Search Results

Search found 44 results on 2 pages for 'varargs'.

Page 2/2 | < Previous Page | 1 2 

  • Use format strings that contain %1, %2 etc. instead of %d, %s etc. - Linux, C++

    - by rursw1
    Hello, As a follow-up of this question (Message compiler replacement in Linux gcc), I have the following problem: When using MC.exe on Windows for compiling and generating messages, within the C++ code I call FormatMessage, which retrieves the message and uses the va_list *Arguments parameter to send the varied message arguments. For example: messages.mc file: MessageId=1 Severity=Error SymbolicName=MULTIPLE_MESSAGE_OCCURED Language=English message %1 occured %2 times. . C++ code: void GetMsg(unsigned int errCode, wstring& message,unsigned int paramNumber, ...) { HLOCAL msg; DWORD ret; LANGID lang = GetUserDefaultLangID(); try { va_list argList; va_start( argList, paramNumber ); const TCHAR* dll = L"MyDll.dll"; _hModule = GetModuleHandle(dll); ret =::FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_HMODULE|FORMAT_MESSAGE_IGNORE_INSERTS, _hModule, errCode, lang, (LPTSTR) &msg, 0, &argList ); if ( 0 != ret ) { unsigned int count = 0 ; message = msg; if (paramNumber>0) { wstring::const_iterator iter; for (iter = message.begin();iter!=message.end();iter++) { wchar_t xx = *iter; if (xx ==L'%') count++; } } if ((count == paramNumber) && (count >0)) { ::LocalFree( msg ); ret =::FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_HMODULE, _hModule, errCode, GetUserDefaultLangID(), (LPTSTR) &msg, 0, &argList ); } else if (count != paramNumber) { wstringstream tmp; wstring messNumber; tmp << (errCode & 0xFFFF); tmp >> messNumber; message = message +L"("+ messNumber + L"). Bad Format String. "; } } ::LocalFree( msg ); } catch (...) { message << L"last error: " << GetLastError(); } va_end( argList ); } Caller code: wstring message; GetMsg(MULTIPLE_MESSAGE_OCCURED, message,2, "Error message", 5); Now, I wrote a simple script to generate a .msg file from the .mc file, and then I use gencat to generate a catalog from it. But is there a way to use the formatted strings as they contain %1, %2, etc. and NOT the general (%d, %s...) format? Please note, that the solution has to be generic enough for each possible message with each posible types\ arguments order... Is it possible at all? Thank you.

    Read the article

  • Problems with variadic function (C)

    - by morpheous
    I have the following function from some legacy code that I am maintaining. long getMaxStart(long start, long count, const myStruct *s1, ...) { long i1, maxstart; myStruct *s2; va_list marker; maxstart = start; /*BUGFIX: 003 */ /*(va_start(marker, count);*/ va_start(marker, s1); for (i1 = 1; i1 <= count; i1++) { s2 = va_arg(marker, myStruct *); /* <- s2 is assigned null here */ maxstart = MAX(maxstart, s2->firstvalid); /* <- SEGV here */ } va_end(marker); return (maxstart); } When the function is called with only one myStruct argument, it causes a SEGV. The code compiled and run without crashing on an XP, when I compiled it using VS2005. I have now moved the code to Ubuntu Karmic and I am having problems with the stricter compiler on Linux. Is anyone able to spot what is causing the parameter not to be read correctly in the var_arg() statement? I am compiling using gcc version 4.4.1

    Read the article

  • In scala can I pass repeated parameters to other methods?

    - by Fred Haslam
    Here is something I can do in java, take the results of a repeated parameter and pass it to another method: public void foo(String ... args){bar(args);} public void bar(String ... args){System.out.println("count="+args.length);} In scala it would look like this: def foo(args:String*) = bar(args) def bar(args:String*) = println("count="+args.length) But this won't compile, the bar signature expects a series of individual strings, and the args passed in is some non-string structure. For now I'm just passing around arrays. It would be very nice to use starred parameters. Is there some way to do it?

    Read the article

  • Can I pass an array as arguments to a method with variable arguments in Java?

    - by user352382
    I'd like to be able to create a function like: class A { private String extraVar; public String myFormat(String format, Object ... args){ return String.format(format, extraVar, args); } } The problem here is that args is treated as Object[] in the method myFormat, and thus is a single argument to String.format, while I'd like every single Object in args to be passed as a new argument. Since String.format is also a method with variable arguments, this should be possible. If this is not possible, is there a method like String.format(String format, Object[] args)? In that case I could prepend extraVar to args using a new array and pass it to that method.

    Read the article

  • A Look Inside JSR 360 - CLDC 8

    - by Roger Brinkley
    If you didn't notice during JavaOne the Java Micro Edition took a major step forward in its consolidation with Java Standard Edition when JSR 360 was proposed to the JCP community. Over the last couple of years there has been a focus to move Java ME back in line with it's big brother Java SE. We see evidence of this in JCP itself which just recently merged the ME and SE/EE Executive Committees into a single Java Executive Committee. But just before that occurred JSR 360 was proposed and approved for development on October 29. So let's take a look at what changes are now being proposed. In a way JSR 360 is returning back to the original roots of Java ME when it was first introduced. It was indeed a subset of the JDK 4 language, but as Java progressed many of the language changes were not implemented in the Java ME. Back then the tradeoff was still a functionality, footprint trade off but the major market was feature phones. Today the market has changed and CLDC, while it will still target feature phones, will have it primary emphasis on embedded devices like wireless modules, smart meters, health care monitoring and other M2M devices. The major changes will come in three areas: language feature changes, library changes, and consolidating the Generic Connection Framework.  There have been three Java SE versions that have been implemented since JavaME was first developed so the language feature changes can be divided into changes that came in JDK 5 and those in JDK 7, which mostly consist of the project Coin changes. There were no language changes in JDK 6 but the changes from JDK 5 are: Assertions - Assertions enable you to test your assumptions about your program. For example, if you write a method that calculates the speed of a particle, you might assert that the calculated speed is less than the speed of light. In the example code below if the interval isn't between 0 and and 1,00 the an error of "Invalid value?" would be thrown. private void setInterval(int interval) { assert interval > 0 && interval <= 1000 : "Invalid value?" } Generics - Generics add stability to your code by making more of your bugs detectable at compile time. Code that uses generics has many benefits over non-generic code with: Stronger type checks at compile time. Elimination of casts. Enabling programming to implement generic algorithms. Enhanced for Loop - the enhanced for loop allows you to iterate through a collection without having to create an Iterator or without having to calculate beginning and end conditions for a counter variable. The enhanced for loop is the easiest of the new features to immediately incorporate in your code. In this tip you will see how the enhanced for loop replaces more traditional ways of sequentially accessing elements in a collection. void processList(Vector<string> list) { for (String item : list) { ... Autoboxing/Unboxing - This facility eliminates the drudgery of manual conversion between primitive types, such as int and wrapper types, such as Integer.  Hashtable<Integer, string=""> data = new Hashtable<>(); void add(int id, String value) { data.put(id, value); } Enumeration - Prior to JDK 5 enumerations were not typesafe, had no namespace, were brittle because they were compile time constants, and provided no informative print values. JDK 5 added support for enumerated types as a full-fledged class (dubbed an enum type). In addition to solving all the problems mentioned above, it allows you to add arbitrary methods and fields to an enum type, to implement arbitrary interfaces, and more. Enum types provide high-quality implementations of all the Object methods. They are Comparable and Serializable, and the serial form is designed to withstand arbitrary changes in the enum type. enum Season {WINTER, SPRING, SUMMER, FALL}; } private Season season; void setSeason(Season newSeason) { season = newSeason; } Varargs - Varargs eliminates the need for manually boxing up argument lists into an array when invoking methods that accept variable-length argument lists. The three periods after the final parameter's type indicate that the final argument may be passed as an array or as a sequence of arguments. Varargs can be used only in the final argument position. void warning(String format, String... parameters) { .. for(String p : parameters) { ...process(p);... } ... } Static Imports -The static import construct allows unqualified access to static members without inheriting from the type containing the static members. Instead, the program imports the members either individually or en masse. Once the static members have been imported, they may be used without qualification. The static import declaration is analogous to the normal import declaration. Where the normal import declaration imports classes from packages, allowing them to be used without package qualification, the static import declaration imports static members from classes, allowing them to be used without class qualification. import static data.Constants.RATIO; ... double r = Math.cos(RATIO * theta); Annotations - Annotations provide data about a program that is not part of the program itself. They have no direct effect on the operation of the code they annotate. There are a number of uses for annotations including information for the compiler, compiler-time and deployment-time processing, and run-time processing. They can be applied to a program's declarations of classes, fields, methods, and other program elements. @Deprecated public void clear(); The language changes from JDK 7 are little more familiar as they are mostly the changes from Project Coin: String in switch - Hey it only took us 18 years but the String class can be used in the expression of a switch statement. Fortunately for us it won't take that long for JavaME to adopt it. switch (arg) { case "-data": ... case "-out": ... Binary integral literals and underscores in numeric literals - Largely for readability, the integral types (byte, short, int, and long) can also be expressed using the binary number system. and any number of underscore characters (_) can appear anywhere between digits in a numerical literal. byte flags = 0b01001111; long mask = 0xfff0_ff08_4fff_0fffl; Multi-catch and more precise rethrow - A single catch block can handle more than one type of exception. In addition, the compiler performs more precise analysis of rethrown exceptions than earlier releases of Java SE. This enables you to specify more specific exception types in the throws clause of a method declaration. catch (IOException | InterruptedException ex) { logger.log(ex); throw ex; } Type Inference for Generic Instance Creation - Otherwise known as the diamond operator, the type arguments required to invoke the constructor of a generic class can be replaced with an empty set of type parameters (<>) as long as the compiler can infer the type arguments from the context.  map = new Hashtable<>(); Try-with-resource statement - The try-with-resources statement is a try statement that declares one or more resources. A resource is an object that must be closed after the program is finished with it. The try-with-resources statement ensures that each resource is closed at the end of the statement.  try (DataInputStream is = new DataInputStream(...)) { return is.readDouble(); } Simplified varargs method invocation - The Java compiler generates a warning at the declaration site of a varargs method or constructor with a non-reifiable varargs formal parameter. Java SE 7 introduced a compiler option -Xlint:varargs and the annotations @SafeVarargs and @SuppressWarnings({"unchecked", "varargs"}) to supress these warnings. On the library side there are new features that will be added to satisfy the language requirements above and some to improve the currently available set of APIs.  The library changes include: Collections update - New Collection, List, Set and Map, Iterable and Iteratator as well as implementations including Hashtable and Vector. Most of the work is too support generics String - New StringBuilder and CharSequence as well as a Stirng formatter. The javac compiler  now uses the the StringBuilder instead of String Buffer. Since StringBuilder is synchronized there is a performance increase which has necessitated the wahat String constructor works. Comparable interface - The comparable interface works with Collections, making it easier to reuse. Try with resources - Closeable and AutoCloseable Annotations - While support for Annotations is provided it will only be a compile time support. SuppressWarnings, Deprecated, Override NIO - There is a subset of NIO Buffer that have been in use on the of the graphics packages and needs to be pulled in and also support for NIO File IO subset. Platform extensibility via Service Providers (ServiceLoader) - ServiceLoader interface dos late bindings of interface to existing implementations. It helpe to package an interface and behavior of the implementation at a later point in time.Provider classes must have a zero-argument constructor so that they can be instantiated during loading. They are located and instantiated on demand and are identified via a provider-configuration file in the METAINF/services resource directory. This is a mechansim from Java SE. import com.XYZ.ServiceA; ServiceLoader<ServiceA> sl1= new ServiceLoader(ServiceA.class); Resources: META-INF/services/com.XYZ.ServiceA: ServiceAProvider1 ServiceAProvider2 ServiceAProvider3 META-INF/services/ServiceB: ServiceBProvider1 ServiceBProvider2 From JSR - I would rather use this list I think The Generic Connection Framework (GCF) was previously specified in a number of different JSRs including CLDC, MIDP, CDC 1.2, and JSR 197. JSR 360 represents a rare opportunity to consolidated and reintegrate parts that were duplicated in other specifications into a single specification, upgrade the APIs as well provide new functionality. The proposal is to specify a combined GCF specification that can be used with Java ME or Java SE and be backwards compatible with previous implementations. Because of size limitations as well as the complexity of the some features like InvokeDynamic and Unicode 6 will not be included. Additionally, any language or library changes in JDK 8 will be not be included. On the upside, with all the changes being made, backwards compatibility will still be maintained. JSR 360 is a major step forward for Java ME in terms of platform modernization, language alignment, and embedded support. If you're interested in following the progress of this JSR see the JSR's java.net project for details of the email lists, discussions groups.

    Read the article

  • Why do I have to explicitly cast sometimes for varargs?

    - by Daniel Lew
    I've got a Class that uses reflection a lot, so I wrote a method to help out: private <T> T callMethod(String methodName, Class[] parameterTypes, Object[] args) { try { Class c = mVar.getClass(); Method m = c.getMethod(methodName, (Class[]) parameterTypes); return (T) m.invoke(mVar, args); } // Insert exception catching here [...] } This worked well for any method that had parameters, however I had to explicitly cast parameterTypes to Class[] in order for this to work for methods with no parameters (e.g., callMethod('funName', null, null);). I've been trying to figure out why this is the case. It seems to me that if parameterTypes, when null, had no concept of what type it is (Class[]), then I'd need to cast it for getMethod(). But if that's the case, why is getMethod() able to tell the difference between null, and (Class[]) null when the method is invoked?

    Read the article

  • Solaris 11.2: Functional Deprecation

    - by alanc
    In Solaris 11.1, I updated the system headers to enable use of several attributes on functions, including noreturn and printf format, to give compilers and static analyzers more information about how they are used to give better warnings when building code. In Solaris 11.2, I've gone back in and added one more attribute to a number of functions in the system headers: __attribute__((__deprecated__)). This is used to warn people building software that they’re using function calls we recommend no longer be used. While in many cases the Solaris Binary Compatibility Guarantee means we won't ever remove these functions from the system libraries, we still want to discourage their use. I made passes through both the POSIX and C standards, and some of the Solaris architecture review cases to come up with an initial list which the Solaris architecture review committee accepted to start with. This set is by no means a complete list of Obsolete function interfaces, but should be a reasonable start at functions that are well documented as deprecated and seem useful to warn developers away from. More functions may be flagged in the future as they get deprecated, or if further passes are made through our existing deprecated functions to flag more of them. Header Interface Deprecated by Alternative Documented in <door.h> door_cred(3C) PSARC/2002/188 door_ucred(3C) door_cred(3C) <kvm.h> kvm_read(3KVM), kvm_write(3KVM) PSARC/1995/186 Functions on kvm_kread(3KVM) man page kvm_read(3KVM) <stdio.h> gets(3C) ISO C99 TC3 (Removed in ISO C11), POSIX:2008/XPG7/Unix08 fgets(3C) gets(3C) man page, and just about every gets(3C) reference online from the past 25 years, since the Morris worm proved bad things happen when it’s used. <unistd.h> vfork(2) PSARC/2004/760, POSIX:2001/XPG6/Unix03 (Removed in POSIX:2008/XPG7/Unix08) posix_spawn(3C) vfork(2) man page. <utmp.h> All functions from getutent(3C) man page PSARC/1999/103 utmpx functions from getutentx(3C) man page getutent(3C) man page <varargs.h> varargs.h version of va_list typedef ANSI/ISO C89 standard <stdarg.h> varargs(3EXT) <volmgt.h> All functions PSARC/2005/672 hal(5) API volmgt_check(3VOLMGT), etc. <sys/nvpair.h> nvlist_add_boolean(3NVPAIR), nvlist_lookup_boolean(3NVPAIR) PSARC/2003/587 nvlist_add_boolean_value, nvlist_lookup_boolean_value nvlist_add_boolean(3NVPAIR) & (9F), nvlist_lookup_boolean(3NVPAIR) & (9F). <sys/processor.h> gethomelgroup(3C) PSARC/2003/034 lgrp_home(3LGRP) gethomelgroup(3C) <sys/stat_impl.h> _fxstat, _xstat, _lxstat, _xmknod PSARC/2009/657 stat(2) old functions are undocumented remains of SVR3/COFF compatibility support If the above table is cut off when viewing in the blog, try viewing this standalone copy of the table. To See or Not To See To see these warnings, you will need to be building with either gcc (versions 3.4, 4.5, 4.7, & 4.8 are available in the 11.2 package repo), or with Oracle Solaris Studio 12.4 or later (which like Solaris 11.2, is currently in beta testing). For instance, take this oversimplified (and obviously buggy) implementation of the cat command: #include <stdio.h> int main(int argc, char **argv) { char buf[80]; while (gets(buf) != NULL) puts(buf); return 0; } Compiling it with the Studio 12.4 beta compiler will produce warnings such as: % cc -V cc: Sun C 5.13 SunOS_i386 Beta 2014/03/11 % cc gets_test.c "gets_test.c", line 6: warning: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 The exact warning given varies by compilers, and the compilers also have a variety of flags to either raise the warnings to errors, or silence them. Of couse, the exact form of the output is Not An Interface that can be relied on for automated parsing, just shown for example. gets(3C) is actually a special case — as noted above, it is no longer part of the C Standard Library in the C11 standard, so when compiling in C11 mode (i.e. when __STDC_VERSION__ >= 201112L), the <stdio.h> header will not provide a prototype for it, causing the compiler to complain it is unknown: % gcc -std=c11 gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: implicit declaration of function ‘gets’ [-Wimplicit-function-declaration] while (gets(buf) != NULL) ^ The gets(3C) function of course is still in libc, so if you ignore the error or provide your own prototype, you can still build code that calls it, you just have to acknowledge you’re taking on the risk of doing so yourself. Solaris Studio 12.4 Beta % cc gets_test.c "gets_test.c", line 6: warning: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 % cc -errwarn=E_DEPRECATED_ATT gets_test.c "gets_test.c", line 6: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 cc: acomp failed for gets_test.c This warning is silenced in the 12.4 beta by cc -erroff=E_DEPRECATED_ATT No warning is currently issued by Studio 12.3 & earler releases. gcc 3.4.3 % /usr/sfw/bin/gcc gets_test.c gets_test.c: In function `main': gets_test.c:6: warning: `gets' is deprecated (declared at /usr/include/iso/stdio_iso.h:221) Warning is completely silenced with gcc -Wno-deprecated-declarations gcc 4.7.3 % /usr/gcc/4.7/bin/gcc gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Wdeprecated-declarations] % /usr/gcc/4.7/bin/gcc -Werror=deprecated-declarations gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: error: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Werror=deprecated-declarations] cc1: some warnings being treated as errors Warning is completely silenced with gcc -Wno-deprecated-declarations gcc 4.8.2 % /usr/bin/gcc gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Wdeprecated-declarations] while (gets(buf) != NULL) ^ % /usr/bin/gcc -Werror=deprecated-declarations gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: error: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Werror=deprecated-declarations] while (gets(buf) != NULL) ^ cc1: some warnings being treated as errors Warning is completely silenced with gcc -Wno-deprecated-declarations

    Read the article

  • Error compiling GLib in Ubuntu 14.04 (trying to install GimpShop)

    - by Nicolás Salvarrey
    I'm kinda new in Linux, so please take it easy on the most complicated stuff. I'm trying to install GimpShop. Installation guide asks me to install GLib first, and when I try to compile it using the make command I get errors. When I run the ./configure --prefix=/usr command, I get this: checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking for the BeOS... no checking for Win32... no checking whether to enable garbage collector friendliness... no checking whether to disable memory pools... no checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ANSI C... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for c++... no checking for g++... no checking for gcc... gcc checking whether we are using the GNU C++ compiler... no checking whether gcc accepts -g... no checking dependency style of gcc... gcc3 checking for gcc option to accept ANSI C... none needed checking for a BSD-compatible install... /usr/bin/install -c checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for _LARGE_FILES value needed for large files... no checking for pkg-config... /usr/bin/pkg-config checking for gawk... (cached) mawk checking for perl5... no checking for perl... perl checking for indent... no checking for perl... /usr/bin/perl checking for iconv_open... yes checking how to run the C preprocessor... gcc -E checking for egrep... grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking for LC_MESSAGES... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking for ngettext in libc... yes checking for dgettext in libc... yes checking for bind_textdomain_codeset... yes checking for msgfmt... /usr/bin/msgfmt checking for dcgettext... yes checking for gmsgfmt... /usr/bin/msgfmt checking for xgettext... /usr/bin/xgettext checking for catalogs to be installed... am ar az be bg bn bs ca cs cy da de el en_CA en_GB eo es et eu fa fi fr ga gl gu he hi hr id is it ja ko lt lv mk mn ms nb ne nl nn no or pa pl pt pt_BR ro ru sk sl sq sr sr@ije sr@Latn sv ta tl tr uk vi wa xh yi zh_CN zh_TW checking for a sed that does not truncate output... /bin/sed checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for /usr/bin/ld option to reload object files... -r checking for BSD-compatible nm... /usr/bin/nm -B checking whether ln -s works... yes checking how to recognise dependent libraries... pass_all checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for g77... no checking for f77... no checking for xlf... no checking for frt... no checking for pgf77... no checking for fort77... no checking for fl32... no checking for af77... no checking for f90... no checking for xlf90... no checking for pgf90... no checking for epcf90... no checking for f95... no checking for fort... no checking for xlf95... no checking for ifc... no checking for efc... no checking for pgf95... no checking for lf95... no checking for gfortran... no checking whether we are using the GNU Fortran 77 compiler... no checking whether accepts -g... no checking the maximum length of command line arguments... 32768 checking command to parse /usr/bin/nm -B output from gcc object... ok checking for objdir... .libs checking for ar... ar checking for ranlib... ranlib checking for strip... strip checking if gcc static flag works... yes checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC checking if gcc PIC flag -fPIC works... yes checking if gcc supports -c -o file.o... yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating libtool appending configuration tag "CXX" to libtool appending configuration tag "F77" to libtool checking for extra flags to get ANSI library prototypes... none needed checking for extra flags for POSIX compliance... none needed checking for ANSI C header files... (cached) yes checking for vprintf... yes checking for _doprnt... no checking for working alloca.h... yes checking for alloca... yes checking for atexit... yes checking for on_exit... yes checking for char... yes checking size of char... 1 checking for short... yes checking size of short... 2 checking for long... yes checking size of long... 8 checking for int... yes checking size of int... 4 checking for void *... yes checking size of void *... 8 checking for long long... yes checking size of long long... 8 checking for __int64... no checking size of __int64... 0 checking for format to printf and scanf a guint64... %llu checking for an ANSI C-conforming const... yes checking if malloc() and friends prototypes are gmem.h compatible... no checking for growing stack pointer... yes checking for __inline... yes checking for __inline__... yes checking for inline... yes checking if inline functions in headers work... yes checking for ISO C99 varargs macros in C... yes checking for ISO C99 varargs macros in C++... no checking for GNUC varargs macros... yes checking for GNUC visibility attribute... yes checking whether byte ordering is bigendian... no checking dirent.h usability... yes checking dirent.h presence... yes checking for dirent.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking for sys/types.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/times.h usability... yes checking sys/times.h presence... yes checking for sys/times.h... yes checking for unistd.h... (cached) yes checking values.h usability... yes checking values.h presence... yes checking for values.h... yes checking for stdint.h... (cached) yes checking sched.h usability... yes checking sched.h presence... yes checking for sched.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking for nl_langinfo... yes checking for nl_langinfo and CODESET... yes checking whether we are using the GNU C Library 2.1 or newer... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for setlocale... yes checking for size_t... yes checking size of size_t... 8 checking for the appropriate definition for size_t... unsigned long checking for lstat... yes checking for strerror... yes checking for strsignal... yes checking for memmove... yes checking for mkstemp... yes checking for vsnprintf... yes checking for stpcpy... yes checking for strcasecmp... yes checking for strncasecmp... yes checking for poll... yes checking for getcwd... yes checking for nanosleep... yes checking for vasprintf... yes checking for setenv... yes checking for unsetenv... yes checking for getc_unlocked... yes checking for readlink... yes checking for symlink... yes checking for C99 vsnprintf... yes checking whether printf supports positional parameters... yes checking for signed... yes checking for long long... (cached) yes checking for long double... yes checking for wchar_t... yes checking for wint_t... yes checking for size_t... (cached) yes checking for ptrdiff_t... yes checking for inttypes.h... yes checking for stdint.h... yes checking for snprintf... yes checking for C99 snprintf... yes checking for sys_errlist... yes checking for sys_siglist... yes checking for sys_siglist declaration... yes checking for fd_set... yes, found in sys/types.h checking whether realloc (NULL,) will work... yes checking for nl_langinfo (CODESET)... yes checking for OpenBSD strlcpy/strlcat... no checking for an implementation of va_copy()... yes checking for an implementation of __va_copy()... yes checking whether va_lists can be copied by value... no checking for dlopen... no checking for NSLinkModule... no checking for dlopen in -ldl... yes checking for dlsym in -ldl... yes checking for RTLD_GLOBAL brokenness... no checking for preceeding underscore in symbols... no checking for dlerror... yes checking for the suffix of shared libraries... .so checking for gspawn implementation... gspawn.lo checking for GIOChannel implementation... giounix.lo checking for platform-dependent source... checking whether to compile timeloop... yes checking if building for some Win32 platform... no checking for thread implementation... posix checking thread related cflags... -pthread checking for sched_get_priority_min... yes checking thread related libraries... -pthread checking for localtime_r... yes checking for posix getpwuid_r... yes checking size of pthread_t... 8 checking for pthread_attr_setstacksize... yes checking for minimal/maximal thread priority... sched_get_priority_min(SCHED_OTHER)/sched_get_priority_max(SCHED_OTHER) checking for pthread_setschedparam... yes checking for posix yield function... sched_yield checking size of pthread_mutex_t... 40 checking byte contents of PTHREAD_MUTEX_INITIALIZER... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 checking whether to use assembler code for atomic operations... x86_64 checking value of POLLIN... 1 checking value of POLLOUT... 4 checking value of POLLPRI... 2 checking value of POLLERR... 8 checking value of POLLHUP... 16 checking value of POLLNVAL... 32 checking for EILSEQ... yes configure: creating ./config.status config.status: creating glib-2.0.pc config.status: creating glib-2.0-uninstalled.pc config.status: creating gmodule-2.0.pc config.status: creating gmodule-no-export-2.0.pc config.status: creating gmodule-2.0-uninstalled.pc config.status: creating gthread-2.0.pc config.status: creating gthread-2.0-uninstalled.pc config.status: creating gobject-2.0.pc config.status: creating gobject-2.0-uninstalled.pc config.status: creating glib-zip config.status: creating glib-gettextize config.status: creating Makefile config.status: creating build/Makefile config.status: creating build/win32/Makefile config.status: creating build/win32/dirent/Makefile config.status: creating glib/Makefile config.status: creating glib/libcharset/Makefile config.status: creating glib/gnulib/Makefile config.status: creating gmodule/Makefile config.status: creating gmodule/gmoduleconf.h config.status: creating gobject/Makefile config.status: creating gobject/glib-mkenums config.status: creating gthread/Makefile config.status: creating po/Makefile.in config.status: creating docs/Makefile config.status: creating docs/reference/Makefile config.status: creating docs/reference/glib/Makefile config.status: creating docs/reference/glib/version.xml config.status: creating docs/reference/gobject/Makefile config.status: creating docs/reference/gobject/version.xml config.status: creating tests/Makefile config.status: creating tests/gobject/Makefile config.status: creating m4macros/Makefile config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing default-1 commands config.status: executing glibconfig.h commands config.status: glibconfig.h is unchanged config.status: executing chmod-scripts commands nsalvarrey@Delleuze:~/glib-2.6.3$ ^C nsalvarrey@Delleuze:~/glib-2.6.3$ And then, with the make command, I get this: galias.h:83:39: error: 'g_ascii_digit_value' aliased to undefined symbol 'IA__g_ascii_digit_value' extern __typeof (g_ascii_digit_value) g_ascii_digit_value __attribute((alias("IA__g_ascii_digit_value"), visibility("default"))); ^ In file included from garray.c:35:0: galias.h:31:35: error: 'g_allocator_new' aliased to undefined symbol 'IA__g_allocator_new' extern __typeof (g_allocator_new) g_allocator_new __attribute((alias("IA__g_allocator_new"), visibility("default"))); ^ make[4]: *** [garray.lo] Error 1 make[4]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[3]: *** [all-recursive] Error 1 make[3]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[2]: *** [all] Error 2 make[2]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[1]: *** [all-recursive] Error 1 make[1]: se sale del directorio «/home/nsalvarrey/glib-2.6.3» make: *** [all] Error 2 nsalvarrey@Delleuze:~/glib-2.6.3$ (it's actually a lot longer) Can somebody help me?

    Read the article

  • decorating a function and adding functionalities preserving the number of argument

    - by pygabriel
    I'd like to decorate a function, using a pattern like this: def deco(func): def wrap(*a,**kw): print "do something" return func(*a,**kw) return wrap The problem is that if the function decorated has a prototype like that: def function(a,b,c): return When decorated, the prototype is destroyed by the varargs, for example, calling function(1,2,3,4) wouldn't result in an exception. Is that a way to avoid that? How can define the wrap function with the same prototype as the decorated (func) one? There's something conceptually wrong?

    Read the article

  • Determining actual args an Excel UDF was called with.

    - by Frederick
    I'm adding a user defined function to Excel with varargs-based signature in C++: XLFUNCTIONIMP(MyFunction)(...); When Excel calls MyFunction, it passes it 30 arguments regardless of how many the user entered in the sheet. The extraneous ones are blank strings. MyFunction, however, is designed to accept empty string arguments. As a result, I cannot tell valid empty strings apart from the extraneous ones sent by Excel. A solution could be to obtain the contents of the actual cell where the user entered the function. However, I can't find a way of doing that from within the implementation of my function. Could someone please suggest a way out?

    Read the article

  • Why doesn't functools.partial return a real function (and how to create one that does)?

    - by epsilon
    So I was playing around with currying functions in Python and one of the things that I noticed was that functools.partial returns a partial object rather than an actual function. One of the things that annoyed me about this was that if I did something along the lines of: five = partial(len, 'hello') five('something') then we get TypeError: len() takes exactly 1 argument (2 given) but what I want to happen is TypeError: five() takes no arguments (1 given) Is there a clean way to make it work like this? I wrote a workaround, but it's too hacky for my taste (doesn't work yet for functions with varargs): def mypartial(f, *args): argcount = f.func_code.co_argcount - len(args) params = ''.join('a' + str(i) + ',' for i in xrange(argcount)) code = ''' def func(f, args): def %s(%s): return f(*(args+(%s))) return %s ''' % (f.func_name, params, params, f.func_name) exec code in locals() return func(f, args)

    Read the article

  • Getting the name of a child class in the parent class (static context)

    - by Benoit Myard
    Hi everybody, I'm building an ORM library with reuse and simplicity in mind; everything goes fine except that I got stuck by a stupid inheritance limitation. Please consider the code below: class BaseModel { /* * Return an instance of a Model from the database. */ static public function get (/* varargs */) { // 1. Notice we want an instance of User $class = get_class(parent); // value: bool(false) $class = get_class(self); // value: bool(false) $class = get_class(); // value: string(9) "BaseModel" $class = __CLASS__; // value: string(9) "BaseModel" // 2. Query the database with id $row = get_row_from_db_as_array(func_get_args()); // 3. Return the filled instance $obj = new $class(); $obj->data = $row; return $obj; } } class User extends BaseModel { protected $table = 'users'; protected $fields = array('id', 'name'); protected $primary_keys = array('id'); } class Section extends BaseModel { // [...] } $my_user = User::get(3); $my_user->name = 'Jean'; $other_user = User::get(24); $other_user->name = 'Paul'; $my_user->save(); $other_user->save(); $my_section = Section::get('apropos'); $my_section->delete(); Obviously, this is not the behavior I was expecting (although the actual behavior also makes sense).. So my question is if you guys know of a mean to get, in the parent class, the name of child class.

    Read the article

  • When and why can sprintf fail?

    - by Srekel
    I'm using swprintf to build a string into a buffer (using a loop among other things). const int MaxStringLengthPerCharacter = 10 + 1; wchar_t* pTmp = pBuffer; for ( size_t i = 0; i < nNumPlayers ; ++i) { const int nPlayerId = GetPlayer(i); const int nWritten = swprintf(pTmp, MaxStringLengthPerCharacter, TEXT("%d,"), nPlayerId); assert(nWritten >= 0 ); pTmp += nWritten; } *pTaskPlayers = '\0'; If during testing the assert never hits, can I be sure that it will never hit in live code? That is, do I need to check if nWritten < 0 and handle that, or can I safely assume that there won't be a problem? Under which circumstances can it return -1? The documentation more or less just states "If the function fails". In one place I've read that it will fail if it can't match the arguments (i.e. the formatting string to the varargs) but that doesn't worry me. I'm also not worried about buffer overrun in this case - I know the buffer is big enough.

    Read the article

  • Error logging in C#

    - by rschuler
    I am making my switch from coding in C++ to C#. I need to replace my C++ error logging/reporting macro system with something similar in C#. In my C++ source I can write LOGERR("Some error"); or LOGERR("Error with inputs %s and %d", stringvar, intvar); The macro & supporting library code then passes the (possibly varargs) formatted message into a database along with the source file, source line, user name, and time. The same data is also stuffed into a data structure for later reporting to the user. Does anybody have C# code snippets or pointers to examples that do this basic error reporting/logging? Edit: At the time I asked this question I was really new to .NET and was unaware of System.Diagnostics.Trace. System.Diagnostics.Trace was what I needed at that time. Since then I have used log4net on projects where the logging requirements were larger and more complex. Just edit that 500 line XML configuration file and log4net will do everything you will ever need :)

    Read the article

  • Sublime text 2 syntax highlighter?

    - by BigSack
    I have coded my first custom syntax highlighter for sublime text 2, but i don't know how to install it. It is based on notepad++ highlighter found here https://70995658-a-62cb3a1a-s-sites.googlegroups.com/site/lohanplus/files/smali_npp.xml?attachauth=ANoY7criVTO9bDmIGrXwhZLQ_oagJzKKJTlbNDGRzMDVpFkO5i0N6hk_rWptvoQC1tBlNqcqFDD5NutD_2vHZx1J7hcRLyg1jruSjebHIeKdS9x0JCNrsRivgs6DWNhDSXSohkP1ZApXw0iQ0MgqcXjdp7CkJJ6pY_k5Orny9TfK8UWn_HKFsmPcpp967NMPtUnd--ad-BImtkEi-fox2tjs7zc5LabkDQ%3D%3D&attredirects=0&d=1 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>fileTypes</key> <array> <string>smali</string> </array> <dict> <key>Word1</key> <string>add-double add-double/2addr add-float add-float/2addr add-int add-int/2addr add-int/lit16 add-int/lit8 add-long add-long/2addr aget aget-boolean aget-byte aget-char aget-object aget-short aget-wide and-int and-int/2addr and-int/lit16 and-int/lit8 and-long and-long/2addr aput aput-boolean aput-byte aput-char aput-object aput-short aput-wide array-length check-cast cmp-long cmpg-double cmpg-float cmpl-double cmpl-float const const-class const-string const-string-jumbo const-wide const-wide/16 const-wide/32 const-wide/high16 const/16 const/4 const/high16 div-double div-double/2addr div-float div-float/2addr div-int div-int/2addr div-int/lit16 div-int/lit8 div-long div-long/2addr double-to-float double-to-int double-to-long execute-inline fill-array-data filled-new-array filled-new-array/range float-to-double float-to-int float-to-long goto goto/16 goto/32 if-eq if-eqz if-ge if-gez if-gt if-gtz if-le if-lez if-lt if-ltz if-ne if-nez iget iget-boolean iget-byte iget-char iget-object iget-object-quick iget-quick iget-short iget-wide iget-wide-quick instance-of int-to-byte int-to-char int-to-double int-to-float int-to-long int-to-short invoke-direct invoke-direct-empty invoke-direct/range invoke-interface invoke-interface/range invoke-static invoke-static/range invoke-super invoke-super-quick invoke-super-quick/range invoke-super/range invoke-virtual invoke-virtual-quick invoke-virtual-quick/range invoke-virtual/range iput iput-boolean iput-byte iput-char iput-object iput-object-quick iput-quick iput-short iput-wide iput-wide-quick long-to-double long-to-float long-to-int monitor-enter monitor-exit move move-exception move-object move-object/16 move-object/from16 move-result move-result-object move-result-wide move-wide move-wide/16 move-wide/from16 move/16 move/from16 mul-double mul-double/2addr mul-float mul-float/2addr mul-int mul-int/2addr mul-int/lit8 mul-int/lit16 mul-long mul-long/2addr neg-double neg-float neg-int neg-long new-array new-instance nop not-int not-long or-int or-int/2addr or-int/lit16 or-int/lit8 or-long or-long/2addr rem-double rem-double/2addr rem-float rem-float/2addr rem-int rem-int/2addr rem-int/lit16 rem-int/lit8 rem-long rem-long/2addr return return-object return-void return-wide rsub-int rsub-int/lit8 sget sget-boolean sget-byte sget-char sget-object sget-short sget-wide shl-int shl-int/2addr shl-int/lit8 shl-long shl-long/2addr shr-int shr-int/2addr shr-int/lit8 shr-long shr-long/2addr sparse-switch sput sput-boolean sput-byte sput-char sput-object sput-short sput-wide sub-double sub-double/2addr sub-float sub-float/2addr sub-int sub-int/2addr sub-int/lit16 sub-int/lit8 sub-long sub-long/2addr throw throw-verification-error ushr-int ushr-int/2addr ushr-int/lit8 ushr-long ushr-long/2addr xor-int xor-int/2addr xor-int/lit16 xor-int/lit8 xor-long xor-long/2addr</string> </dict> <dict> <key>Word2</key> <string>v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30</string> </dict> <dict> <key>Word3</key> <string>array-data .catch .catchall .class .end .end\ local .enum .epilogue .field .implements .line .local .locals .parameter .prologue .registers .restart .restart\ local .source .subannotation .super</string> </dict> <dict> <key>Word4</key> <string>abstract bridge constructor declared-synchronized enum final interface native private protected public static strictfp synchronized synthetic system transient varargs volatile</string> </dict> <dict> <key>Word4</key> <string>(&quot;0)&quot;0</string> </dict> <dict> <key>Word5</key> <string>.method .annotation .sparse-switch .packed-switch</string> </dict> <dict> <key>word6</key> <string>.end\ method .end\ annotation .end\ sparse-switch .end\ packed-switch</string> </dict> <dict> <key>word7</key> <string>&quot; ( ) , ; { } &gt;</string> </dict> <key>uuid</key> <string>27798CC6-6B1D-11D9-B8FA-000D93589AF6</string> </dict> </plist>

    Read the article

  • Efficiency of Java "Double Brace Initialization"?

    - by Jim Ferrans
    In Hidden Features of Java the top answer mentions Double Brace Initialization, with a very enticing syntax: Set<String> flavors = new HashSet<String>() {{ add("vanilla"); add("strawberry"); add("chocolate"); add("butter pecan"); }}; This idiom creates an anonymous inner class with just an instance initializer in it, which "can use any [...] methods in the containing scope". Main question: Is this as inefficient as it sounds? Should its use be limited to one-off initializations? (And of course showing off!) Second question: The new HashSet must be the "this" used in the instance initializer ... can anyone shed light on the mechanism? Third question: Is this idiom too obscure to use in production code? Summary: Very, very nice answers, thanks everyone. On question (3), people felt the syntax should be clear (though I'd recommend an occasional comment, especially if your code will pass on to developers who may not be familiar with it). On question (1), The generated code should run quickly. The extra .class files do cause jar file clutter, and slow program startup slightly (thanks to coobird for measuring that). Thilo pointed out that garbage collection can be affected, and the memory cost for the extra loaded classes may be a factor in some cases. Question (2) turned out to be most interesting to me. If I understand the answers, what's happening in DBI is that the anonymous inner class extends the class of the object being constructed by the new operator, and hence has a "this" value referencing the instance being constructed. Very neat. Overall, DBI strikes me as something of an intellectual curiousity. Coobird and others point out you can achieve the same effect with Arrays.asList, varargs methods, Google Collections, and the proposed Java 7 Collection literals. Newer JVM languages like Scala, JRuby, and Groovy also offer concise notations for list construction, and interoperate well with Java. Given that DBI clutters up the classpath, slows down class loading a bit, and makes the code a tad more obscure, I'd probably shy away from it. However, I plan to spring this on a friend who's just gotten his SCJP and loves good natured jousts about Java semantics! ;-) Thanks everyone!

    Read the article

  • Calling cdecl Functions That Have Different Number of Arguments

    - by KlaxSmashing
    I have functions that I wish to call based on some input. Each function has different number of arguments. In other words, if (strcmp(str, "funcA") == 0) funcA(a, b, c); else if (strcmp(str, "funcB") == 0) funcB(d); else if (strcmp(str, "funcC") == 0) funcC(f, g); This is a bit bulky and hard to maintain. Ideally, these are variadic functions (e.g., printf-style) and can use varargs. But they are not. So exploiting the cdecl calling convention, I am stuffing the stack via a struct full of parameters. I'm wondering if there's a better way to do it. Note that this is strictly for in-house (e.g., simple tools, unit tests, etc.) and will not be used for any production code that might be subjected to malicious attacks. Example: #include <stdio.h> typedef struct __params { unsigned char* a; unsigned char* b; unsigned char* c; } params; int funcA(int a, int b) { printf("a = %d, b = %d\n", a, b); return a; } int funcB(int a, int b, const char* c) { printf("a = %d, b = %d, c = %s\n", a, b, c); return b; } int funcC(int* a) { printf("a = %d\n", *a); *a *= 2; return 0; } typedef int (*f)(params); int main(int argc, char**argv) { int val; int tmp; params myParams; f myFuncA = (f)funcA; f myFuncB = (f)funcB; f myFuncC = (f)funcC; myParams.a = (unsigned char*)100; myParams.b = (unsigned char*)200; val = myFuncA(myParams); printf("val = %d\n", val); myParams.c = (unsigned char*)"This is a test"; val = myFuncB(myParams); printf("val = %d\n", val); tmp = 300; myParams.a = (unsigned char*)&tmp; val = myFuncC(myParams); printf("a = %d, val = %d\n", tmp, val); return 0; } Output: gcc -o func func.c ./func a = 100, b = 200 val = 100 a = 100, b = 200, c = This is a test val = 200 a = 300 a = 600, val = 0

    Read the article

  • The lua stack overflow,is this a bug?

    - by xiayong
    Some days ago, our program crash. I found the crash in lua code. So I check lua code, found the stack overflow. Please look this code In function luaD_precall: 1 if (!cl->isC) { /* Lua function? prepare its call */ 2 CallInfo *ci; 3 StkId st, base; 4 Proto *p = cl->p; 5 luaD_checkstack(L, p->maxstacksize); 6 func = restorestack(L, funcr); 7 if (!p->is_vararg) { /* no varargs? */ 8 base = func + 1; 9 if (L->top > base + p->numparams) 10 L->top = base + p->numparams; 11 } 12 else { /* vararg function */ 13 int nargs = cast_int(L->top - func) - 1; 14 base = adjust_varargs(L, p, nargs); 15 func = restorestack(L, funcr); /* previous call may change the stack */ 16 } 17 ci = inc_ci(L); /* now `enter' new function */ 18 ci->func = func; 19 L->base = ci->base = base; 20 ci->top = L->base + p->maxstacksize; 21 lua_assert(ci->top <= L->stack_last); 22 L->savedpc = p->code; /* starting point */ 23 ci->tailcalls = 0; 24 ci->nresults = nresults; 25 for (st = L->top; st < ci->top; st++) 26 setnilvalue(st); 27 L->top = ci->top; In my program, the p->maxstacksize is 79 before line 5, the current stacksize is 51, after call luaD_checkstack, the stacksize grow to 130. The lua function use vararg, so will run to line 14. Function adjust_varargs will be called. static StkId adjust_varargs (lua_State *L, Proto *p, int actual) { int i; int nfixargs = p->numparams; Table *htab = NULL; StkId base, fixed; for (; actual < nfixargs; ++actual) setnilvalue(L->top++); #if defined(LUA_COMPAT_VARARG) if (p->is_vararg & VARARG_NEEDSARG) { /* compat. with old-style vararg? */ int nvar = actual - nfixargs; /* number of extra arguments */ lua_assert(p->is_vararg & VARARG_HASARG); luaC_checkGC(L); htab = luaH_new(L, nvar, 1); /* create `arg' table */ In function adjust_varargs(), the lua function use “arg”, So luaC_checkGC will be called. In luaC_checkGC, the current lua stack size will be reduce to 65! The call stack like this: luaC_step() singlestep() propagatemark() traversestack() checkstacksizes() luaD_reallocstack() But the p->maxstacksize is 79, the stacksize is not enough… When the program run to line 27,the L->top is bigger than L->stack_last, in the next operation, will cause crash!

    Read the article

  • LLVM JIT segfaults. What am I doing wrong?

    - by bugspy.net
    It is probably something basic because I am just starting to learn LLVM.. The following creates a factorial function and tries to git and execute it (I know the generated func is correct because I was able to static compile and execute it). But I get segmentation fault upon execution of the function (in EE-runFunction(TheF, Args)) #include <iostream> #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/CallingConv.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/GenericValue.h" using namespace llvm; Module* makeLLVMModule() { // Module Construction LLVMContext& ctx = getGlobalContext(); Module* mod = new Module("test", ctx); Constant* c = mod->getOrInsertFunction("fact64", /*ret type*/ IntegerType::get(ctx,64), IntegerType::get(ctx,64), /*varargs terminated with null*/ NULL); Function* fact64 = cast<Function>(c); fact64->setCallingConv(CallingConv::C); /* Arg names */ Function::arg_iterator args = fact64->arg_begin(); Value* x = args++; x->setName("x"); /* Body */ BasicBlock* block = BasicBlock::Create(ctx, "entry", fact64); BasicBlock* xLessThan2Block= BasicBlock::Create(ctx, "xlst2_block", fact64); BasicBlock* elseBlock = BasicBlock::Create(ctx, "else_block", fact64); IRBuilder<> builder(block); Value *One = ConstantInt::get(Type::getInt64Ty(ctx), 1); Value *Two = ConstantInt::get(Type::getInt64Ty(ctx), 2); Value* xLessThan2 = builder.CreateICmpULT(x, Two, "tmp"); //builder.CreateCondBr(xLessThan2, xLessThan2Block, cond_false_2); builder.CreateCondBr(xLessThan2, xLessThan2Block, elseBlock); /* Recursion */ builder.SetInsertPoint(elseBlock); Value* xMinus1 = builder.CreateSub(x, One, "tmp"); std::vector<Value*> args1; args1.push_back(xMinus1); Value* recur_1 = builder.CreateCall(fact64, args1.begin(), args1.end(), "tmp"); Value* retVal = builder.CreateBinOp(Instruction::Mul, x, recur_1, "tmp"); builder.CreateRet(retVal); /* x<2 */ builder.SetInsertPoint(xLessThan2Block); builder.CreateRet(One); return mod; } int main(int argc, char**argv) { long long x; if(argc > 1) x = atol(argv[1]); else x = 4; Module* Mod = makeLLVMModule(); verifyModule(*Mod, PrintMessageAction); PassManager PM; PM.add(createPrintModulePass(&outs())); PM.run(*Mod); // Now we going to create JIT ExecutionEngine *EE = EngineBuilder(Mod).create(); // Call the function with argument x: std::vector<GenericValue> Args(1); Args[0].IntVal = APInt(64, x); Function* TheF = cast<Function>(Mod->getFunction("fact64")) ; /* The following CRASHES.. */ GenericValue GV = EE->runFunction(TheF, Args); outs() << "Result: " << GV.IntVal << "\n"; delete Mod; return 0; }

    Read the article

< Previous Page | 1 2