Search Results

Search found 3791 results on 152 pages for 'symbolic math'.

Page 22/152 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • Estimate angle to launch missile, maths question

    - by Jonathan
    I've been working on this for an hour or two now and my maths really isn't my strong suit which is definitely not a good thing for a game programmer but that shouldn't stop me enjoying a hobby surely? After a few failed attempts I was hoping someone else out there could help so here's the situation. I'm trying to implement a bit of faked intelligence when the A.I fires it's missiles at a target in a 2D game world. By predicting the likely position the target will be in given it's current velocity and the time it will take the missile to reach it's target. I created an image to demonstrate my thinking: http://i.imgur.com/SFmU3.png which also contains the logic I use for accelerating the missile after launch. The ship that fires the missile can fire within a total of 40 degree angle, 20 either side of itself, but this could likely become variable. My current attempt was to break the space between the two lines into segments which match the targets width. Then calculate the time it would take the missile to get to that location using the formula. So for each iteration of this we total up the values and that tells us the distance travelled, ad it would then just need compared to distance to the segment. startVelocity * ((startVelocity * acceleration)^(currentframe-1) So for example. If we start at a velocity of 1f/frame with an acceleration of 0.1f the formula, at frame 4, would be 1 * (1.1^3) = 1.331 But I quickly realized I was getting lost when trying to put this into practice. Does this seem like a correct starting point or am I going completely the wrong way about it? Any pointers would help me greatly. Maths really isn't my strong suit so I get easily lost in these matters and don't even really know a good phrase to search for with this. So I guess in summary my question is more about the correct way to approach this problem and any additional code samples on top of that would be great but I'm not averse to working out the complete code from helpful pointers.

    Read the article

  • Changing coordinate system from Z-up to Y-up

    - by Jari Komppa
    Blender's coordinate system is different from what I'm used to, in that Z points upwards instead of Y. What would be the simplest way of converting all the world data (so that all animations, texture coordinates, etc still work) so that Y points upwards? Clarification: Object positions are defined as matrices, so just switching translation/rotation/scale information in matrices is not a trivial task.

    Read the article

  • D3DXMatrixDecompose gives different quaternion than D3DXQuaternionRotationMatrix

    - by Fraser
    In trying to solve this problem, I tracked down the problem to the conversion of the rotation matrix to quaternion. In particular, consider the following matrix: -0.02099178 0.9997436 -0.008475631 0 0.995325 0.02009799 -0.09446743 0 0.09427284 0.01041905 0.9954919 0 0 0 0 1 SlimDX.Quaternion.RotationMatrix (which calls D3DXQuaternionRotationMatrix gives a different answer than SlimDX.Matrix.Decompose (which uses D3DXMatrixDecompose). The answers they give (after being normalized) are: X Y Z W Quaternion.RotationMatrix -0.05244324 0.05137424 0.002209336 0.9972991 Matrix.Decompose 0.6989997 0.7135442 -0.03674842 -0.03006023 Which are totally different (note the signs of X, Z, and W are different). Note that these aren't q/-q (two quaternions that represent the same rotation); they face completely different directions. I've noticed that with matrices for rotations very close to that one (successive frames in the animation) that the Matrix.Decompose version gives a solution that flips around wildly and occasionally goes into the desired position, while the Quaternion.RotationMatrix version gives solutions that are stable but go in the wrong direction. This is only for the right arm in my animation -- for the left arm, both functions give the correct solution, which is the same quaternion within error tolerances. This makes me think that there's some sort of numeric instability or weird stuff with signs going on. I tried implementing this and then this, but both gave me a completely incorrect solution (even for the matricies where the SlimDX ones were working correctly) -- maybe the rows and columns are flipped?

    Read the article

  • Using NumPy arrays as 2D mathematical vectors?

    - by CorundumGames
    Right now I'm using lists as position, velocity, and acceleration vectors in my game. Is that a better option than using NumPy's arrays (not the standard library's) as vectors (with float data types)? I'm frequently adding vectors and changing their values directly, then placing the values in these vectors into a Pygame Rect. The vector is used for position (because Rects can't hold floats, so we can't go "between" pixels), and the Rect is used for rendering (because Pygame will only take in Rects for rendering positions).

