Search Results

Search found 1308 results on 53 pages for 'texture'.

Page 23/53 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • XNA 2D Spritesheet drawing rendering problem

    - by user24092
    I'm making a tile-based game, using one spritesheet containing all tile graphics. Each tile has a size of 32x32 pixels. The main problem is: when I draw the tile to the screen, if the tile position x and y are not rounded or if scale is activated in spriteBatch.Draw() method (scale != 1.0f), I get some lines of adjacent tiles on the spritesheet into the current tile drawed. I already tried setting SamplerState to PointClamp, removing AntiAlias, but still doesn't work. Here I'll show images of some tests that I made, with a test sprite sheet that I've created (I made a 9x9 spritesheet, with each sprite of size 32x32 containing a unique solid color). Tests: http://img6.imageshack.us/img6/5946/testsqj.png SpriteSheet used: http://imageshack.us/a/img821/1341/tilesm.png Already tried to remove anti-alias, set PointClamp as sampler state, but still getting this issue, XNA keeps drawing part of the adjacent pixels of the texture on the screen. What I want is to get the correct area of the tilesheet texture (as seen in the first test, that gets just the yellow pixels). My question is: Is there any way that I can fix this, WITHOUT adding tile spacing or any other modification involving the tilesheet? Maybe disabling a texture filtering that is done by XNA, or something like that.

    Read the article

  • How can I draw crisp per-pixel images with OpenGL ES on Android?

    - by Qasim
    I have made many Android applications and games in Java before, however I am very new to OpenGL ES. Using guides online, I have made simple things in OpenGL ES, including a simple triangle and a cube. I would like to make a 2D game with OpenGL ES, but what I've been doing isn't working quite so well, as the images I draw aren't to scale, and no matter what guide I use, the image is always choppy and not the right size (I'm debugging on my Nexus S). How can I draw crisp, HD images to the screen with GL ES? Here is an example of what happens when I try to do it: And the actual image: Here is how my texture is created: //get id int id = -1; gl.glGenTextures(1, texture, 0); id = texture[0]; //get bitmap Bitmap bitmap = BitmapFactory.decodeResource(context.getResources(), R.drawable.ball); //parameters gl.glBindTexture(GL10.GL_TEXTURE_2D, id); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_CLAMP_TO_EDGE); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_CLAMP_TO_EDGE); gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE, GL10.GL_REPLACE); GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); //crop image mCropWorkspace[0] = 0; mCropWorkspace[1] = height; mCropWorkspace[2] = width; mCropWorkspace[3] = -height; ((GL11) gl).glTexParameteriv(GL10.GL_TEXTURE_2D, GL11Ext.GL_TEXTURE_CROP_RECT_OES, mCropWorkspace, 0);

    Read the article

  • Heightmap and Textures

    - by Robert
    Im trying to find the "best way" to apply a texture to a heightmap with opengl 3.x. Its really hard to find something on google because tutorials are olds and they're all using different methods, im really lost and i dont know what to use at all. Here is my code that generates the heightmap (its basic) float[] vertexes = null; float[] textureCoords = null; for(int x = 0; x < this.m_size.width; x++) { for(int y = 0; y < this.m_size.height; y++) { vertexes ~= [x, 1.0f, y]; textureCoords ~= [cast(float)x / 50, cast(float)y / 50]; } } As you can see, i dont know how to apply the texture at all (i was using / 50 for my tests). Result of that code : I would like to have something very basic like : (you can find more pics in his blog) Edit : my texture size is 1024x1024.

    Read the article

  • libgdx loading textures fails [duplicate]

    - by Chris
    This question already has an answer here: Why do I get this file loading exception when trying to draw sprites with libgdx? 4 answers I'm trying to load my texture with playerTex = new Texture(Gdx.files.internal("player.jpg")); player.jpg is located under my-gdx-game-android/assets/data/player.jpg I get an exception like this: Full Code: @Override public void create() { camera = new OrthographicCamera(); camera.setToOrtho(false, Gdx.graphics.getWidth(), Gdx.graphics.getHeight()); batch = new SpriteBatch(); FileHandle file = Gdx.files.internal("player.jpg"); playerTex = new Texture(file); player = new Rectangle(); player.x = 800-20; player.y = 250; player.width = 20; player.height = 80; } @Override public void dispose() { // dispose of all the native resources playerTex.dispose(); batch.dispose(); } @Override public void render() { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); camera.update(); batch.setProjectionMatrix(camera.combined); batch.begin(); batch.draw(playerTex, player.x, player.y); batch.end(); if(Gdx.input.isKeyPressed(Keys.DOWN)) player.y -= 50 * Gdx.graphics.getDeltaTime(); if(Gdx.input.isKeyPressed(Keys.UP)) player.y += 50 * Gdx.graphics.getDeltaTime(); }

    Read the article

  • Proper way to encapsulate a Shader into different modules

    - by y7haar
    I am planning to build a Shader system which can be accessed through different components/modules in C++. Each component has its own functionality like transform-relevated stuff (handle the MVP matrix, ...), texture handler, light calculation, etc... So here's an example: I would like to display an object which has a texture and a toon shading material applied and it should be moveable. So I could write ONE shading program that handles all 3 functionalities and they are accessed through 3 different components (texture-handler, toon-shading, transform). This means I have to take care of feeding a GLSL shader with different uniforms/attributes. This implies to know all necessary uniform locations and attribute locations, that the GLSL shader owns. And it would also necessary to provide different algorithms to calculate the value for each input variable. Similar functions would be grouped together in one component. A possible way would be, to wrap all shaders in a own definition file written in JSON/XML and parse that file in C++ to get all input members and create and compile the resulting GLSL. But maybe there is another way that is not so complex? So I'm searching for a way to build a system like that, but I'm not sure yet which is the best approach.

    Read the article

  • GLSL custom interpolation filter

    - by Cyan
    I'm currently building a fragment shader which is using several textures to render the final pixel color. The textures are not really textures, they are in fact "input data" to be used in the formula to generate the final color. The problem I've got is that the texture are getting bi-linear-filtered, and therefore the input data as well. This results in many unwanted side-effects, especially when final rendered texture is "zoomed" compared to original resolution. Removing the side effect is a complex task, and only result in "average" rendering. I was thinking : well, all my problems seems to come from the "default" bi-linear filtering on these input data. I can't move to GL_NEAREST either, since it would create "blocky" rendering. So i guess the better way to proceed is to be fully in charge of the interpolation. For this to work, i would need the input data at their "natural" resolution (so that means 4 samples), and a relative position between the sampled points. Is that possible, and if yes, how ? [EDIT] Since i started this question, i found this internet entry, which seems to (mostly) answer my needs. http://www.gamerendering.com/2008/10/05/bilinear-interpolation/ One aspect of the solution worry me though : the dimensions of the texture must be provided in an argument. It seems there is no way to "find this information transparently". Adding an argument into the rendering pipeline is unwelcomed though, since it's not under my responsibility, and translates into adding complexity for others.

    Read the article

  • Create a Texture2D from larger image

    - by Dialock
    I am having trouble with the basic logic of this solution: Xna: Splitting one large texture into an array of smaller textures in respect to my specific problem (specifically, I'm looking at the second answer.) How can I use my source rectangle that I already use for drawing to create a new Texture2D? spriteBatch.Draw(CurrentMap.CollisionSet, currentMap.CellScreenRectangle(x, y), CurrentMap.TileSourceRectangle(currentMap.MapCells[x, y].TileDepths[4]), Color.FromNonPremultiplied(0,0,0, 45), 0.0f, Vector2.Zero, SpriteEffects.None, 0.91f); I know I want a method that I started so: //In Update Method of say the player's character. Texture2D CollisionTexture = ExtractTexture(MapManager.CurrentMap.CollisionSet, MapManager.TileWidth, MapManager.TileHeight); // In MapManager Class who knows everything about tiles that make up a level. public Texture2D ExtractTexture(Texture2D original, int partWidth, int partheight, MapTile mapCell) { var dataPerPart = partWidth * partheight; Color[] originalPixelData = new Color[original.Width * original.Height]; original.GetData<Color>(originalPixelData); Color[] newTextureData = new Color[dataPerPart]; original.GetData<Color>(0, CurrentMap.TileSourceRectangle(mapCell.TileDepths[4]), originalPixelData, 0, originalPixelData.Count()); Texture2D outTexture = new Texture2D(original.GraphicsDevice, partWidth, partheight); } I think the problem is I'm just not understanding the overload of Texture2D.GetData< Part of my concern is creating an array of the whole texture in the first place. Can I target the original texture and create an array of colors for copying based on what I already get from the method TileSourceRecatangle(int)?

    Read the article

  • How to handle class dependency with interfaces and implementatons

    - by lealand
    I'm using ObjectAid with Eclipse to generate UML class diagrams for my latest Java project, and I currently have a handful of situations like this, where I have a dependency between two interfaces, as well as one of the implementations of one of the interfaces. Here, foo is the graphics library I'm using. In the previous example, FooCanvas draws ITexture objects to the screen, and both FooCanvas and its interface, ICanvas, take ITexture objects as arguments to their methods. The method in the canvas classes which cause this dependency is the following: void drawTexture(ITexture texture, float x, float y); Additionally, I tried a variation on the method signature using Java's generics: <T extends ITexture> void drawTexture(T texture, float x, float y); The result of this was a class diagram where the only dependencies where between the interfaces and the implementing classes, and no dependency by a canvas object on a texture. I'm not sure if this is more ideal or not. Is the dependency of both the interface and implementation on another interface an expected pattern, or is it typical and/or possible to keep the implementation 'isolated' from its interfaces dependencies? Or is the generic method the ideal solution?

    Read the article

  • Instance caching in Objective C

    - by zoul
    Hello! I want to cache the instances of a certain class. The class keeps a dictionary of all its instances and when somebody requests a new instance, the class tries to satisfy the request from the cache first. There is a small problem with memory management though: The dictionary cache retains the inserted objects, so that they never get deallocated. I do want them to get deallocated, so that I had to overload the release method and when the retain count drops to one, I can remove the instance from cache and let it get deallocated. This works, but I am not comfortable mucking around the release method and find the solution overly complicated. I thought I could use some hashing class that does not retain the objects it stores. Is there such? The idea is that when the last user of a certain instance releases it, the instance would automatically disappear from the cache. NSHashTable seems to be what I am looking for, but the documentation talks about “supporting weak relationships in a garbage-collected environment.” Does it also work without garbage collection? Clarification: I cannot afford to keep the instances in memory unless somebody really needs them, that is why I want to purge the instance from the cache when the last “real” user releases it. Better solution: This was on the iPhone, I wanted to cache some textures and on the other hand I wanted to free them from memory as soon as the last real holder released them. The easier way to code this is through another class (let’s call it TextureManager). This class manages the texture instances and caches them, so that subsequent calls for texture with the same name are served from the cache. There is no need to purge the cache immediately as the last user releases the texture. We can simply keep the texture cached in memory and when the device gets short on memory, we receive the low memory warning and can purge the cache. This is a better solution, because the caching stuff does not pollute the Texture class, we do not have to mess with release and there is even a higher chance for cache hits. The TextureManager can be abstracted into a ResourceManager, so that it can cache other data, not only textures.

    Read the article

  • Ambient occlusion shader just shows models as all white

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? If so then how? I'm using C++. Here is my shader: float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • GLSL subroutine not being used

    - by amoffat
    I'm using a gaussian blur fragment shader. In it, I thought it would be concise to include 2 subroutines: one for selecting the horizontal texture coordinate offsets, and another for the vertical texture coordinate offsets. This way, I just have one gaussian blur shader to manage. Here is the code for my shader. The {{NAME}} bits are template placeholders that I substitute in at shader compile time: #version 420 subroutine vec2 sample_coord_type(int i); subroutine uniform sample_coord_type sample_coord; in vec2 texcoord; out vec3 color; uniform sampler2D tex; uniform int texture_size; const float offsets[{{NUM_SAMPLES}}] = float[]({{SAMPLE_OFFSETS}}); const float weights[{{NUM_SAMPLES}}] = float[]({{SAMPLE_WEIGHTS}}); subroutine(sample_coord_type) vec2 vertical_coord(int i) { return vec2(0.0, offsets[i] / texture_size); } subroutine(sample_coord_type) vec2 horizontal_coord(int i) { //return vec2(offsets[i] / texture_size, 0.0); return vec2(0.0, 0.0); // just for testing if this subroutine gets used } void main(void) { color = vec3(0.0); for (int i=0; i<{{NUM_SAMPLES}}; i++) { color += texture(tex, texcoord + sample_coord(i)).rgb * weights[i]; color += texture(tex, texcoord - sample_coord(i)).rgb * weights[i]; } } Here is my code for selecting the subroutine: blur_program->start(); blur_program->set_subroutine("sample_coord", "vertical_coord", GL_FRAGMENT_SHADER); blur_program->set_int("texture_size", width); blur_program->set_texture("tex", *deferred_output); blur_program->draw(); // draws a quad for the fragment shader to run on and: void ShaderProgram::set_subroutine(constr name, constr routine, GLenum target) { GLuint routine_index = glGetSubroutineIndex(id, target, routine.c_str()); GLuint uniform_index = glGetSubroutineUniformLocation(id, target, name.c_str()); glUniformSubroutinesuiv(target, 1, &routine_index); // debugging int num_subs; glGetActiveSubroutineUniformiv(id, target, uniform_index, GL_NUM_COMPATIBLE_SUBROUTINES, &num_subs); std::cout << uniform_index << " " << routine_index << " " << num_subs << "\n"; } I've checked for errors, and there are none. When I pass in vertical_coord as the routine to use, my scene is blurred vertically, as it should be. The routine_index variable is also 1 (which is weird, because vertical_coord subroutine is the first listed in the shader code...but no matter, maybe the compiler is switching things around) However, when I pass in horizontal_coord, my scene is STILL blurred vertically, even though the value of routine_index is 0, suggesting that a different subroutine is being used. Yet the horizontal_coord subroutine explicitly does not blur. What's more is, whichever subroutine comes first in the shader, is the subroutine that the shader uses permanently. Right now, vertical_coord comes first, so the shader blurs vertically always. If I put horizontal_coord first, the scene is unblurred, as expected, but then I cannot select the vertical_coord subroutine! :) Also, the value of num_subs is 2, suggesting that there are 2 subroutines compatible with my sample_coord subroutine uniform. Just to re-iterate, all of my return values are fine, and there are no glGetError() errors happening. Any ideas?

    Read the article

  • How do I get FEATURE_LEVEL_9_3 to work with shaders in Direct3D11?

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • Simple OpenGL program major slow down at high resolution

    - by Grieverheart
    I have created a small OpenGL 3.3 (Core) program using freeglut. The whole geometry is two boxes and one plane with some textures. I can move around like in an FPS and that's it. The problem is I face a big slow down of fps when I make my window large (i.e. above 1920x1080). I have monitors GPU usage when in full-screen and it shows GPU load of nearly 100% and Memory Controller load of ~85%. When at 600x600, these numbers are at about 45%, my CPU is also at full load. I use deferred rendering at the moment but even when forward rendering, the slow down was nearly as severe. I can't imagine my GPU is not powerful enough for something this simple when I play many games at 1080p (I have a GeForce GT 120M btw). Below are my shaders, First Pass #VS #version 330 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform float scale; layout(location = 0) in vec3 in_Position; layout(location = 1) in vec3 in_Normal; layout(location = 2) in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; void main(void){ pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; pass_Normal = NormalMatrix * in_Normal; TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } #FS #version 330 core uniform sampler2D inSampler; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; layout(location = 0) out vec3 outPosition; layout(location = 1) out vec3 outDiffuse; layout(location = 2) out vec3 outNormal; void main(void){ outPosition = pass_Position; outDiffuse = texture(inSampler, TexCoord).xyz; outNormal = pass_Normal; } Second Pass #VS #version 330 core uniform float scale; layout(location = 0) in vec3 in_Position; void main(void){ gl_Position = mat4(1.0) * vec4(scale * in_Position, 1.0); } #FS #version 330 core struct Light{ vec3 direction; }; uniform ivec2 ScreenSize; uniform Light light; uniform sampler2D PositionMap; uniform sampler2D ColorMap; uniform sampler2D NormalMap; out vec4 out_Color; vec2 CalcTexCoord(void){ return gl_FragCoord.xy / ScreenSize; } vec4 CalcLight(vec3 position, vec3 normal){ vec4 DiffuseColor = vec4(0.0); vec4 SpecularColor = vec4(0.0); vec3 light_Direction = -normalize(light.direction); float diffuse = max(0.0, dot(normal, light_Direction)); if(diffuse 0.0){ DiffuseColor = diffuse * vec4(1.0); vec3 camera_Direction = normalize(-position); vec3 half_vector = normalize(camera_Direction + light_Direction); float specular = max(0.0, dot(normal, half_vector)); float fspecular = pow(specular, 128.0); SpecularColor = fspecular * vec4(1.0); } return DiffuseColor + SpecularColor + vec4(0.1); } void main(void){ vec2 TexCoord = CalcTexCoord(); vec3 Position = texture(PositionMap, TexCoord).xyz; vec3 Color = texture(ColorMap, TexCoord).xyz; vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); out_Color = vec4(Color, 1.0) * CalcLight(Position, Normal); } Is it normal for the GPU to be used that much under the described circumstances? Is it due to poor performance of freeglut? I understand that the problem could be specific to my code, but I can't paste the whole code here, if you need more info, please tell me.

    Read the article

  • Getting FEATURE_LEVEL_9_3 to work in DX11

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • How'd they do it: Millions of tiles in Terraria

    - by William 'MindWorX' Mariager
    I've been working up a game engine similar to Terraria, mostly as a challenge, and while I've figured out most of it, I can't really seem to wrap my head around how they handle the millions of interactable/harvestable tiles the game has at one time. Creating around 500.000 tiles, that is 1/20th of what's possible in Terraria, in my engine causes the frame-rate to drop from 60 to around 20, even tho I'm still only rendering the tiles in view. Mind you, I'm not doing anything with the tiles, only keeping them in memory. Update: Code added to show how I do things. This is part of a class, which handles the tiles and draws them. I'm guessing the culprit is the "foreach" part, which iterates everything, even empty indexes. ... public void Draw(SpriteBatch spriteBatch, GameTime gameTime) { foreach (Tile tile in this.Tiles) { if (tile != null) { if (tile.Position.X < -this.Offset.X + 32) continue; if (tile.Position.X > -this.Offset.X + 1024 - 48) continue; if (tile.Position.Y < -this.Offset.Y + 32) continue; if (tile.Position.Y > -this.Offset.Y + 768 - 48) continue; tile.Draw(spriteBatch, gameTime); } } } ... Also here is the Tile.Draw method, which could also do with an update, as each Tile uses four calls to the SpriteBatch.Draw method. This is part of my autotiling system, which means drawing each corner depending on neighboring tiles. texture_* are Rectangles, are set once at level creation, not each update. ... public virtual void Draw(SpriteBatch spriteBatch, GameTime gameTime) { if (this.type == TileType.TileSet) { spriteBatch.Draw(this.texture, this.realm.Offset + this.Position, texture_tl, this.BlendColor); spriteBatch.Draw(this.texture, this.realm.Offset + this.Position + new Vector2(8, 0), texture_tr, this.BlendColor); spriteBatch.Draw(this.texture, this.realm.Offset + this.Position + new Vector2(0, 8), texture_bl, this.BlendColor); spriteBatch.Draw(this.texture, this.realm.Offset + this.Position + new Vector2(8, 8), texture_br, this.BlendColor); } } ... Any critique or suggestions to my code is welcome. Update: Solution added. Here's the final Level.Draw method. The Level.TileAt method simply checks the inputted values, to avoid OutOfRange exceptions. ... public void Draw(SpriteBatch spriteBatch, GameTime gameTime) { Int32 startx = (Int32)Math.Floor((-this.Offset.X - 32) / 16); Int32 endx = (Int32)Math.Ceiling((-this.Offset.X + 1024 + 32) / 16); Int32 starty = (Int32)Math.Floor((-this.Offset.Y - 32) / 16); Int32 endy = (Int32)Math.Ceiling((-this.Offset.Y + 768 + 32) / 16); for (Int32 x = startx; x < endx; x += 1) { for (Int32 y = starty; y < endy; y += 1) { Tile tile = this.TileAt(x, y); if (tile != null) tile.Draw(spriteBatch, gameTime); } } } ...

    Read the article

  • Problem Loading multiple textures using multiple shaders with GLSL

    - by paj777
    I am trying to use multiple textures in the same scene but no matter what I try the same texture is loaded for each object. So this what I am doing at the moment, I initialise each shader: rightWall.SendShaders("wall.vert","wall.frag","brick3.bmp", "wallTex", 0); demoFloor.SendShaders("floor.vert","floor.frag","dirt1.bmp", "floorTex", 1); The code in SendShaders is: GLuint vert,frag; glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); char *vs = NULL,*fs = NULL; vert = glCreateShader(GL_VERTEX_SHADER); frag = glCreateShader(GL_FRAGMENT_SHADER); vs = textFileRead(vertFile); fs = textFileRead(fragFile); const char * ff = fs; const char * vv = vs; glShaderSource(vert, 1, &vv, NULL); glShaderSource(frag, 1, &ff, NULL); free(vs); free(fs); glCompileShader(vert); glCompileShader(frag); program = glCreateProgram(); glAttachShader(program, frag); glAttachShader(program, vert); glLinkProgram(program); glUseProgram(program); LoadGLTexture(textureImage, texture); GLint location = glGetUniformLocation(program, textureName); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture); glUniform1i(location, 0); And then in the main loop: rightWall.UseShader(); rightWall.Draw(); demoFloor.UseShader(); demoFloor.Draw(); Which ever shader is initialised last is the texture which is used for both objects. Thank you for your time and I appreciate any comments.

    Read the article

  • curios about CCSpriteBatchNode's addchild method

    - by lzyy
    when diving into "learn cocos2d game development with ios5", in ch08 in EnemyCache.m -(id) init { if ((self = [super init])) { // get any image from the Texture Atlas we're using CCSpriteFrame* frame = [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:@"monster-a.png"]; batch = [CCSpriteBatchNode batchNodeWithTexture:frame.texture]; [self addChild:batch]; [self initEnemies]; [self scheduleUpdate]; } return self; } so batch is with texture "monster-a.png" in EnemyEntity.m's initWithType method switch (type) { case EnemyTypeUFO: enemyFrameName = @"monster-a.png"; bulletFrameName = @"shot-a.png"; break; case EnemyTypeCruiser: enemyFrameName = @"monster-b.png"; bulletFrameName = @"shot-b.png"; shootFrequency = 1.0f; initialHitPoints = 3; break; case EnemyTypeBoss: enemyFrameName = @"monster-c.png"; bulletFrameName = @"shot-c.png"; shootFrequency = 2.0f; initialHitPoints = 15; break; default: [NSException exceptionWithName:@"EnemyEntity Exception" reason:@"unhandled enemy type" userInfo:nil]; } if ((self = [super initWithSpriteFrameName:enemyFrameName])) { //... } so the returned object may be in 3 different frame. since Only the CCSprites that are contained in that texture can be added to the CCSpriteBatchNode, obviously, 'monster-b.png' is not contained in 'monster-a.png', why the different enemy can still be added to the batch?

    Read the article

  • Blit SDL_Surface onto another SDL_Surface and apply a colorkey

    - by NordCoder
    I want to load an SDL_Surface into an OpenGL texture with padding (so that NPOT-POT) and apply a color key on the surface afterwards. I either end up colorkeying all pixels, regardless of their color, or not colorkey anything at all. I have tried a lot of different things, but none of them seem to work. Here's the working snippet of my code. I use a custom color class for the colorkey (range [0-1]): // Create an empty surface with the same settings as the original image SDL_Surface* paddedImage = SDL_CreateRGBSurface(image->flags, width, height, image->format->BitsPerPixel, #if SDL_BYTEORDER == SDL_BIG_ENDIAN 0xff000000, 0x00ff0000, 0x0000ff00, 0x000000ff #else 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 #endif ); // Map RGBA color to pixel format value Uint32 colorKeyPixelFormat = SDL_MapRGBA(paddedImage->format, static_cast<Uint8>(colorKey.R * 255), static_cast<Uint8>(colorKey.G * 255), static_cast<Uint8>(colorKey.B * 255), static_cast<Uint8>(colorKey.A * 255)); SDL_FillRect(paddedImage, NULL, colorKeyPixelFormat); // Blit the image onto the padded image SDL_BlitSurface(image, NULL, paddedImage, NULL); SDL_SetColorKey(paddedImage, SDL_SRCCOLORKEY, colorKeyPixelFormat); Afterwards, I generate an OpenGL texture from paddedImage using similar code to the SDL+OpenGL texture loading code found online (I'll post if necessary). This code works if I just want the texture with or without padding, and is likely not the problem. I realize that I set all pixels in paddedImage to have alpha zero which causes the first problem I mentioned, but I can't seem to figure out how to do this. Should I just loop over the pixels and set the appropriate colors to have alpha zero?

    Read the article

  • XNA 2D Collision with specific tiles

    - by zenzero
    I am new to game programming and to these sites for help. I am making a 2D game but I can't seem to get the collision between my character and certain tiles. I have a map filled with grass tiles and water tiles and I want to keep my character from walking on the water tiles. I have a Tiles class that I use so that the tiles are objects and also has the collision method in it, a TileEngine class used create the map and it also holds a list of Tiles, and the class James which is for my character. I also have a Camera class that centers the camera on my character if that has anything to do with the problem. The character's movement is intended to be restricted to 4 directions(up, down, left, right). As an extra note, the bottom right water tile does have collision, but the collision does not occur for any of the other water tiles. Here is my TileEngine class using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace Test2DGame2 { class TileEngine : Microsoft.Xna.Framework.Game { //makes a list of Tiles objects public List<Tiles> tilesList = new List<Tiles>(); public TileEngine() {} public static int tileWidth = 64; public static int tileHeight = 64; public int[,] map = { {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, }; public void drawMap(SpriteBatch spriteBatch) { for (int y = 0; y < map.GetLength(0); y++) { for (int x = 0; x < map.GetLength(1); x++) { //make a Rectangle tilesList[map[y, x]].rectangle = new Rectangle(x * tileWidth, y * tileHeight, tileWidth, tileHeight); //draw the Tiles objects spriteBatch.Draw(tilesList[map[y, x]].texture, tilesList[map[y, x]].rectangle, Color.White); } } } } } Here is my Tiles class using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace Test2DGame2 { class Tiles { public Texture2D texture; public Rectangle rectangle; public Tiles(Texture2D texture) { this.texture = texture; } //check to see if james collides with the tile from the right side public void rightCollision(James james) { if (james.GetBounds().Intersects(rectangle)) { james.position.X = rectangle.Left - james.front.Width; } } } } I have a method for rightCollision because I could only figure out how to get the collisions from specifying directions. and here is the James class for my character using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace Test2DGame2 { class James { public Texture2D front; public Texture2D back; public Texture2D left; public Texture2D right; public Vector2 center; public Vector2 position; public James(Texture2D front) { position = new Vector2(0, 0); this.front = front; center = new Vector2(front.Width / 2, front.Height / 2); } public James(Texture2D front, Vector2 newPosition) { this.front = front; position = newPosition; center = new Vector2(front.Width / 2, front.Height / 2); } public void move(GameTime gameTime) { KeyboardState keyboard = Keyboard.GetState(); float SCALE = 20.0f; float speed = gameTime.ElapsedGameTime.Milliseconds / 100.0f; if (keyboard.IsKeyDown(Keys.Up)) { position.Y -=speed * SCALE; } else if (keyboard.IsKeyDown(Keys.Down)) { position.Y += speed * SCALE; } else if (keyboard.IsKeyDown(Keys.Left)) { position.X -= speed * SCALE; } else if (keyboard.IsKeyDown(Keys.Right)) { position.X += speed * SCALE; } } public void draw(SpriteBatch spriteBatch) { spriteBatch.Draw(front, position, null, Color.White, 0, center, 1.0f, SpriteEffects.None, 0.0f); } //get the boundingbox for James public Rectangle GetBounds() { return new Rectangle( (int)position.X, (int)position.Y, front.Width, front.Height); } } }

    Read the article

  • OpenGL font rendering

    - by DEElekgolo
    I am trying to make an openGL text rendering class using FreeType. I was originally following this code but it doesn't seem to work out for me. I get nothing reguardless of what parameters I put for Draw(). class Font { public: Font() { if (FT_Init_FreeType(&ftLibrary)) { printf("Could not initialize FreeType library\n"); return; } glGenBuffers(1,&iVerts); } bool Load(std::string sFont, unsigned int Size = 12.0f) { if (FT_New_Face(ftLibrary,sFont.c_str(),0,&ftFace)) { printf("Could not open font: %s\n",sFont.c_str()); return true; } iSize = Size; FT_Set_Pixel_Sizes(ftFace,0,(int)iSize); FT_GlyphSlot gGlyph = ftFace->glyph; //Generating the texture atlas. //Rather than some amazing rectangular packing method, I'm just going //to have one long strip of letters with the height being that of the font size. int width = 0; int height = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { printf("Error rendering letter %c for font %s.\n",i,sFont.c_str()); } width += gGlyph->bitmap.width; height += std::max(height,gGlyph->bitmap.rows); } //Generate the openGL texture glActiveTexture(GL_TEXTURE0); //if I texture exists then delete it. iTexture ? glDeleteBuffers(1,&iTexture):0; glGenTextures(1,&iTexture); glBindTexture(GL_TEXTURE_2D,iTexture); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,width,height,0,GL_ALPHA,GL_UNSIGNED_BYTE,0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //load the glyphs and set the glyph data int x = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { //if it cant load the character continue; } //load the glyph map into the texture glTexSubImage2D(GL_TEXTURE_2D,0,x,0, gGlyph->bitmap.width, gGlyph->bitmap.rows, GL_ALPHA, GL_UNSIGNED_BYTE, gGlyph->bitmap.buffer); //move the "pen" down the strip x += gGlyph->bitmap.width; chars[i].ax = (float)(gGlyph->advance.x >> 6); chars[i].ay = (float)(gGlyph->advance.y >> 6); chars[i].bw = (float)gGlyph->bitmap.width; chars[i].bh = (float)gGlyph->bitmap.rows; chars[i].bl = (float)gGlyph->bitmap_left; chars[i].bt = (float)gGlyph->bitmap_top; chars[i].tx = (float)x/width; } printf("Loaded font: %s\n",sFont.c_str()); return true; } void Draw(std::string sString,Vector2f vPos = Vector2f(0,0),Vector2f vScale = Vector2f(1,1)) { struct pPoint { pPoint() { x = y = s = t = 0; } pPoint(float a,float b,float c,float d) { x = a; y = b; s = c; t = d; } float x,y; float s,t; }; pPoint* cCoordinates = new pPoint[6*sString.length()]; int n = 0; for (const char *p = sString.c_str(); *p; p++) { float x2 = vPos.x() + chars[*p].bl * vScale.x(); float y2 = -vPos.y() - chars[*p].bt * vScale.y(); float w = chars[*p].bw * vScale.x(); float h = chars[*p].bh * vScale.y(); float x = vPos.x() + chars[*p].ax * vScale.x(); float y = vPos.y() + chars[*p].ay * vScale.y(); //skip characters with no pixels //still advances though if (!w || !h) { continue; } //triangle one cCoordinates[n++] = pPoint( x2 , -y2 , chars[*p].tx , 0); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2-h , chars[*p].tx + chars[*p].bw / w , chars[*p].bh / h); } glBindBuffer(GL_ARRAY_BUFFER,iVerts); glBindBuffer(GL_TEXTURE_2D,iTexture); //Vertices glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].x); //TexCoord 0 glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].s); glCullFace(GL_NONE); glBufferData(GL_ARRAY_BUFFER,6*sString.length(),cCoordinates,GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES,0,n); glCullFace(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER,0); glBindBuffer(GL_TEXTURE_2D,0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } ~Font() { glDeleteBuffers(1,&iVerts); glDeleteBuffers(1,&iTexture); } private: unsigned int iSize; //openGL texture atlas unsigned int iTexture; //openGL geometry buffer; unsigned int iVerts; FT_Library ftLibrary; FT_Face ftFace; struct Character { float ax,ay;//Advance float bw,bh;//bitmap size float bl,bt;//bitmap left and top float tx; } chars[128]; };

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Frame Buffers wont work with pyglet.

    - by Matthew Mitchell
    I have this code: def setup_framebuffer(surface): #Create texture if not done already if surface.texture is None: create_texture(surface) #Render child to parent if surface.frame_buffer is None: surface.frame_buffer = glGenFramebuffersEXT(1) glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, surface.texture, 0) glPushAttrib(GL_VIEWPORT_BIT) glViewport(0,0,surface._scale[0],surface._scale[1]) glMatrixMode(GL_PROJECTION) glLoadIdentity() #Load the projection matrix gluOrtho2D(0,surface._scale[0],0,surface._scale[1]) glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) for this despite the second parameter printing as 1 for a test I did, I get: glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) I only got this after implementing pyglet. GLUT is too limited. Thank you.

    Read the article

  • How do you draw like a Crayon?

    - by Simucal
    Crayon Physics Deluxe is a commercial game that came out recently. Watch the video on the main link to get an idea of what I'm talking about. It allows you to draw shapes and have them react with proper physics. The goal is to move a ball to a star across the screen using contraptions and shapes you build. While the game is basically a wrapper for the popular Box2D Physics Engine, it does have one feature that I'm curious about how it is implemented. Its drawing looks very much like a Crayon. You can see the texture of the crayon and as it draws it varies in thickness and darkness just like an actual crayon drawing would look like. The background texture is freely available here. Close up of crayon drawing - Note the varying darkness What kind of algorithm would be used to render those lines in a way that looks like a Crayon? Is it a simple texture applied with a random thickness and darkness or is there something more going on?

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >