that I want to be editable without the need for recompiling and regenerating the AAR archive. With this in mind, I chose to put them into a properties file that is loaded and consumed in runtime. Unfortunately, I'm having some questions about this: As far as I know, to achieve what I want, the only option is to put the properties file into the ../axis2/WEB-INF/classes directory of each one of the deployments (on each WebLogic instance) I currently have on my clustered configuration, and then load the file, as follows (or equivalent, this has not been verified for optimization): InputStreamReader fMainProp = new InputStreamReader(this.getClass().getResourceAsStream("myfile.properties")); Properties mainProp = new Properties(); mainProp.load(fMainProp); This is not as practical as I wanted it to be, because each time I want to alter some setting on the properties file, I have to edit each one of the files (deployed over different WebLogic instances) and there is a high probability of modifying one of these files without modifying the others. What I would like to know is if there is any (better) alternative to accomplish what I want, minimizing the potential conflict of configuration that is created by distributing and replicating the properties file through multiple WebLogic instances.

    Read the article

  • Loading Liferay Properties from Spring IoC container (to get jdbc connection parameters)

    - by mox601
    I'm developing some portlets for Liferay Portal 5.2.3 with bundled tomcat 6.0.18 using Spring IoC container. I need to map the User_ table used in Liferay database to an entity with Hibernate, so I need to use two different dataSources to separate the liferay db from the db used by portlets. My jdbc.properties has to hold all connection parameters for both databases: no problem for the one used by portlets, but I am having issues determining which database uses liferay to hold its data. My conclusion is that i should have something like this: liferayConnection.url=jdbc:hsqldb:${liferay.home}/data/hsql/lportal in order to get the database url dynamically loaded, according to Liferay properties found in portal-ext.properties. (Or, better, load the whole portal-ext.properties and read database properties from there). The problem is that the placeholder is not resolved: Caused by: org.springframework.beans.factory.BeanDefinitionStoreException: Invalid bean definition with name 'liferayDataSource' defined in class path resource [WEB-INF/applicationContext.xml]: Could not resolve placeholder 'liferay.home' To dodge this problem I tried to load explicitly portal-ext.properties with a Spring bean: <bean id="liferayPropertiesConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer" p:location="../../portal-ext.properties"/> but no luck: liferay.home is not resolved but there aren't other errors. How can I resolve the placeholder defined by Liferay? Thanks

    Read the article

  • MVVM Binding to Properties.Settings

    - by LnDCobra
    In a MVVM approach how would I go about binding to Properties.Settings? Is there a way to bind a property in C# code(in the ViewModel) to another property(Properties.Settings.Default) or should i just bind to standard properties and on save make sure each property gets propogated manually to the Properties.Settings?

    Read the article

  • Problem loading java properties

    - by markovuksanovic
    I am trying to load properties from a file (test.properties) The code I use is as follows: URL url = getClass().getResource("../resources/test.properties"); properties.load(url.openStream()); But when executing the second line I get a NPE. (null pointer exception) I'm not sure what's wrong here... I have checked that the file exists at the location where URL points to... Any help is appreciated....

    Read the article

  • Converting javafx.util.Properties to a HashMap

    - by Mozez
    Hello, I was wondering if there is an easy way to convert the javafx.util.Properties object to a java.util.HashMap. There is the obvious way of getting each value from the Properties object and putting it in a Map. But with a large number of properties it seems like there should be a way of just getting the Map that backs javafx.util.Properties (if it is a Map). Thanks in advance for any suggestions.

    Read the article

  • Accessing and encoding of properties files

    - by NoozNooz42
    I'm used to work with properties files, for example from Ant. Where I can simply reference the property file doing something like that: <property file="webapp_DO_NOT_COMMIT.properties"/> (the file is so named because our DVCS is configured as to never commit files containing "DO_NOT_COMMIT" to prevent committing credentials/passwords/etc.) Here's a very simple .properties file example: passwd=brokencleartextpassword Now I want to put some configuration in another, similar, properties file that I need to access from my Java code. How should I go about it? I also have another related question: is the character encoding of .properties file defined by any spec?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >