Search Results

Search found 18811 results on 753 pages for 'dynamic memory allocation'.

Page 241/753 | < Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >

  • How to use Node.js to build pages that are a mix between static and dynamic content?

    - by edt
    All pages on my 5 page site should be output using a Node.js server. Most of the page content is static. At the bottom of each page, there is a bit of dynamic content. My node.js code currently looks like: var http = require('http'); http.createServer(function (request, response) { console.log('request starting...'); response.writeHead(200, { 'Content-Type': 'text/html' }); var html = '<!DOCTYPE html><html><head><title>My Title</title></head><body>'; html += 'Some more static content'; html += 'Some more static content'; html += 'Some more static content'; html += 'Some dynamic content'; html += '</body></html>'; response.end(html, 'utf-8'); }).listen(38316); I'm sure there are numerous things wrong about this example. Please enlighten me! For example: How can I add static content to the page without storing it in a string as a variable value with += numerous times? What is the best practices way to build a small site in Node.js where all pages are a mix between static and dynamic content?

    Read the article

  • Mysql performance problem & Failed DIMM

    - by murdoch
    Hi I have a dedicated mysql database server which has been having some performance problems recently, under normal load the server will be running fine, then suddenly out of the blue the performance will fall off a cliff. The server isn't using the swap file and there is 12GB of RAM in the server, more than enough for its needs. After contacting my hosting comapnies support they have discovered that there is a failed 2GB DIMM in the server and have scheduled to replace it tomorow morning. My question is could a failed DIMM result in the performance problems I am seeing or is this just coincidence? My worry is that they will replace the ram tomorrow but the problems will persist and I will still be lost of explanations so I am just trying to think ahead. The reason I ask is that there is plenty of RAM in the server, more than required and simply missing 2GB should be a problem, so if this failed DIMM is causing these performance problems then the OS must be trying to access the failed DIMM and slowing down as a result. Does that sound like a credible explanation? This is what DELLs omreport program says about the RAM, notice one dimm is "Critical" Memory Information Health : Critical Memory Operating Mode Fail Over State : Inactive Memory Operating Mode Configuration : Optimizer Attributes of Memory Array(s) Attributes : Location Memory Array 1 : System Board or Motherboard Attributes : Use Memory Array 1 : System Memory Attributes : Installed Capacity Memory Array 1 : 12288 MB Attributes : Maximum Capacity Memory Array 1 : 196608 MB Attributes : Slots Available Memory Array 1 : 18 Attributes : Slots Used Memory Array 1 : 6 Attributes : ECC Type Memory Array 1 : Multibit ECC Total of Memory Array(s) Attributes : Total Installed Capacity Value : 12288 MB Attributes : Total Installed Capacity Available to the OS Value : 12004 MB Attributes : Total Maximum Capacity Value : 196608 MB Details of Memory Array 1 Index : 0 Status : Ok Connector Name : DIMM_A1 Type : DDR3-Registered Size : 2048 MB Index : 1 Status : Ok Connector Name : DIMM_A2 Type : DDR3-Registered Size : 2048 MB Index : 2 Status : Ok Connector Name : DIMM_A3 Type : DDR3-Registered Size : 2048 MB Index : 3 Status : Critical Connector Name : DIMM_B1 Type : DDR3-Registered Size : 2048 MB Index : 4 Status : Ok Connector Name : DIMM_B2 Type : DDR3-Registered Size : 2048 MB Index : 5 Status : Ok Connector Name : DIMM_B3 Type : DDR3-Registered Size : 2048 MB the command free -m shows this, the server seems to be using more than 10GB of ram which would suggest it is trying to use the DIMM total used free shared buffers cached Mem: 12004 10766 1238 0 384 4809 -/+ buffers/cache: 5572 6432 Swap: 2047 0 2047 iostat output while problem is occuring avg-cpu: %user %nice %system %iowait %steal %idle 52.82 0.00 11.01 0.00 0.00 36.17 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 47.00 0.00 576.00 0 576 sda1 0.00 0.00 0.00 0 0 sda2 1.00 0.00 32.00 0 32 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 46.00 0.00 544.00 0 544 avg-cpu: %user %nice %system %iowait %steal %idle 53.12 0.00 7.81 0.00 0.00 39.06 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 49.00 0.00 592.00 0 592 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 49.00 0.00 592.00 0 592 avg-cpu: %user %nice %system %iowait %steal %idle 56.09 0.00 7.43 0.37 0.00 36.10 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 232.00 0.00 64520.00 0 64520 sda1 0.00 0.00 0.00 0 0 sda2 159.00 0.00 63728.00 0 63728 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 73.00 0.00 792.00 0 792 avg-cpu: %user %nice %system %iowait %steal %idle 52.18 0.00 9.24 0.06 0.00 38.51 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 49.00 0.00 600.00 0 600 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 49.00 0.00 600.00 0 600 avg-cpu: %user %nice %system %iowait %steal %idle 54.82 0.00 8.64 0.00 0.00 36.55 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 100.00 0.00 2168.00 0 2168 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 100.00 0.00 2168.00 0 2168 avg-cpu: %user %nice %system %iowait %steal %idle 54.78 0.00 6.75 0.00 0.00 38.48 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 84.00 0.00 896.00 0 896 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 84.00 0.00 896.00 0 896 avg-cpu: %user %nice %system %iowait %steal %idle 54.34 0.00 7.31 0.00 0.00 38.35 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 81.00 0.00 840.00 0 840 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 81.00 0.00 840.00 0 840 avg-cpu: %user %nice %system %iowait %steal %idle 55.18 0.00 5.81 0.44 0.00 38.58 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 317.00 0.00 105632.00 0 105632 sda1 0.00 0.00 0.00 0 0 sda2 224.00 0.00 104672.00 0 104672 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 93.00 0.00 960.00 0 960 avg-cpu: %user %nice %system %iowait %steal %idle 55.38 0.00 7.63 0.00 0.00 36.98 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 74.00 0.00 800.00 0 800 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 74.00 0.00 800.00 0 800 avg-cpu: %user %nice %system %iowait %steal %idle 56.43 0.00 7.80 0.00 0.00 35.77 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 72.00 0.00 784.00 0 784 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 72.00 0.00 784.00 0 784 avg-cpu: %user %nice %system %iowait %steal %idle 54.87 0.00 6.49 0.00 0.00 38.64 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 80.20 0.00 855.45 0 864 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 80.20 0.00 855.45 0 864 avg-cpu: %user %nice %system %iowait %steal %idle 57.22 0.00 5.69 0.00 0.00 37.09 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 33.00 0.00 432.00 0 432 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 33.00 0.00 432.00 0 432 avg-cpu: %user %nice %system %iowait %steal %idle 56.03 0.00 7.93 0.00 0.00 36.04 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 41.00 0.00 560.00 0 560 sda1 0.00 0.00 0.00 0 0 sda2 2.00 0.00 88.00 0 88 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 39.00 0.00 472.00 0 472 avg-cpu: %user %nice %system %iowait %steal %idle 55.78 0.00 5.13 0.00 0.00 39.09 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 29.00 0.00 392.00 0 392 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 29.00 0.00 392.00 0 392 avg-cpu: %user %nice %system %iowait %steal %idle 53.68 0.00 8.30 0.06 0.00 37.95 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 78.00 0.00 4280.00 0 4280 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 sda4 0.00 0.00 0.00 0 0 sda5 78.00 0.00 4280.00 0 4280

    Read the article

  • Memory allocation in detached NSThread to load an NSDictionary in background?

    - by mobibob
    I am trying to launch a background thread to retrieve XML data from a web service. I developed it synchronously - without threads, so I know that part works. Now I am ready to have a non-blocking service by spawning a thread to wait for the response and parse. I created an NSAutoreleasePool inside the thread and release it at the end of the parsing. The code to spawn and the thread are as follows: Spawn from main-loop code: . . [NSThread detachNewThreadSelector:@selector(spawnRequestThread:) toTarget:self withObject:url]; . . Thread (inside 'self'): -(void) spawnRequestThread: (NSURL*) url { NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; parser = [[NSXMLParser alloc] initWithContentsOfURL:url]; [self parseContentsOfResponse]; [parser release]; [pool release]; } The method parseContentsOfResponse fills an NSMutableDictionary with the parsed document contents. I would like to avoid moving the data around a lot and allocate it back in the main-loop that spawned the thread rather than making a copy. First, is that possible, and if not, can I simply pass in an allocated pointer from the main thread and allocate with 'dictionaryWithDictionary' method? That just seems so inefficient. Are there perferred designs?

    Read the article

  • How much memory an app can use on iPad?

    - by Saurabh
    Hi All, Currently I am writing an iPad app. I am using a lot of images in this app around 40 MB of images! This app works fine in simulator but crashing on device. I think the problem is with memory. I wanted to know how much memory I can use on iPad? Thanks Saurabh

    Read the article

  • Flash ActiveX: How to Load Movie from memory or resource or stream?

    - by yuku
    I'm embedding a Flash ActiveX control in my C++ app (Flash.ocx, Flash10a.ocx, etc depending on your Flash version). I can load an SWF file by calling LoadMovie(0, filename), but the file needs to physically reside in the disk. How to load the SWF from memory (or resource, or stream)? I'm sure there must be a way, because commercial solutions like f-in-box's feature Load flash movies from memory directly also uses Flash ActiveX control.

    Read the article

  • Time/resource allocation on a Stylish vs. Functional user interface

    - by jasonk
    When developing applications how much focus/time do you place on an application’s style vs. functionality. Battleship gray apps drive me insane. On the other hand maximizing a business application’s "style" can tax time and financial resources. Applications need to be appealing to resell or meet basic customer expectations, but defining a healthy medium can be difficult. What would you say are reasonable "standards" for allocating develop time/resources should be dedicated to stylizing a business application?

    Read the article

  • iPhone Debugger Message -- Weird

    - by Bill Shiff
    Hello, I have an iPhone app that I've been working on and have recently upgraded my version of XCode. Since the upgrade, I can build and debug in the iPhone Simulator just fine, but when I try to debug on an attached device I get the following messages: From Xcode4: GNU gdb 6.3.50-20050815 (Apple version gdb-1510) (Fri Oct 22 04:12:10 UTC 2010) Copyright 2004 Free Software Foundation, Inc. GDB is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Type "show copying" to see the conditions. There is absolutely no warranty for GDB. Type "show warranty" for details. This GDB was configured as "--host=i386-apple-darwin --target=arm-apple-darwin".tty /dev/ttys001 sharedlibrary apply-load-rules all warning: Unable to read symbols from "dyld" (prefix __dyld_) (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/MessageUI.framework/MessageUI (file not found). warning: Unable to read symbols from "MessageUI" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/MapKit.framework/MapKit (file not found). warning: Unable to read symbols from "MapKit" (not yet mapped into memory). warning: Unable to read symbols from "Foundation" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/UIKit.framework/UIKit (file not found). warning: Unable to read symbols from "UIKit" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/CoreGraphics.framework/CoreGraphics (file not found). warning: Unable to read symbols from "CoreGraphics" (not yet mapped into memory). warning: Unable to read symbols from "CoreData" (not yet mapped into memory). warning: Unable to read symbols from "QuartzCore" (not yet mapped into memory). warning: Unable to read symbols from "libgcc_s.1.dylib" (not yet mapped into memory). warning: Unable to read symbols from "libSystem.B.dylib" (not yet mapped into memory). warning: Unable to read symbols from "libobjc.A.dylib" (not yet mapped into memory). warning: Unable to read symbols from "CoreFoundation" (not yet mapped into memory). target remote-mobile /tmp/.XcodeGDBRemote-3836-28 Switching to remote-macosx protocol mem 0x1000 0x3fffffff cache mem 0x40000000 0xffffffff none mem 0x00000000 0x0fff none [Switching to thread 11523] [Switching to thread 11523] gdb stack crawl at point of internal error: 0 gdb-arm-apple-darwin 0x0013216e internal_vproblem + 316

    Read the article

  • Does "opening a file" mean loading it completely into memory?

    - by mystify
    There's an AudioFileOpenURL function which opens an file. With AudioFileReadPackets that file is accessed to read packets. But one thing that stucks in my brain is: Does AudioFileOpenURL actually load the whole monster into memory? Or is that a lightweight operation? So is it possible to read data from a file, only a specific portion, without having the whole terabytes of stuff in memory?

    Read the article

  • Is there any memory leak in the normal routine of sqlite3_*()?

    - by reer
    A normal routine of sqlite3_prepare_v2() + sqlite3_step() + sqlite3_finalize() could contain leak. It sound ridiculous. But the test code seems to say it. Or I used the sqlite3_*() wrongly. Appreciate for any reply. __code________________________ include include // for usleep() include int multi_write (int j); sqlite3 *db = NULL; int main (void) { int ret = -1; ret = sqlite3_open("test.db", &db); ret = sqlite3_exec(db,"CREATE TABLE data_his (id INTEGER PRIMARY KEY, d1 CHAR(16))", NULL,NULL,NULL); usleep (100000); int j=0; while (1) { multi_write (j++); usleep (2000000); printf (" ----------- %d\n", j); } ret = sqlite3_close (db); return 0; } int multi_write (int j) { int ret = -1; char *sql_f = "INSERT OR REPLACE INTO data_his VALUES (%d, %Q)"; char *sql = NULL; sqlite3_stmt *p_stmt = NULL; ret = sqlite3_prepare_v2 (db, "BEGIN TRANSACTION", -1, &p_stmt, NULL); ret = sqlite3_step ( p_stmt ); ret = sqlite3_finalize ( p_stmt ); int i=0; for (i=0; i<100; i++) { sql = sqlite3_mprintf ( sql_f, j*100000 + i, "00000000000068FD"); ret = sqlite3_prepare_v2 (db, sql, -1, &p_stmt, NULL ); sqlite3_free ( sql ); //printf ("sqlite3_prepare_v2(): %d, %s\n", ret, sqlite3_errmsg (db)); ret = sqlite3_step ( p_stmt ); //printf ("sqlite3_step(): %d, %s\n", ret, sqlite3_errmsg (db)); ret = sqlite3_finalize ( p_stmt ); //printf ("sqlite3_finalize(): %d, %s\n\n", ret, sqlite3_errmsg (db)); } ret = sqlite3_prepare_v2 (db, "COMMIT TRANSACTION", -1, &p_stmt, NULL ); ret = sqlite3_step ( p_stmt ); ret = sqlite3_finalize ( p_stmt ); return 0; } __result________________________ And I watch the the process's run by top. At first, the memory statistics is: PID PPID USER STAT VSZ %MEM %CPU COMMAND 17731 15488 root S 1104 5% 7% ./sqlite3multiwrite When the printf() in while(1){} of main() prints the 150, the memory statistics is: PID PPID USER STAT VSZ %MEM %CPU COMMAND 17731 15488 root S 1552 5% 7% ./sqlite3multiwrite It sounds that after 150 for-cycles, the memory used by sqlite3multiwrite increase from 1104KB to 1552KB. What does it mean? memory leak or other thing?

    Read the article

  • How to get stream to "in-memory" database created via H2DB?

    - by Reynevan
    I have to create such a mechanism: Create in-memory (H2DB) database; Create tables and fill them using some data; Get stream to that database; Send that stream via WebDAV or something else; I know everything except that "How to get stream to "in-memory" database created via H2DB"? And some explanations: I can't create file because of some server restrictions; I need that stream to create a file;

    Read the article

  • What happens in memory when calling a function with literal values?

    - by Drise
    Suppose I have an arbitrary function: void someFunc(int, double, char); and I call someFunc(8, 2.4, 'a');, what actually happens? How does 8, 2.4, and 'a' get memory, moved into that memory, and passed into the function? What type of optimizations does the compiler have for situations like these? What if I mix and match parameters, such like someFunc(myIntVar, 2.4, someChar);? What happens if the function is declared as inline?

    Read the article

  • How do I generate an Array string from an array in memory (php).

    - by Itay Moav
    I need to create a big array in my code, I have the values in several tables (for easy management). I select it and now I have all the values in an array, in memory in the way I want. My problem, I need to write this array down, into the code. Is there a way to take an array which sits in the memory and translate it into a string "array('g'='h','b'='d'....)" which I can then echo and just copy-paste into my code?

    Read the article

  • What is the best way to measure the memory usage of a C# function ?

    - by Duaa
    Hi all: I'm looking for an accurate way to measure memory usage of a C# program under Windows operating system. I'm using Visual Studio for programming my code and I want to know its time consuming for performance. Really, I tried to use the Task Manager, but I do not get an accurate measurment. Please, if any one know an accurate way to measure the memory consumption, please help me and thanks alot

    Read the article

  • Gnome 3 freezes on logon on samsung RV 509

    - by Noufal
    I have a Samsung NP-RV509 A0FIN and I tried to install GNU/Linux with gnome 3.2 on it. I tried Fedora 16, Ubuntu 11.10 and Linux Mint 12 RC, but with no success. All of these freezes upon login into gnome shell. I think it is the problem with graphics driver, so I tried xorg-edgers ppa on my last installation, ie., Linux Mint. I also tried various intel graphics packages listed on Synaptic package manager, but no success again. My device configuration is as follows(obtained from windows 7): More details about my computer Component Details Subscore Base score Processor Intel(R) Pentium(R) CPU P6200 @ 2.13GHz 5.6 4.6 Memory (RAM) 4.00 GB 7.2 Graphics Intel(R) HD Graphics 4.6 Gaming graphics 1562 MB Total available graphics memory 5.2 Primary hard disk 12GB Free (50GB Total) 5.9 Windows 7 Ultimate System -------------------------------------------------------------------------------- Manufacturer SAMSUNG ELECTRONICS CO., LTD. Model RV409/RV509/RV709 Total amount of system memory 4.00 GB RAM System type 32-bit operating system Number of processor cores 2 64-bit capable Yes Storage -------------------------------------------------------------------------------- Total size of hard disk(s) 418 GB Disk partition (C:) 12 GB Free (50 GB Total) Media drive (D:) CD/DVD Disk partition (E:) 526 MB Free (191 GB Total) Disk partition (F:) 101 GB Free (177 GB Total) Graphics -------------------------------------------------------------------------------- Display adapter type Intel(R) HD Graphics Total available graphics memory 1562 MB Dedicated graphics memory 64 MB Dedicated system memory 0 MB Shared system memory 1498 MB Display adapter driver version 8.15.10.2202 Primary monitor resolution 1366x768 DirectX version DirectX 10 Network -------------------------------------------------------------------------------- Network Adapter Realtek PCIe GBE Family Controller Network Adapter Broadcom 802.11n Network Adapter Network Adapter Microsoft Virtual WiFi Miniport Adapter Notes -------------------------------------------------------------------------------- The gaming graphics score is based on the primary graphics adapter. If this system has linked or multiple graphics adapters, some software applications may see additional performance benefits. Any help is appreciated, and thanks in advance.

    Read the article

  • The C++ Standard Template Library as a BDB Database (part 1)

    - by Gregory Burd
    If you've used C++ you undoubtedly have used the Standard Template Libraries. Designed for in-memory management of data and collections of data this is a core aspect of all C++ programs. Berkeley DB is a database library with a variety of APIs designed to ease development, one of those APIs extends and makes use of the STL for persistent, transactional data storage. dbstl is an STL standard compatible API for Berkeley DB. You can make use of Berkeley DB via this API as if you are using C++ STL classes, and still make full use of Berkeley DB features. Being an STL library backed by a database, there are some important and useful features that dbstl can provide, while the C++ STL library can't. The following are a few typical use cases to use the dbstl extensions to the C++ STL for data storage. When data exceeds available physical memory.Berkeley DB dbstl can vastly improve performance when managing a dataset which is larger than available memory. Performance suffers when the data can't reside in memory because the OS is forced to use virtual memory and swap pages of memory to disk. Switching to BDB's dbstl improves performance while allowing you to keep using STL containers. When you need concurrent access to C++ STL containers.Few existing C++ STL implementations support concurrent access (create/read/update/delete) within a container, at best you'll find support for accessing different containers of the same type concurrently. With the Berkeley DB dbstl implementation you can concurrently access your data from multiple threads or processes with confidence in the outcome. When your objects are your database.You want to have object persistence in your application, and store objects in a database, and use the objects across different runs of your application without having to translate them to/from SQL. The dbstl is capable of storing complicated objects, even those not located on a continous chunk of memory space, directly to disk without any unnecessary overhead. These are a few reasons why you should consider using Berkeley DB's C++ STL support for your embedded database application. In the next few blog posts I'll show you a few examples of this approach, it's easy to use and easy to learn.

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • More Denali Execution Plan Warning Goodies

    - by Dave Ballantyne
    In my last blog, I showed how the execution plan in denali has been enhanced by 2 new warnings ,conversion affecting cardinality and conversion affecting seek, which are shown when a data type conversion has happened either implicitly or explicitly. That is not all though, there is more .  Also added are two warnings when performance has been affected due to memory issues. Memory spills to tempdb are a costly operation and happen when SqlServer is under memory pressure and needs to free some up. For a long time you have been able to see these as warnings in a profiler trace as a sort or hash warning event,  but now they are included right in the execution plan.  Not only that but also you can see which operator caused the spill , not just which statement.  Pretty damn handy. Another cause of performance problems relating to memory are memory grant waits.  Here is an informative write up on them,  but simply speaking , SQLServer has to allocate a certain amount of memory for each statement. If it is unable to you get a “memory grant wait”.  Once again there are other methods of analyzing these,  but the plan now shows these too. Don't worry that’s not real production code There is one other new warning that is of interest to me, “Unmatched Indexes”.  Once I find out the conditions under which that fires ill blog about it.

    Read the article

  • Series On Embedded Development (Part 1)

    - by user12612705
    This is the first in a series of entries on developing applications for the embedded environment. Most of this information is relevant to any type of embedded development (and even for desktop and server too), not just Java. This information is based on a talk Hinkmond Wong and I gave at JavaOne 2012 entitled Reducing Dynamic Memory in Java Embedded Applications. One thing to remember when developing embeddded applications is that memory matters. Yes, memory matters in desktop and server environments as well, but there's just plain less of it in embedded devices. So I'm going to be talking about saving this precious resource as well as another precious resource, CPU cycles...and a bit about power too. CPU matters too, and again, in embedded devices, there's just plain less of it. What you'll find, no surprise, is that there's a trade-off between performance and memory. To get better performance, you need to use more memory, and to save more memory, you need to need to use more CPU cycles. I'll be discussing three Memory Reduction Categories: - Optionality, both build-time and runtime. Optionality is about providing options so you can get rid of the stuff you don't need and include the stuff you do need. - Tunability, which is about providing options so you can tune your application by trading performance for size, and vice-versa. - Efficiency, which is about balancing size savings with performance.

    Read the article

< Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >