Search Results

Search found 39984 results on 1600 pages for 'null test'.

Page 236/1600 | < Previous Page | 232 233 234 235 236 237 238 239 240 241 242 243  | Next Page >

  • Handling return value from Web Service Call Wrapper

    - by coffeeaddict
    I created this method below which makes an HTTP call to a 3rd party API. I just want opinions on if I'm handling this the best way. If the call fails, I need to return the ExistsInList bool value only if the response is not null. But in the last return statement, wouldn't I have to essentially do another return selectResponse == null ? false : selectResponse.ExistsInList; to check for null first just like the previous return in the catch? Just seems redundant the way I'm approaching this and I don't know if I really need to check for null again in the final return but I figure yes, because you can't always rely on the response to give you a valid response even if there were no errors picked up. public static bool UserExistsInList(string email, string listID) { SelectRecipientRequest selectRequest = new SelectRecipientRequest(email, listID); SelectRecipientResponse selectResponse = null; try { selectResponse = (SelectRecipientResponse)selectRequest.SendRequest(); } catch (Exception) { return selectResponse == null ? false : selectResponse.ExistsInList; } return selectResponse.ExistsInList; }

    Read the article

  • problem using fprintf

    - by shiran bar
    I'm trying to print to a text file numerous variables yet it doesn't work. I checked and verified that i write it in the correct syntax. I also checked the return value and it's positive therefore i know it did write to the file, however when i open the file it's empty. I would be happy for some help. This is the code: I initiate DynsaleDayPtr in the main: FILE* DynsaleDayPtr = CreateTextFiles("sale_day.txt"); Create function: FILE* CreateTextFiles (char* fileName) { FILE* saleFilePtr=NULL; if((saleFilePtr=fopen(fileName,"a+"))==NULL) printf("File couldn't be opened\n"); return saleFilePtr; } The call to the function TextAddSale is done from a function that is called in the main: TextAddSale(DynSaleDayPtr,dynNumOfRecords); Bool TextAddSale (FILE* DynsaleDayPtr, int* dynNumOfRecords) { char id[6]; char name [50]; char priceChar[20]; char* tmp = NULL; int price=-1; DynamicRecord * newRec=NULL; scanf("%s%s%s",id,name,priceChar); newRec = (DynamicRecord *)malloc(sizeof(DynamicRecord)); if (newRec == NULL) return False; tmp = (char*)malloc(strlen(name)+1); if (tmp == NULL) { free (newRec); return False; } strcpy(tmp,name); newRec->productName = tmp; strcpy(newRec->productId, id); newRec->productPrice=atoi (priceChar); if (fprintf(DynsaleDayPtr,"%d %s %s %d", strlen(newRec->productName), newRec->productId, newRec->productName, newRec->productPrice)>0) { *dynNumOfRecords=(*dynNumOfRecords)+1; return True; } } thanks!

    Read the article

  • Code Keeps Timing Out

    - by DForck42
    So, we've got this set of code that, for some reason, keeps timing out. It's not the stored procedure that it's running, because that runs fine. Also, if we remove the parameter from the c# code, the code runs. The parameter keeps breaking (causing it to time out) and we can't figure out why. c#: public static PTWViewList GetList(int studynumber) { PTWViewList tempList = new PTWViewList(); using (SqlConnection myConnection = new SqlConnection(AppConfiguration.cnARDB)) { string spName = "ardb.PTWViewSelect"; SqlCommand myCommand = new SqlCommand(spName, myConnection); myCommand.CommandType = CommandType.StoredProcedure; myCommand.Parameters.AddWithValue("@study", studynumber); myConnection.Open(); using (NullableDataReader myReader = new NullableDataReader(myCommand.ExecuteReader())) /*this is where the code times out*/ { tempList = new PTWViewList(); while (myReader.Read()) { tempList.Add(FillDataRecord(myReader)); } myReader.Close(); } } tempList.ListCount = tempList.Count; return tempList; } stored procedure: CREATE PROCEDURE [ardb].[PTWViewSelect] @studynumber int = NULL, @quoteid uniqueidentifier = NULL, @lineitemid uniqueidentifier = NULL AS BEGIN SET NOCOUNT ON; SELECT [Study] ,[LineItemID] ,[QuoteID] ,[Total] ,[COOP] ,[VendorCost] ,[CustCost] ,[LineItemNumber] ,[StudyTypeCode] ,[GroupLeader] ,[PTWDate] ,[PONumber] ,[POStatus] ,[StudyDirector] ,[SL_DESC_L] ,[SL_Code] ,ProjectDescription ,CreatedBy ,chARProcess ,CODate FROM [ARDB].[dbo].[PTWView] WHERE (@studynumber is null or StudyNumber=@studynumber) AND (@quoteid is null or QuoteID=@quoteid) AND (@lineitemid is null or LineItemID = @lineitemid) END

    Read the article

  • Adding an element to a multidimensional array

    - by stef
    How can I loop through the array below and an element per array, with key "url_slug" and value "foo"? I tried with array_push but that gets rid of the key names (it seems?) Doing a foreach($array as $k = $v) doesn't do it either, I think. The new array should be exactly the same only having 4 elements per array instead of 3, with the key / values above. Array ( [0] => Array ( [name_en] => Test 5 [url_name_nl] => test-5 [cat_name] => mobile ) [1] => Array ( [name_en] => Test 10 [url_name_nl] => test-10 [cat_name] => mobile ) [2] => Array ( [name_en] => Test 25 [url_name_nl] => test-25 [cat_name] => mobile ) ) EDIT: full working solution. A little more complex than originally described foreach ($prods as $key => &$value) { if($key == "cat_name") $slug = $value['cat_name']; $url_slug = $this->lang->line($slug); $value['url_slug'] = $url_slug; }

    Read the article

  • Field to display Previous 30 Day Total

    - by whytheq
    I've got this table: CREATE TABLE #Data1 ( [Market] VARCHAR(100) NOT NULL, [Operator] VARCHAR(100) NOT NULL, [Date] DATETIME NOT NULL, [Measure] VARCHAR(100) NOT NULL, [Amount] NUMERIC(36,10) NOT NULL, --new calculated fields [DailyAvg_30days] NUMERIC(38,6) NULL DEFAULT 0 ) I've populated all the fields apart from DailyAvg_30days. This field needs to show the total for the preceding 30 days e.g. 1. if Date for a particular record is 2nd Dec then it will be the total for the period 3rd Nov - 2nd Dec inclusive. 2. if Date for a particular record is 1st Dec then it will be the total for the period 2nd Nov - 1st Dec inclusive. My attempt to try to find these totals before updating the table is as follows: SELECT a.[Market], a.[Operator], a.[Date], a.[Measure], a.[Amount], [DailyAvg_30days] = SUM(b.[Amount]) FROM #Data1 a INNER JOIN #Data1 b ON a.[Market] = b.[Market] AND a.[Operator] = b.[Operator] AND a.[Measure] = b.[Measure] AND a.[Date] >= b.[Date]-30 AND a.[Date] <= b.[Date] GROUP BY a.[Market], a.[Operator], a.[Date], a.[Measure], a.[Amount] ORDER BY 1,2,4,3 Is this a valid approach or do I need to approach this from a different angle?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • using Generics in C# [closed]

    - by Uphaar Goyal
    I have started looking into using generics in C#. As an example what i have done is that I have an abstract class which implements generic methods. these generic methods take a sql query, a connection string and the Type T as parameters and then construct the data set, populate the object and return it back. This way each business object does not need to have a method to populate it with data or construct its data set. All we need to do is pass the type, the sql query and the connection string and these methods do the rest.I am providing the code sample here. I am just looking to discuss with people who might have a better solution to what i have done. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; using System.Data.SqlClient; using MWTWorkUnitMgmtLib.Business; using System.Collections.ObjectModel; using System.Reflection; namespace MWTWorkUnitMgmtLib.TableGateway { public abstract class TableGateway { public TableGateway() { } protected abstract string GetConnection(); protected abstract string GetTableName(); public DataSet GetDataSetFromSql(string connectionString, string sql) { DataSet ds = null; using (SqlConnection connection = new SqlConnection(connectionString)) using (SqlCommand command = connection.CreateCommand()) { command.CommandText = sql; connection.Open(); using (ds = new DataSet()) using (SqlDataAdapter adapter = new SqlDataAdapter(command)) { adapter.Fill(ds); } } return ds; } public static bool ContainsColumnName(DataRow dr, string columnName) { return dr.Table.Columns.Contains(columnName); } public DataTable GetDataTable(string connString, string sql) { DataSet ds = GetDataSetFromSql(connString, sql); DataTable dt = null; if (ds != null) { if (ds.Tables.Count 0) { dt = ds.Tables[0]; } } return dt; } public T Construct(DataRow dr, T t) where T : class, new() { Type t1 = t.GetType(); PropertyInfo[] properties = t1.GetProperties(); foreach (PropertyInfo property in properties) { if (ContainsColumnName(dr, property.Name) && (dr[property.Name] != null)) property.SetValue(t, dr[property.Name], null); } return t; } public T GetByID(string connString, string sql, T t) where T : class, new() { DataTable dt = GetDataTable(connString, sql); DataRow dr = dt.Rows[0]; return Construct(dr, t); } public List GetAll(string connString, string sql, T t) where T : class, new() { List collection = new List(); DataTable dt = GetDataTable(connString, sql); foreach (DataRow dr in dt.Rows) collection.Add(Construct(dr, t)); return collection; } } }

    Read the article

  • Do unit tests sometimes break encapsulation?

    - by user1288851
    I very often hear the following: "If you want to test private methods, you'd better put that in another class and expose it." While sometimes that's the case and we have a hiding concept inside our class, other times you end up with classes that have the same attributes (or, worst, every attribute of one class become a argument on a method in the other class) and exposes functionality that is, in fact, implementation detail. Specially on TDD, when you refactor a class with public methods out of a previous tested class, that class is now part of your interface, but has no tests to it (since you refactored it, and is a implementation detail). Now, I may be not finding an obvious better answer, but if my answer is the "correct", that means that sometimes writting unit tests can break encapsulation, and divide the same responsibility into different classes. A simple example would be testing a setter method when a getter is not actually needed for anything in the real code. Please when aswering don't provide simple answers to specific cases I may have written. Rather, try to explain more of the generic case and theoretical approach. And this is neither language specific. Thanks in advance. EDIT: The answer given by Matthew Flynn was really insightful, but didn't quite answer the question. Altough he made the fair point that you either don't test private methods or extract them because they really are other concern and responsibility (or at least that was what I could understand from his answer), I think there are situations where unit testing private methods is useful. My primary example is when you have a class that has one responsibility but the output (or input) that it gives (takes) is just to complex. For example, a hashing function. There's no good way to break a hashing function apart and mantain cohesion and encapsulation. However, testing a hashing function can be really tough, since you would need to calculate by hand (you can't use code calculation to test code calculation!) the hashing, and test multiple cases where the hash changes. In that way (and this may be a question worth of its own topic) I think private method testing is the best way to handle it. Now, I'm not sure if I should ask another question, or ask it here, but are there any better way to test such complex output (input)? OBS: Please, if you think I should ask another question on that topic, leave a comment. :)

    Read the article

  • Windows CE: Changing Static IP Address

    - by Bruce Eitman
    A customer contacted me recently and asked me how to change a static IP address at runtime.  Of course this is not something that I know how to do, but with a little bit of research I figure out how to do it. It turns out that the challenge is to request that the adapter update itself with the new IP Address.  Otherwise, the change in IP address is a matter of changing the address in the registry for the adapter.   The registry entry is something like: [HKEY_LOCAL_MACHINE\Comm\LAN90001\Parms\TcpIp]    "EnableDHCP"=dword:0    "IpAddress"="192.168.0.100"     "DefaultGateway"="192.168.0.1"    "Subnetmask"="255.255.255.0" Where LAN90001 would be replace with your adapter name.  I have written quite a few articles about how to modify the registry, including a registry editor that you could use. Requesting that the adapter update itself is a matter of getting a handle to the NDIS driver, and then asking it to refresh the adapter.  The code is: #include <windows.h> #include "winioctl.h" #include "ntddndis.h"   void RebindAdapter( TCHAR *adaptername ) {       HANDLE hNdis;       BOOL fResult = FALSE;       int count;         // Make this function easier to use - hide the need to have two null characters.       int length = wcslen(adaptername);       int AdapterSize = (length + 2) * sizeof( TCHAR );       TCHAR *Adapter = malloc(AdapterSize);       wcscpy( Adapter, adaptername );       Adapter[ length ] = '\0';       Adapter[ length +1 ] = '\0';           hNdis = CreateFile(DD_NDIS_DEVICE_NAME,                   GENERIC_READ | GENERIC_WRITE,                   FILE_SHARE_READ | FILE_SHARE_WRITE,                   NULL,                   OPEN_ALWAYS,                   0,                   NULL);         if (INVALID_HANDLE_VALUE != hNdis)       {             fResult = DeviceIoControl(hNdis,                         IOCTL_NDIS_REBIND_ADAPTER,                         Adapter,                         AdapterSize,                         NULL,                         0,                         &count,                         NULL);             if( !fResult )             {                   RETAILMSG( 1, (TEXT("DeviceIoControl failed %d\n"), GetLastError() ));             }             CloseHandle(hNdis);       }       else       {             RETAILMSG( 1, (TEXT("Failed to open NDIS Handle\n")));       }   }       int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPWSTR    lpCmdLine, int       nCmdShow) {     RebindAdapter( TEXT("LAN90001") );     return 0; }   If you don’t want to write any code, but instead plan to use a registry editor to change the IP Address, then there is a command line utility to do the same thing.  NDISConfig.exe can be used: Ndisconfig adapter rebind LAN90001    Copyright © 2012 – Bruce Eitman All Rights Reserved

    Read the article

  • View Clipboard & Copy To Clipboard from NetBeans IDE

    - by Geertjan
    Thanks to this code, I can press Ctrl-Alt-V in NetBeans IDE and then view whatever is in the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.DataFlavor; import java.awt.datatransfer.Transferable; import java.awt.datatransfer.UnsupportedFlavorException; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.IOException; import javax.swing.JOptionPane; import org.openide.awt.ActionRegistration; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionID; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.ShowClipboardAction") @ActionRegistration( displayName = "#CTL_ShowClipboardAction") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 5), @ActionReference(path = "Shortcuts", name = "DA-V") }) @Messages("CTL_ShowClipboardAction=Show Clipboard") public final class ShowClipboardAction implements ActionListener { @Override public void actionPerformed(ActionEvent e) { JOptionPane.showMessageDialog(null, getClipboard(), "Clipboard Content", 1); } public String getClipboard() { String text = null; Transferable t = Toolkit.getDefaultToolkit().getSystemClipboard().getContents(null); try { if (t != null && t.isDataFlavorSupported(DataFlavor.stringFlavor)) { text = (String) t.getTransferData(DataFlavor.stringFlavor); } } catch (UnsupportedFlavorException e) { } catch (IOException e) { } return text; } } And now I can also press Ctrl-Alt-C, which copies the path to the current file to the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.Clipboard; import java.awt.datatransfer.StringSelection; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.openide.awt.ActionID; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionRegistration; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.CopyPathToClipboard") @ActionRegistration( displayName = "#CTL_CopyPathToClipboard") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 0), @ActionReference(path = "Editors/Popup", position = 10), @ActionReference(path = "Shortcuts", name = "DA-C") }) @Messages("CTL_CopyPathToClipboard=Copy Path to Clipboard") public final class CopyPathToClipboardAction implements ActionListener { private final DataObject context; public CopyPathToClipboardAction(DataObject context) { this.context = context; } @Override public void actionPerformed(ActionEvent e) { String path = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(path); StringSelection ss = new StringSelection(path); Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard(); clipboard.setContents(ss, null); } }

    Read the article

  • First steps into css - aligning data insite one DIV [on hold]

    - by Andrew
    I am trying to move away from tables, and start doing CSS. Here is my HTML code that I currently trying to place into a nice looking container. <div> <div> <h2>ID: 4000 | SSN#: 4545</h2> </div> <div> <img src="./images/tenant/unknown.png"> </div> <div> <h3>Names Used</h3> Will Smith<br> Bill Smmith<br> John Smith<br> Will Smith<br> Bill Smmith<br> John Smith<br> Will Smith<br> Bill Smmith<br> John Smith<br> </div> <div> <h3>Phones Used</h3> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> </div> <div> <h3>Addresses Used</h3> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> </div> </div> I now understand now I create classes and assign classes to elements. I have no issues doing colors. But I am very confused with elements alignments. Could you suggest a nice way to pack it together with some CSS which I can analyze and take as a CSS starting learning point?

    Read the article

  • The Red Gate Guide to SQL Server Team based Development Free e-book

    - by Mladen Prajdic
    After about 6 months of work, the new book I've coauthored with Grant Fritchey (Blog|Twitter), Phil Factor (Blog|Twitter) and Alex Kuznetsov (Blog|Twitter) is out. They're all smart folks I talk to online and this book is packed with good ideas backed by years of experience. The book contains a good deal of information about things you need to think of when doing any kind of multi person database development. Although it's meant for SQL Server, the principles can be applied to any database platform out there. In the book you will find information on: writing readable code, documenting code, source control and change management, deploying code between environments, unit testing, reusing code, searching and refactoring your code base. I've written chapter 5 about Database testing and chapter 11 about SQL Refactoring. In the database testing chapter (chapter 5) I cover why you should test your database, why it is a good idea to have a database access interface composed of stored procedures, views and user defined functions, what and how to test. I talk about how there are many testing methods like black and white box testing, unit and integration testing, error and stress testing and why and how you should do all those. Sometimes you have to convince management to go for testing in the development lifecycle so I give some pointers and tips how to do that. Testing databases is a bit different from testing object oriented code in a way that to have independent unit tests you need to rollback your code after each test. The chapter shows you ways to do this and also how to avoid it. At the end I show how to test various database objects and how to test access to them. In the SQL Refactoring chapter (chapter 11) I cover why refactor and where to even begin refactoring. I also who you a way to achieve a set based mindset to solve SQL problems which is crucial to good SQL set based programming and a few commonly seen problems to refactor. These problems include: using functions on columns in the where clause, SELECT * problems, long stored procedure with many input parameters, one subquery per condition in the select statement, cursors are good for anything problem, using too large data types everywhere and using your data in code for business logic anti-pattern. You can read more about it and download it here: The Red Gate Guide to SQL Server Team-based Development Hope you like it and send me feedback if you wish too.

    Read the article

  • Review: Backbone.js Testing

    - by george_v_reilly
    Title: Backbone.js Testing Author: Ryan Roemer Rating: $stars(4.5) Publisher: Packt Copyright: 2013 ISBN: 178216524X Pages: 168 Keywords: programming, testing, javascript, backbone, mocha, chai, sinon Reading period: October 2013 Backbone.js Testing is a short, dense introduction to testing JavaScript applications with three testing libraries, Mocha, Chai, and Sinon.JS. Although the author uses a sample application of a personal note manager written with Backbone.js throughout the book, much of the material would apply to any JavaScript client or server framework. Mocha is a test framework that can be executed in the browser or by Node.js, which runs your tests. Chai is a framework-agnostic TDD/BDD assertion library. Sinon.JS provides standalone test spies, stubs and mocks for JavaScript. They complement each other and the author does a good job of explaining when and how to use each. I've written a lot of tests in Python (unittest and mock, primarily) and C# (NUnit), but my experience with JavaScript unit testing was both limited and years out of date. The JavaScript ecosystem continues to evolve rapidly, with new browser frameworks and Node packages springing up everywhere. JavaScript has some particular challenges in testing—notably, asynchrony and callbacks. Mocha, Chai, and Sinon meet those challenges, though they can't take away all the pain. The author describes how to test Backbone models, views, and collections; dealing with asynchrony; provides useful testing heuristics, including isolating components to reduce dependencies; when to use stubs and mocks and fake servers; and test automation with PhantomJS. He does not, however, teach you Backbone.js itself; for that, you'll need another book. There are a few areas which I thought were dealt with too lightly. There's no real discussion of Test-driven_development or Behavior-driven_development, which provide the intellectual foundations of much of the book. Nor does he have much to say about testability and how to make legacy code more testable. The sample Notes app has plenty of testing seams (much of this falls naturally out of the architecture of Backbone); other apps are not so lucky. The chapter on automation is extremely terse—it could be expanded into a very large book!—but it does provide useful indicators to many areas for exploration. I learned a lot from this book and I have no hesitation in recommending it. Disclosure: Thanks to Ryan Roemer and Packt for a review copy of this book.

    Read the article

  • Difference between EJB Persist & Merge operation

    - by shantala.sankeshwar
    This article gives the difference between EJB Persist & Merge operations with scenarios.Use Case Description Users working on EJB persist & merge operations often have this question in mind " When merge can create new entity as well as modify existing entity,then why do we have 2 separate operations - persist & merge?" The reason is very simple.If we use merge operation to create new entity & if the entity exists then it does not throw any exception,but persist throws exception if the entity already exists.Merge should be used to modify the existing entity.The sql statement that gets executed on persist operation is insert statement.But in case of merge first select statement gets executed & then update sql statement gets executed.Scenario 1: Persist operation to create new Emp recordLet us suppose that we have a Java EE Web Application created with Entities from Emp table & have created session bean with data control. Drop Emp Object(Expand SessionEJBLocal->Constructors under Data Controls) as ADF Parameter form in jspx pageDrop persistEmp(Emp) as ADF CommandButton & provide #{bindings.EmpIterator.currentRow.dataProvider} as the value for emp parameter.Then run this page & provide values for Emp,click on 'persistEmp' button.New Emp record gets created.So when we execute persist operation only insert sql statement gets executed :INSERT INTO EMP (EMPNO, COMM, HIREDATE, ENAME, JOB, DEPTNO, SAL, MGR) VALUES (?, ?, ?, ?, ?, ?, ?, ?)    bind => [2, null, null, e2, null, 10, null, null]Scenario 2: Merge operation to modify existing Emp recordLet us suppose that we have a Java EE Web Application created with Entities from Emp table & have created session bean with data control.Drop empFindAll() Object as ADF form on jspx page.Drop mergeEmp(Emp) operation as commandButton & provide #{bindings.EmpIterator.currentRow.dataProvider} as the value for emp parameter.Then run this page & modify values for Emp record,click on 'mergeEmp' button.The respective Emp record gets modified.So when we execute merge operation select & update sql statements gets executed :SELECT EMPNO, COMM, HIREDATE, ENAME, JOB, DEPTNO, SAL, MGR FROM EMP WHERE (EMPNO = ?) bind => [7566]UPDATE EMP SET ENAME = ? WHERE (EMPNO = ?) bind => [KINGS, 7839]

    Read the article

  • Unit Testing TSQL

    - by Grant Fritchey
    I went through a period of time where I spent a lot of effort figuring out how to set up unit tests for TSQL. It wasn't easy. There are a few tools out there that help, but mostly it involves lots of programming. well, not as much as before. Thanks to the latest Down Tools Week at Red Gate a new utility has been built and released into the wild, SQL Test. Like a lot of the new tools coming out of Red Gate these days, this one is directly integrated into SSMS, which means you're working where you're comfortable and where you already have lots of tools at your disposal. After the install, when you launch SSMS and get connected, you're prompted to install the tSQLt example database. Go for it. It's a quick way to see how the tool works. I'd suggest using it. It' gives you a quick leg up. The concepts are pretty straight forward. There are a series of CLR commands that you use to configure a test and the test assertions. In between you're calling TSQL, either calls to your structure, queries, or stored procedures. They already have the one things that I always found wanting in database tests, a way to compare tables of results. I also like the ability to create a dummy copy of tables for the tests. It lets you control structures and behaviors so that the tests are more focused. One of the issues I always ran into with the other testing tools is that setting up the tests might require potentially destructive changes to the structure of the database (dropping FKs, etc.) which added lots of time and effort to setting up the tests, making testing more difficult, and therefor, less useful. Functionally, this is pretty similar to the Visual Studio tests and TSQLUnit tests that I used to use. The primary improvement over the Visual Studio tests is that I'm working in SSMS instead of Visual Studio. The primary improvement over TSQLUnit is the SQL Test interface it self. A lot of the functionality is the same, but having a sweet little tool to manage & run the tests from makes a huge difference. Oh, and don't worry. You can still run these tests directly from TSQL too, so automation has not gone away. I'm still thinking about how I'd use this in a dev environment where I also had source control to fret. That might be another blog post right there. I'm just getting started with SQL Test, so this is the first of several blog posts & videos. Watch this space. Try the tool.

    Read the article

  • Draw a never-ending line in XNA

    - by user2236165
    I am drawing a line in XNA which I want to never end. I also have a tool that moves forward in X-direction and a camera which is centered at this tool. However, when I reach the end of the viewport the lines are not drawn anymore. Here are some pictures to illustrate my problem: At the start the line goes across the whole screen, but as my tool moves forward, we reach the end of the line. Here are the method which draws the lines: private void DrawEvenlySpacedSprites (Texture2D texture, Vector2 point1, Vector2 point2, float increment) { var distance = Vector2.Distance (point1, point2); // the distance between two points var iterations = (int)(distance / increment); // how many sprites with be drawn var normalizedIncrement = 1.0f / iterations; // the Lerp method needs values between 0.0 and 1.0 var amount = 0.0f; if (iterations == 0) iterations = 1; for (int i = 0; i < iterations; i++) { var drawPoint = Vector2.Lerp (point1, point2, amount); spriteBatch.Draw (texture, drawPoint, Color.White); amount += normalizedIncrement; } } Here are the draw method in Game. The dots are my lines: protected override void Draw (GameTime gameTime) { graphics.GraphicsDevice.Clear(Color.Black); nyVector = nextVector (gammelVector); GraphicsDevice.SetRenderTarget (renderTarget); spriteBatch.Begin (); DrawEvenlySpacedSprites (dot, gammelVector, nyVector, 0.9F); spriteBatch.End (); GraphicsDevice.SetRenderTarget (null); spriteBatch.Begin (SpriteSortMode.Deferred, BlendState.AlphaBlend, null, null, null, null, camera.transform); spriteBatch.Draw (renderTarget, new Vector2 (), Color.White); spriteBatch.Draw (tool, new Vector2(toolPos.X - (tool.Width/2), toolPos.Y - (tool.Height/2)), Color.White); spriteBatch.End (); gammelVector = new Vector2 (nyVector.X, nyVector.Y); base.Draw (gameTime); } Here's the next vector-method, It just finds me a new point where the line should be drawn with a new X-coordinate between 100 and 200 pixels and a random Y-coordinate between the old vector Y-coordinate and the height of the viewport: Vector2 nextVector (Vector2 vector) { return new Vector2 (vector.X + r.Next(100, 200), r.Next ((int)(vector.Y - 100), viewport.Height)); } Can anyone point me in the right direction here? I'm guessing it has to do with the viewport.width, but I'm not quite sure how to solve it. Thank you for reading!

    Read the article

  • Configuring the iPlanet as web tier for Oracle WebCenter Content (UCM)

    - by Adao Junior
    If you are looking for configure the iPlanet as Web server/proxy to use with the Oracle WebCenter Content, you probably won’t found an specific documentation for that or will found some old complex notes related to the old 10gR3. This post will help you out with few simple steps. That’s the diagram of the test scenario, considering that you will deploy in production in an cluster environment. First you need the software, for our scenario you will need: - Oracle iPlanet Web Server 7.0.15+ (Installed) - Oracle WebCenter Content 11gR1 PS5 (Installed) - Oracle WebLogic Web Server Plugins 11g (1.1) - Supported JDK (Using Oracle Java JDK 7u4 for the test) - Certified Client OS - Certified Server OS (Using Oracle Solaris 11 for the test) - Certified Database (Using Oracle Database 11.2.0.3 for the test) Then the configuration: - Download the latest plugin: http://www.oracle.com/technetwork/middleware/ias/downloads/wls-plugins-096117.html - Extract the WLSPlugin11g-iPlanet7.0 in some folder, like <iPlanet_Home>/plugins/wls11 - Include the plugin reference to the magnus.conf: If Unix (Solaris or Linux), include the line: Init fn="load-modules" shlib="/apps/oracle/WebServer7/plugins/wls11/lib/mod_wl.so" If Windows, Include the line:        Init fn="load-modules" shlib="D:\\oracle\\WebServer7\\plugins\\wls11\\lib\\mod_wl.dll" - Include the proxy reference to the obj.conf of each instance: <Object name="weblogic" ppath="*/cs/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_dav/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_ocsh/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/adfAuthentication/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object> If you are using an single node setup, change the Service fn=…. line to something like: Service fn="wl-proxy" WebLogicHost=<wcc-server> WebLogicPort=16200 With these configurations, your should have the WebCenter Content UI working with the iPlanet, test it. [http://<web-server>/cs/] With the UI working, the last step is to configure the WebDav: - Go to the iPlanet Admin Console (usually https://<web-server>:8989) - Go to Configurations >> [instance] >> Virtual Servers >> [Virtual Server] >> WebDAV: - Click New - Populate the URI with /cs/idcplg/webdav: - Select “Anyone (No Authentication)”, the wc Content will take care of the security: This will allow you to use the WebDav feature and the Desktop Integration Suite, including double-byte characters. Anothers iPlanet tunes could be done, I can cover in the next post related to the iPlanet. Cross-posted on the ContentrA.com Blog Related posts:  - Using a Web Proxy Server with WebCenter Family

    Read the article

  • Help needed with pyparsing [closed]

    - by Zearin
    Overview So, I’m in the middle of refactoring a project, and I’m separating out a bunch of parsing code. The code I’m concerned with is pyparsing. I have a very poor understanding of pyparsing, even after spending a lot of time reading through the official documentation. I’m having trouble because (1) pyparsing takes a (deliberately) unorthodox approach to parsing, and (2) I’m working on code I didn’t write, with poor comments, and a non-elementary set of existing grammars. (I can’t get in touch with the original author, either.) Failing Test I’m using PyVows to test my code. One of my tests is as follows (I think this is clear even if you’re unfamiliar with PyVows; let me know if it isn’t): def test_multiline_command_ends(self, topic): output = parsed_input('multiline command ends\n\n',topic) expect(output).to_equal( r'''['multiline', 'command ends', '\n', '\n'] - args: command ends - multiline_command: multiline - statement: ['multiline', 'command ends', '\n', '\n'] - args: command ends - multiline_command: multiline - terminator: ['\n', '\n'] - terminator: ['\n', '\n']''') But when I run the test, I get the following in the terminal: Failed Test Results Expected topic("['multiline', 'command ends']\n- args: command ends\n- command: multiline\n- statement: ['multiline', 'command ends']\n - args: command ends\n - command: multiline") to equal "['multiline', 'command ends', '\\n', '\\n']\n- args: command ends\n- multiline_command: multiline\n- statement: ['multiline', 'command ends', '\\n', '\\n']\n - args: command ends\n - multiline_command: multiline\n - terminator: ['\\n', '\\n']\n- terminator: ['\\n', '\\n']" Note: Since the output is to a Terminal, the expected output (the second one) has extra backslashes. This is normal. The test ran without issue before this piece of refactoring began. Expected Behavior The first line of output should match the second, but it doesn’t. Specifically, it’s not including the two newline characters in that first list object. So I’m getting this: "['multiline', 'command ends']\n- args: command ends\n- command: multiline\n- statement: ['multiline', 'command ends']\n - args: command ends\n - command: multiline" When I should be getting this: "['multiline', 'command ends', '\\n', '\\n']\n- args: command ends\n- multiline_command: multiline\n- statement: ['multiline', 'command ends', '\\n', '\\n']\n - args: command ends\n - multiline_command: multiline\n - terminator: ['\\n', '\\n']\n- terminator: ['\\n', '\\n']" Earlier in the code, there is also this statement: pyparsing.ParserElement.setDefaultWhitespaceChars(' \t') …Which I think should prevent exactly this kind of error. But I’m not sure. Even if the problem can’t be identified with certainty, simply narrowing down where the problem is would be a HUGE help. Please let me know how I might take a step or two towards fixing this.

    Read the article

  • Consolidating Oracle E-Business Suite R12 on Oracle's SPARC SuperCluster

    - by Giri Mandalika
    An Optimized Solution for Oracle E-Business Suite (EBS) R12 12.1.3 is now available on oracle.com.     The Oracle Optimized Solution for Oracle E-Business Suite This solution was centered around the engineered system, SPARC SuperCluster T4-4. Check the business and technical white papers along with a bunch of relevant useful resources online at the above optimized solution page for EBS. What is an Optimized Solution? Oracle's Optimized Solutions are designed, tested and fully documented architectures that are tuned for optimal performance and availability. Optimized solutions are NOT pre-packaged, fully tuned, ready-to-install software bundles that can be downloaded and installed. An optimized solution is usually a well documented architecture that was thoroughly tested on a target platform. The technical white paper details the deployed application architecture along with various observations from installing the application on target platform to its behavior and performance in highly available and scalable configurations. Oracle E-Business Suite R12 Use Case Multiple E-Business Suite R12 12.1.3 application modules were tested in this optimized solution -- Financials (online - oracle forms & web requests), Order Management (online - oracle forms & web req uests) and HRMS (online - web requests & payroll batch). The solution will be updated with additional application modules, when they are available. Oracle Solaris Cluster is responsible for the high availability portion of the solution. Performance Data For the sake of completeness, test results were also documented in the optimized solution white paper. Those test results are mainly for educational purposes only. They give good sense of application behavior under the circumstances the application was tested. Since the major focus of the optimized solution is around highly available and scalable configurations, the application was configured to me et those criteria. Hence the documented test results are not directly comparable to any other E-Business Suite performance test results published by any vendor including Oracle. Such an attempt may lead to skewed, incorrect conclusions. Questions & Requests Feel free to direct your questions to the author of the white papers. If you are a potential customer who would like to test a specific E-Business Suite application module on any non-engineered syste m such as SPARC T4-X or engineered system such as SPARC SuperCluster, contact Oracle Solution Center.

    Read the article

  • how do I set quad buffering with jogl 2.0

    - by tony danza
    I'm trying to create a 3d renderer for stereo vision with quad buffering with Processing/Java. The hardware I'm using is ready for this so that's not the problem. I had a stereo.jar library in jogl 1.0 working for Processing 1.5, but now I have to use Processing 2.0 and jogl 2.0 therefore I have to adapt the library. Some things are changed in the source code of Jogl and Processing and I'm having a hard time trying to figure out how to tell Processing I want to use quad buffering. Here's the previous code: public class Theatre extends PGraphicsOpenGL{ protected void allocate() { if (context == null) { // If OpenGL 2X or 4X smoothing is enabled, setup caps object for them GLCapabilities capabilities = new GLCapabilities(); // Starting in release 0158, OpenGL smoothing is always enabled if (!hints[DISABLE_OPENGL_2X_SMOOTH]) { capabilities.setSampleBuffers(true); capabilities.setNumSamples(2); } else if (hints[ENABLE_OPENGL_4X_SMOOTH]) { capabilities.setSampleBuffers(true); capabilities.setNumSamples(4); } capabilities.setStereo(true); // get a rendering surface and a context for this canvas GLDrawableFactory factory = GLDrawableFactory.getFactory(); drawable = factory.getGLDrawable(parent, capabilities, null); context = drawable.createContext(null); // need to get proper opengl context since will be needed below gl = context.getGL(); // Flag defaults to be reset on the next trip into beginDraw(). settingsInited = false; } else { // The following three lines are a fix for Bug #1176 // http://dev.processing.org/bugs/show_bug.cgi?id=1176 context.destroy(); context = drawable.createContext(null); gl = context.getGL(); reapplySettings(); } } } This was the renderer of the old library. In order to use it, I needed to do size(100, 100, "stereo.Theatre"). Now I'm trying to do the stereo directly in my Processing sketch. Here's what I'm trying: PGraphicsOpenGL pg = ((PGraphicsOpenGL)g); pgl = pg.beginPGL(); gl = pgl.gl; glu = pg.pgl.glu; gl2 = pgl.gl.getGL2(); GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); capabilities.setSampleBuffers(true); capabilities.setNumSamples(4); capabilities.setStereo(true); GLDrawableFactory factory = GLDrawableFactory.getFactory(profile); If I go on, I should do something like this: drawable = factory.getGLDrawable(parent, capabilities, null); but drawable isn't a field anymore and I can't find a way to do it. How do I set quad buffering? If I try this: gl2.glDrawBuffer(GL.GL_BACK_RIGHT); it obviously doesn't work :/ Thanks.

    Read the article

  • Draw Cards and Eliminate Cards Problem

    - by Jen
    I am having a problem in this question. I want a system inside a game wherein the player draws 2 cards randomly, and the enemy draws 2 cards randomly. Then, what the program does is to print out to the console the cards the player draw and the enemy's. The cards should not conflict and must not be the same. Then lastly, the program prints out the card that was not drawn by both the player and the enemy. Here's how I did it but it was lengthy and full of errors: import java.util.Random; public class Draw { public static Random random = new Random(); public static String cards[] = {"Hall", "Kitchen", "Billiard", "Study", "Pool"}; public static int playercounter; public static int enemycounter; public static String playercardA = null; public static String playercardB = null; public static String enemycardA = null; public static String enemycardB = null; public String lastcard = null; public static void playercardAdraw() { playercounter = random.nextInt(5); playercardA = cards[playercounter]; } public static void playercardBdraw() { playercounter=random.nextInt(5); playercardB= cards[playercounter]; if (playercardB==playercardA || playercardB == enemycardA || playercardB == enemycardB) { return; } } public static void enemycardAdraw () { enemycounter = random.nextInt(5); enemycardA=cards[enemycounter]; if (enemycardA == playercardA || enemycardA == playercardB) { return; } } public static void enemycardBdraw () { enemycounter = random.nextInt(5); enemycardB=cards[enemycounter]; if (enemycardB == playercardA || enemycardB == playercardB || enemycardB == enemycardA) { return; } } public static void main (String args []) { System.out.println("Starting to draw..."); System.out.println("Player's Turn: "); playercardAdraw(); System.out.println("Player's first card: " + playercardA); playercardBdraw(); System.out.println("Player's second card: " + playercardB); System.out.println("Enemy's Turn: "); enemycardAdraw(); System.out.println("Enemy's first card: " + enemycardA); enemycardBdraw(); System.out.println("Enemy's Second card: " + enemycardB); } }

    Read the article

  • Java - Draw Cards and Eliminate Cards Problem

    - by Jen
    I am having a problem in this question. I want a system inside a game wherein the player draws 2 cards randomly, and the enemy draws 2 cards randomly. Then, what the program does is to print out to the console the cards the player draw and the enemy's. The cards should not conflict and must not be the same. Then lastly, the program prints out the card that was not drawn by both the player and the enemy. Here's how I did it but it was lengthy and full of errors: import java.util.Random; public class Draw { public static Random random = new Random(); public static String cards[] = {"Hall", "Kitchen", "Billiard", "Study", "Pool"}; public static int playercounter; public static int enemycounter; public static String playercardA = null; public static String playercardB = null; public static String enemycardA = null; public static String enemycardB = null; public String lastcard = null; public static void playercardAdraw() { playercounter = random.nextInt(5); playercardA = cards[playercounter]; } public static void playercardBdraw() { playercounter=random.nextInt(5); playercardB= cards[playercounter]; if (playercardB==playercardA || playercardB == enemycardA || playercardB == enemycardB) { return; } } public static void enemycardAdraw () { enemycounter = random.nextInt(5); enemycardA=cards[enemycounter]; if (enemycardA == playercardA || enemycardA == playercardB) { return; } } public static void enemycardBdraw () { enemycounter = random.nextInt(5); enemycardB=cards[enemycounter]; if (enemycardB == playercardA || enemycardB == playercardB || enemycardB == enemycardA) { return; } } public static void main (String args []) { System.out.println("Starting to draw..."); System.out.println("Player's Turn: "); playercardAdraw(); System.out.println("Player's first card: " + playercardA); playercardBdraw(); System.out.println("Player's second card: " + playercardB); System.out.println("Enemy's Turn: "); enemycardAdraw(); System.out.println("Enemy's first card: " + enemycardA); enemycardBdraw(); System.out.println("Enemy's Second card: " + enemycardB); } }

    Read the article

  • Image first loaded, then it isn't? (XNA)

    - by M0rgenstern
    I am very confused at the Moment. I have the following Class: (Just a part of the class): public class GUIWindow { #region Static Fields //The standard image for windows. public static IngameImage StandardBackgroundImage; #endregion } IngameImage is just one of my own classes, but actually it contains a Texture2D (and some other things). In another class I load a list of GUIButtons by deserializing a XML file. public static GUI Initializazion(string pXMLPath, ContentManager pConMan) { GUI myGUI = pConMan.Load<GUI>(pXMLPath); GUIWindow.StandardBackgroundImage = new IngameImage(pConMan.Load<Texture2D>(myGUI.WindowStandardBackgroundImagePath), Vector2.Zero, 1024, 600, 1, 0, Color.White, 1.0f, true, false, false); System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); myGUI.Windows = pConMan.Load<List<GUIWindow>>(myGUI.GUIFormatXMLPath); System.Console.WriteLine("Windows loaded"); return myGUI; } Here this line: System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Prints "true". To load the GUIWindows I need an "empty" constructor, which looks like that: public GUIWindow() { Name = ""; Buttons = new List<Button>(); ImagePath = ""; System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); //Image = new IngameImage(StandardBackgroundImage); //System.Console.WriteLine( //Image.IsActive = false; SelectedButton = null; IsActive = false; } As you can see, I commented lines out in the constructor. Because: Otherwise this would crash. Here the line System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Doesn't print anything, it just crashes with the following errormessage: Building content threw NullReferenceException: Object reference not set to an object instance. Why does this happen? Before the program wants to load the List, it prints "true". But in the constructor, so in the loading of the list it prints "false". Can anybody please tell me why this happens and how to fix it?

    Read the article

< Previous Page | 232 233 234 235 236 237 238 239 240 241 242 243  | Next Page >