    Read the article

  • Is it possible to map mouse coordinates to isometric tiles with this coordinate system?

    - by plukich
    I'm trying to implement mouse interaction in a 2D isometric game, but I'm not sure if it's possible given the coordinate system used for tile maps in the game. I've read some helpful things like this. However, this game's coordinate system is "jagged" (for lack of a better word), and looks like this: Is it even possible to map mouse coordinates to this successfully, since the y-axis can't be drawn on this tile-map as a straight line? I've thought about doing odd-y-value translations and even-y-value translations with two different matrices, but that only makes sense going from tile to screen.

    Read the article

  • How is fundamental mathematics efficiently evaluated by programming languages?

    - by Korvin Szanto
    As I get more and more involved with the theory behind programming, I find myself fascinated and dumbfounded by seemingly simple things.. I realize that my understanding of the majority of fundamental processes is justified through circular logic Q: How does this work? A: Because it does! I hate this realization! I love knowledge, and on top of that I love learning, which leads me to my question (albeit it's a broad one). Question: How are fundamental mathematical operators assessed with programming languages? How have current methods been improved? Example var = 5 * 5; My interpretation: $num1 = 5; $num2 = 5; $num3 = 0; while ($num2 > 0) { $num3 = $num3 + $num1; $num2 = $num2 - 1; } echo $num3; This seems to be highly inefficient. With Higher factors, this method is very slow while the standard built in method is instantanious. How would you simulate multiplication without iterating addition? var = 5 / 5; How is this even done? I can't think of a way to literally split it 5 into 5 equal parts. var = 5 ^ 5; Iterations of iterations of addition? My interpretation: $base = 5; $mod = 5; $num1 = $base; while ($mod > 1) { $num2 = 5; $num3 = 0; while ($num2 > 0) { $num3 = $num3 + $num1; $num2 = $num2 - 1; } $num1 = $num3; $mod -=1; } echo $num3; Again, this is EXTREMELY inefficient, yet I can't think of another way to do this. This same question extends to all mathematical related functions that are handled automagically.

    Read the article

  • Finding maximum number of congruent numbers

    - by Stefan Czarnecki
    Let's say we have a multiset (set with possible duplicates) of integers. We would like to find the size of the largest subset of the multiset such that all numbers in the subset are congruent to each other modulo some m 1. For example: 1 4 7 7 8 10 for m = 2 the subsets are: (1, 7, 7) and (4, 8, 10), both having size 3. for m = 3 the subsets are: (1, 4, 7, 7, 10) and (8), the larger set of size 5. for m = 4 the subsets are: (1), (4, 8), (7, 7), (10), the largest set of size 2. At this moment it is evident that the best answer is 5 for m = 3. Given m we can find the size of the largest subset in linear time. Because the answer is always equal or larger than half of the size of the set, it is enough to check for values of m upto median of the set. Also I noticed it is necessary to check for only prime values of m. However if values in the set are large the algorithm is still rather slow. Does anyone have any ideas how to improve it?

    Read the article

  • Working with vectors and transformations

    - by user29163
    I am going to write an graphical 2D application that allows user to create polygons and transform them through transformation such as rotation an so on. I was hoping someone can give pro and cons arguments for the different choices I got in my mind. (Its all in Java btw!) a). Represent vectors by filling matrices with 'real' numbers. This means making a matrix datas tructure that supports multiplication, transposing etc b). Make a own vector class, such that I can make a matrix class that support those vectors.

    Read the article

  • How do I draw a dotted or dashed line?

    - by Gagege
    I'm trying to draw a dashed or dotted line by placing individual segments(dashes) along a path and then separating them. The only algorithm I could come up with for this gave me a dash length that was variable based on the angle of the line. Like this: private function createDashedLine(fromX:Float, fromY:Float, toX:Float, toY:Float):Sprite { var line = new Sprite(); var currentX = fromX; var currentY = fromY; var addX = (toX - fromX) * 0.0075; var addY = (toY - fromY) * 0.0075; line.graphics.lineStyle(1, 0xFFFFFF); var count = 0; // while line is not complete while (!lineAtDestination(fromX, fromY, toX, toY, currentX, currentY)) { /// move line draw cursor to beginning of next dash line.graphics.moveTo(currentX, currentY); // if dash is even if (count % 2 == 0) { // draw the dash line.graphics.lineTo(currentX + addX, currentY + addY); } // add next dash's length to current cursor position currentX += addX; currentY += addY; count++; } return line; } This just happens to be written in Haxe, but the solution should be language neutral. What I would like is for the dash length to be the same no matter what angle the line is. As is, it's just adding 75 thousandths of the line length to the x and y, so if the line is and a 45 degree angle you get pretty much a solid line. If the line is at something shallow like 85 degrees then you get a nice looking dashed line. So, the dash length is variable, and I don't want that. How would I make a function that I can pass a "dash length" into and get that length of dash, no matter what the angle is? If you need to completely disregard my code, be my guest. I'm sure there's a better solution.

    Read the article

  • Separating merged array of arithmetic and geometric series

    - by user1814037
    Given an array of positive integers in increasing order. Separate them in two series, an arithmetic sequence and geometric sequence. The given array is such that a solution do exist. The union of numbers of the two sequence must be the given array. Both series can have common elements i.e. series need not to be disjoint. The ratio of the geometric series can be fractional. Example: Given series : 2,4,6,8,10,12,25 AP: 2,4,6,8,10,12 GP: 4,10,25 I tried taking few examples but could not reach a general way. Even tried some graph implementation by introducing edges if they follow a particular sequence but could not reach solution.

    Read the article

  • 2D Smooth Turning in a Tile-Based Game

    - by ApoorvaJ
    I am working on a 2D top-view grid-based game. A ball that rolls on the grid made up of different tiles. The tiles interact with the ball in a variety of ways. I am having difficulty cleanly implementing the turning tile. The image below represents a single tile in the grid, which turns the ball by a right angle. If the ball rolls in from the bottom, it smoothly changes direction and rolls to the right. If it rolls in from the right, it is turned smoothly to the bottom. If the ball rolls in from top or left, its trajectory remains unchanged by the tile. The tile shouldn't change the magnitude of the velocity of the ball - only change its direction. The ball has Velocity and Position vectors, and the tile has Position and Dimension vectors. I have already implemented this, but the code is messy and buggy. What is an elegant way to achieve this, preferably by modification of the ball's Velocity vector by a formula?

    Read the article

  • Zooming to point of interest

    - by user1010005
    I have the following variables: Point of interest which is the position(x,y) in pixels of the place to focus. Screen width,height which are the dimensions of the window. Zoom level which sets the zoom level of the camera. And this is the code I have so far. void Zoom(int pointOfInterestX,int pointOfInterstY,int screenWidth, int screenHeight,int zoomLevel) { glTranslatef( (pointOfInterestX/2 - screenWidth/2), (pointOfInterestY/2 - screenHeight/2),0); glScalef(zoomLevel,zoomLevel,zoomLevel); } And I want to do zoom in/out but keep the point of interest in the middle of the screen. but so far all of my attempts have failed and I would like to ask for some help.

    Read the article

  • Checking for collisions on a 3D heightmap

    - by Piku
    I have a 3D heightmap drawn using OpenGL (which isn't important). It's represented by a 2D array of height data. To draw this I go through the array using each point as a vertex. Three vertices are wound together to form a triangle, two triangles to make a quad. To stop the whole mesh being tiny I scale this by a certain amount called 'gridsize'. This produces a fairly nice and lumpy, angular terrain kind of similar to something you'd see in old Atari/Amiga or DOS '3D' games (think Virus/Zarch on the Atari ST). I'm now trying to work out how to do collision with the terrain, testing to see if the player is about to collide with a piece of scenery sticking upwards or fall into a hole. At the moment I am simply dividing the player's co-ordinates by the gridsize to find which vertex the player is on top of and it works well when the player is exactly over the corner of a triangle piece of terrain. However... How can I make it more accurate for the bits between the vertices? I get confused since they don't exist in my heightmap data, they're a product of the GPU trying to draw a triangle between three points. I can calculate the height of the point closest to the player, but not the space between them. I.e if the player is hovering over the centre of one of these 'quads', rather than over the corner vertex of one, how do I work out the height of the terrain below them? Later on I may want the player to slide down the slopes in the terrain.

    Read the article

  • How to get distance from point to line with distinction between side of line?

    - by tesselode
    I'm making a 2d racing game. I'm taking the nice standard approach of having a set of points defining the center of the track and detecting whether the car is off the track by detecting its distance from the nearest point. The nicest way I've found of doing this is using the formula: d = |Am + Bn + C| / sqrt(A^2 + B^2) Unfortunately, to have proper collision resolution, I need to know which side of the line the car is hitting, but I can't do that with this formula because it only returns positive numbers. So my question is: is there a formula that will give me positive or negative numbers based on which side of the line the point is on? Can I just get rid of the absolute value in the formula or do I need to do something else?

    Read the article

  • Premultiplying matrices with Perspective destroys them

    - by Shadows In Rain
    If I apply world_to_camera, perspective and camera_to_screen to my mesh, everything is okay. But if I premultiply given matrices (i.e. transform = world_to_camera * perpective * camera_to_screen) before applying, then it seems like only perspective has effect. If it is important... My 3d framework was written from scratch (test project for job interview). But it works flawlessly, or at least I think so. So, question. This is expected behaviour, or my implementation is wrong?

    Read the article

  • Bending of track in a racing game

    - by caius
    I am trying to create a small racing game in which the track would be modeled using a BSpline curve for the path's center line and directional vectors to define the 'bending' of the track at each point. My problem is that I don't know how to calculate the correct bending / slope of the curve, in such a way that it would be optimal or at least visually nice for a car to 'bend in the corner'. My idea was to use the direction of the 2nd derivatives of the curve, however while this approach looks fine for most of the track, there are points in which the 2nd derivative makes sharp 'twists' / very quick 180 degree flips. I also read about 'knots' of bsplines, but I don't know if such 'twist' in 2nd derivatives is a knot or knots are something else. Can you tell me that using a BSpline: 1. How could I calculate a visually nice bending of a track for a racing game? 2. Is it possible to do this by using some simple calculations of centripertal force / gravity? 3. Is it possible to do this by using 1st, 2nd and 3rd derivatives of the BSpline curve? I am not looking for the 'physically correct' bending angle for the track, I would just like to create something which is visually pleasing in a simple game. I am using a framework which has a built-in class for BSpline, including support for 1st, 2nd and 3rd derivatives of the curve.

    Read the article

  • Is it possible to learn maths via programming, or you should learn maths for programming?

    - by SAFAD
    I am not the best in maths, not very horrid either, but lower than the average, I've always been thinking to improve my maths, but schools and books didn't do the job because I get bored too fast. The only thing I don't get bored with is coding and gaming, so I thought what if coding a program that solves mathematical problems will help me understand maths better, most of these problems are limits (calculus), functions, Differential calculus, and some other subjects (I already said am not that good) similar to the previous noted. My question is: Am I able to achieve a better knowledge in maths if I do some specific program coding, and if possible, is physics possible that way too? Or am I wrong and Maths should be learned before programming to help improve my coding? P.S : C++ is the preferred language.

    Read the article

  • Best way to calculate unit deaths in browser game combat?

    - by MikeCruz13
    My browser game's combat system is written and mechanically functioning well. It's written in PHP and uses a SQL database. I'm happy with the unit balance in relation to one another. I am, however, a little worried about how I'm calculating unit deaths when one player attacks another because the deaths seem to pile up a little fast for my taste. For this system, a battle doesn't just trigger, calculate winner, and end. Instead, it is allowed to go for several rounds (say one round every 15 mins.) until one side passes a threshold of being too strong for the other player and allows players to send reinforcements between rounds. Each round, units pair up and attack each other. Essentially what I do is calculate the damage: AP = Attack Points HP = Hit Points Units AP * Quantity * Random Factors * other factors (such as attrition) I take that and divide by the defending unit's HP to find the number of casualties of defending units. So, for example (simplified to take out some factors), if I have: 500 attackers with 50 AP vs 1000 defenders with 100 HP = 250 deaths. I wonder if that last step could be handled better to reduce the deaths piling up. Some ideas: I just change all the units with more HP? I make sure to set the Attacking unit's AP to be a max of the defender's HP to make sure they only kill 1 unit. (is that fair if I have less huge units vs many small units?) I spread the damage around more by including the defending unit's quantity more? i.e. in that scenario some are dead and some are 50% damage. (How would I track this every round?) Other better mathematical approaches?

    Read the article

  • Effective and simple matching for 2 unequal small-scale point sets

    - by Pavlo Dyban
    I need to match two sets of 3D points, however the number of points in each set can be different. It seems that most algorithms are designed to align images and trimmed to work with hundreds of thousands of points. My case are 50 to 150 points in each of the two sets. So far I have acquainted myself with Iterative Closest Point and Procrustes Matching algorithms. Implementing Procrustes algorithms seems like a total overkill for this small quantity. ICP has many implementations, but I haven't found any readily implemented version accounting for the so-called "outliers" - points without a matching pair. Besides the implementation expense, algorithms like Fractional and Sparse ICP use some statistics information to cancel points that are considered outliers. For series with 50 to 150 points statistic measures are often biased or statistic significance criteria are not met. I know of Assignment Problem in linear optimization, but it is not suitable for cases with unequal sets of points. Are there other, small-scale algorithms that solve the problem of matching 2 point sets? I am looking for algorithm names, scientific papers or C++ implementations. I need some hints to know where to start my search.

    Read the article

  • Smoothing rotation

    - by Lewis
    I've spent the last three days trying to work out how to rotate a sprite smoothly depending on the velocity.x value of the sprite. I'm using this: float Proportion = 9.5; float maxDiff = 200; float rotation = fmaxf(fminf(playerVelocity.x * Proportion, maxDiff), -maxDiff); player.rotation = rotation; The behaviour is what I required but if the velocity changes rapidly then it will look like the sprite will jump to face left or jump to face right. I'll go into the behaviour in a little more detail: 0 velocity = sprite faces forwards negative velocity = sprite faces left depending on value. positive velocity = sprite faces right (higher velocity the more it faces right) same as above. I've read about using interpolation rather than an absolute angle to rotate it to but I don't know how to implement that. I have a physics engine available. There is one other way to get around this: to use += on the rotation angle. The thing is that I would then have to change the equation to produce positive and negative values then to make sure the sprite faces 0 once it reaches 0 velocity again. If I add that in now, it keeps the previous angle even after the velocity has dropped / is dropping. Any ideas/code snippets would be greatly appreciated.

    Read the article

  • How do I create weapon attachments?

    - by Tron86
    My question is; I am developing a game for XNA and I am trying to create a weapon attachment for my player model. My player model loads the .md3 format and reads tags for attachment points. I am able to get the tag of my model's hand. And I am also able to get the tag of my weapon's handle. Each tag I am able to get the rotation and position of and this is how I am calculating it: Model.worldMatrix = Matrix.CreateScale(Model.scale) * Matrix.CreateRotationX(-MathHelper.PiOver2) * Matrix.CreateRotationY(MathHelper.PiOver2); Pretty simple, the player model has a scale and its orientation(it loads on its side so I just use a 90 degree X axis rotation, and a Y axis rotation to face away from the camera). I then calculate the torso tag on the lower body, which gives me a local coordinate at the waist. Then I take that matrix and calculate the tag_weapon in the upper body. This gives me the hand position in local space. I also get the rotation matrix from that tag that I store for later use. All this seems to work fine. Now I move onto my weapon: Matrix weaponWorld = Matrix.CreateScale(CurrentWeapon.scale) * Matrix.CreateRotationX(-MathHelper.PiOver2) * TagRotationMatrix * Matrix.CreateTranslation(HandTag.Position) * Matrix.CreateRotationY(PlayerRotation) * Matrix.CreateTranslation(CollisionBody.Position) * You may notice the weapon matrix gets rotated by 90 degress on the X axis as well. This is because they load in on their sides. Once again this seems pretty simple and follows the SRT order I keep reading about. My TagRotation matrix is the hand's rotation. HandTag.Position is its position in local space. CreateRotationY(PlayerRotation) is the player's rotation in world space, and the CollisionBody.Position is the player's world location. Everything seems to be in order, and almost works in game. However when the gun spawns and follows the player's hand it seems to be flipped on an axis every couple frames. Almost like the X or Y axis is being inversed then put right back. Its hard to explain and I am totally stumped. Even removing all my X axis fixes does nothing to solve the problem. Hopefully I explained everything enough as I am a bit new to this! Thanks!

    Read the article

  • Normalizing the direction to check if able to move

    - by spartan2417
    i have a a room with 4 walls along the x and z axis respectively. My player who is in first person (therefore the camera) should have collision detection with these walls. I'm relatively new to this so please bare with me. I believe the way to do this is to calculate the direction and distance to the wall from the camera and then normalize the directions. However i can only get this far before i dont know what to do. I think you should work out the angle and direction your facing? where _dx and _dz is the small buffer in front of the camera. float CalcDirection(float Cam_x, float Cam_z, float Wall_x, float Wall_z) { //Calculate direction and distance to obstacle. float ob_dirx = Cam_x + _dx - Wall_x; float ob_dirz = Cam_z + _dz - Wall_z; float ob_dist = sqrt(ob_dirx*ob_dirx + ob_dirz*ob_dirz); //Normalise directions float ob_norm = sqrt(ob_dirx*ob_dirx + ob_dirz*ob_dirz); ob_dirx = (ob_dirx)/ob_norm; ob_dirz = (ob_dirz)/ob_norm; can anyone explain in laymen's terms how i work out the angle?

    Read the article

  • How can I do fast Triangle/Square vs Triangle collision detection?

    - by Ólafur Waage
    I have a game world where the objects are in a grid based environment with the following restrictions. All of the triangles are 45-90-45 triangles that are unit length. They can only rotate 90°. The squares are of unit length and can not rotate (not that it matters) I have the Square vs Square detection down and it is very very solid and very fast (max vs min on x and y values) Wondering if there are any tricks I can employ since I have these restrictions on the triangles?

    Read the article

  • Camera placement sphere for an always fully visible object

    - by BengtR
    Given an object: With the bounds [x, y, z, width, height, depth] And an orthographic projection [left, right, bottom, top, near, far] I want to determine the radius of a sphere which allows me to randomly place my camera on so that: The object is fully visible from all positions on this sphere The sphere radius is the smallest possible value while still satisfying 1. Assume the object is centered around the origin. How can I find this radius? I'm currently using sqrt(width^2 + height^2 + depth^2) but I'm not sure that's the correct value, as it doesn't take the camera into account. Thanks for any advice. I'm sorry for confusing a few things here. My comments below should clarify what I'm trying to do actually.

    Read the article

  • Java chunk negative number problem

    - by user1990950
    I've got a tile based map, which is divided in chunks. I got a method, which puts tiles in this map and with positive numbers it's working. But when using negative numbers it wont work. This is my setTile method: public static void setTile(int x, int y, Tile tile) { int chunkX = x / Chunk.CHUNK_SIZE, chunkY = y / Chunk.CHUNK_SIZE; IntPair intPair = new IntPair(chunkX, chunkY); world.put(intPair, new Chunk(chunkX, chunkY)); world.get(intPair).setTile(x - chunkX * Chunk.CHUNK_SIZE, y - chunkY * Chunk.CHUNK_SIZE, tile); } This is the setTile method in the chunk class (CHUNK_SIZE is a constant with the value 64): public void setTile(int x, int y, Tile t) { if (x >= 0 && x < CHUNK_SIZE && y >= 0 && y < CHUNK_SIZE) tiles[x][y] = t; } What's wrong with my code?

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >